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Abstract: The aim of our consideration is to give elementary and simple
proofs for several theorems of the hyperbolic triangle geometry using models
of hyperbolic geometry. We transform a point of a figure into a special point
of the model.

1. Introduction

The hyperbolic plane or Bolyai–Lobachevsky plane (B-L plane) has
different models. We use the well-known Poincaré hemisphere model (PH
model) and the Cayley–Klein disc model (CK model). Models are used
for the illustration of the hyperbolic geometry, for the proof of relative
consistency of the axioms and for proofs of theorems. The proofs are
complicated in general. They leave out of consideration that the above
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Figure 1

models are in the euclidean plane or space and have special hyperbolic
points (h-points) and hyperbolic lines (h-lines). For example the center
of the disc in case of the CK model or the pole of the hemisphere of the
PH model. We denote by K these special points and by g the base circles
of the models.

The models of Poincaré can be considered as elementary. The or-
thogonal projection of the Poincaré’s hemisphere model in the plane of
the base circle g is the Cayley–Klein disc model. In this sense is this
model also elementary.

The subject of our consideration is to give elementary and simple
proofs for several theorems of the hyperbolic triangle geometry.

We extend the points of the hyperbolic plane with the ideal and
ultra-ideal points. We use the Cayley–Klein disc model, the ideal point
are the point of g and the ultra-ideal points lie outside the disc. In case
of the real points (interior of the disc) we take in consideration that the
Cayley–Klein disc model is the orthogonal projection of the Poincaré’s
hemisphere model on the plane of g. The constructions show this.

The reflections of the CK disc model are central axial collineations
whose axes are real. The base circle g of the CK model is a fix circle of
the collineation (reflection) (Fig. 1). Using reflections we can transform
a point of a figure into a special point of the model.

2. Midpoints of line segments

The real (ordinary) pointsA andB determine two segments (Fig. 2).
One of them is the real segment AB.
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Figure 2

The segment AB has two midpoints.
We consider the perpendicular bisector t of the real segment AB.

The line t is the symmetry axis of AB. The reflection in t is a central
axial collineation in the model.

We extend this central axial collineation with axis t and center G

to the whole plane. This is a reflection in line in the plane extended
with ideal and ultra-ideal elements. Two figures A and B are congruent
if there are a finite number of reflections which carry A into B. The
image of the ultra-ideal point P is the ultra-ideal point Q. The point
F = t ∩ AB is one of the midpoint (interior midpoint). We consider
the reflection in t and the central axial collineation corresponding to this
reflection. The other midpoint (exterior) of AB is the centre G (ultra-
ideal point) of this collineation. The image of the line segment AG is the
line segment BG. We say that AG = BG. Fig. 2 shows the construction
of the midpoints of AB. (We use that the orthogonal projection of the
Poincaré’s hemisphere model to the plane of g is the Cayley–Klein disc
model.)

Let A and B be ultra-ideal points but AB a real line that is the
line AB intersects the base circle of the CK model.

There are two midpoints also in this case, a real and an ultra-ideal
midpoint.

Let a and b be the polars of A and B. We denote by t the real
symmetry axis of the lines a and b. The point F = t ∩ AB is one
of the midpoints. We consider the reflection in t and the central axial
collineation corresponding to this reflection. The other midpoint of AB
is the centre G (ultra-ideal point) of this collineation. Fig. 3 shows the
construction of the midpoints of AB in this case.
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Figure 3

Let the line AB be ultra-ideal (Fig. 4). Let a and b be the polars
of the points A and B. The intersection point of a and b is real. The
lines a and b have two symmetry axis (angle bisectors). The reflections
in these axes carry the point A into B and reversed.

Figure 4

The line segment AB has two midpoints in this case, too.
The construction of the symmetry axis (angle bisectors) t1 and t2

is very simple: F = UaVb∩VaUb, G = UaUb ∩VaVb, M = a∩ b, t1 = FM ,
t2 = GM . The midpoints of AB are F and G.

3. Angle bisectors

Let the triangle ABC be real. Using reflections we transform the
center of the incircle of the triangle ABC into the center of the CK model
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(Fig. 5). In this case the exterior and interior angle bisectors of ABC

are angle bisectors also in euclidean sense.

Figure 5

The interior angle bisectors have a common (real) point. Two exte-
rior and the third interior angle bisectors are concurrent in the euclidean
geometry.

Therefore two exterior and the third interior angle bisectors form a
pencil in the hyperbolic geometry.

The vertex of the pencil can be real, ideal or ultra-ideal.

4. Perpendicular bisectors

Let the line segment AB be real. We consider the perpendicular
bisectors of AB (Fig. 6). Let F be the interior and G the exterior mid-
point of AB. Let C∗ denote the pole of the line AB. The line FC∗ is
the interior perpendicular bisector of AB and GC∗ is the exterior per-
pendicular bisector of AB. (It holds α = β because of the reflection.) It
is clear that FC∗ is the polar of the point G and GC∗ is the polar of F .

We assume that the triangle ABC is real. Let Fc, Fa, Fb respec-
tively Gc, Ga, Gb denote the interior respectively the exterior midpoints
of the sides AB, BC and CA.
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Figure 6

We prove that the interior perpendicular bisectors of the triangle
ABC have a common point. Furthermore we show that two exterior
perpendicular bisectors and the interior perpendicular bisector belonging
to the third side of ABC are concurrent.

Using reflections we transform the midpoint Fc of the side AB into
the center K of the CK model (Fig. 7). We proved in [1] that FaFb ‖ AB

Figure 7

in euclidean sense.
It holds (BCFaGa) = (ACFbGb) = −1 that means GaGb ‖ AB in
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euclidean sense.
It is clear that Gc is a point at infinity in euclidean sense and

the points Ga, Gb, Gc lie on the same line. The polars of the exterior
midpoints are the interior perpendicular bisectors. Therefore the interior
perpendicular bisectors form a pencil. The vertex of this pencil can be
real, ideal or ultra-ideal.

The points Fa, Fb and Gc are collinear, too. The polars of these
points are the exterior perpendicular bisectors belonging to Ga and Gb

further the interior perpendicular bisector through Fc. Hence these three
perpendicular bisectors form a pencil.

By similar arguments we can prove the theorem in the remainder
cases.

5. Medians

We use the notation of Sec. 4 for the real triangle ABC (Fig. 8).

Figure 8

The interior medians AFa, BFb, CFc of the real triangle ABC have
a common point.

In order to prove this we transformed the point Fc in the center of
the base circle using a reflection as in Sec. 4. We proved that FbFa ‖ AB
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in euclidean sense. Using an elementary theorem for trapeziums it is
easy to see that the interior medians are concurrent. (The straight line
joining the point of intersection of the diagonals and the common point
of the two non-parallel sides bisect the bases of the trapezium.)

In Sec. 4 we proved that the lines GbGa and AB are parallel to each
other in euclidean sense. Therefore using the above theorem for trapez-
ium the exterior medians BGb, AGa and the interior median CFc have
a common point. Hence two exterior medians and the interior median
belonging to the third vertex are concurrent.

6. Medians, perpendicular bisectors

Let the triangle ABC be ultra-ideal. (The lines of the sides are
ultra-ideal, too.) Analogous statements are true as in Sec. 4 and Sec. 5.

We consider the polar triangle of ABC and transform the center of
the incircle of the polar triangle into the centerK of the CKmodel using a
reflection in line. Let A∗, B∗, C∗ be the vertices of the polar triangle after
the above reflections (Fig. 9). The angle bisectors of the polar triangle

Figure 9

A∗B∗C∗ are bisectors in euclidean sense. The side of the triangle ABC is
perpendicular to the corresponding interior angle bisector. Consequently
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the exterior angle bisectors are parallel to the corresponding sides of
the triangle ABC that is one of the two midpoints is point at infinity
in euclidean sense. It follows that the interior midpoint is midpoint in
euclidean sense. The interior medians of the triangle ABC are medians
in euclidean sense.

Then the interior medians of the triangle ABC are concurrent.
It holds that AGa ‖ BC, CGc ‖ AB in euclidean sense. We get a

parallelogram where BFb is the line of the diagonal.
Therefore the two exterior medians CGc and AGa furthermore the

interior median BFb are concurrent.
We remark that the interior perpendicular bisectors respectively two

exterior and the interior perpendicular bisectors of the triangle ABC

which belongs to the third side of the triangle form a pencil. The vertices
of these pencils are the centers of the incircle and of the excircles of the
triangle A∗B∗C∗. (One center is real the other three centers are not by
all means real.)

7. Angle bisectors

Let a and b be two ultra-ideal straight lines (Fig. 10).

Figure 10

The intersection point of a and b is M .
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There are two angle bisectors of a and b.
We consider the poles of a and b. The poles are real points. The

polar of M is the line m where m = AB. The real line segment AB has
two midpoints (F and G). The line FM is the perpendicular bisector of
AB. Because of the pole-polar connection the reflection in the line MF

carry the line a into b and reversed. The line MF is called one of the
angle bisectors of a and b.

Using the above reflection the line GM is a fix line (the fix line of
the collineation). Therefore the angle of GM and a is equal to the angle
of GM and b. The line GM is the second angle bisector of a and b.

Let the triangle ABC be ultra-ideal. (The lines of the sides are also
ultra-ideal.) We consider the angle bisectors. Analogous statements are
true as in Sec. 3.

Let A∗, B∗, C∗ (Fig. 11) the real vertices of the polar triangle. The

Figure 11

interior perpendicular bisectors of the triangle A∗B∗C∗ are the interior
angle bisectors of ABC. From Sec. 4 it follows that they have a common
point. Similarly the exterior perpendicular bisectors AGa∗ and CGc∗ are
two exterior angle bisectors of ABC. The third interior perpendicular
bisector BFb∗ is the third interior angle bisector of ABC. Hence the
bisectors AGa∗ , CGc∗ and BFb∗ are concurrent.



Proofs of elementary theorems using models of hyperbolic geometry 233

8. Triangle with ultra-ideal vertices

You can have similar results for triangle with ultra-ideal vertices
and real sides (Fig. 12).

Figure 12

We can define the interior and exterior midpoints (Fig. 2), the inte-
rior and exterior perpendicular bisectors of a line segment (Fig. 3) in this
case, too. The interior perpendicular bisectors of a triangle, furthermore
two exterior perpendicular bisectors and the interior perpendicular bisec-
tor belonging to the third side of the triangle form a pencil. The proof
is carried out analogously to the proof in Sec. 4 (Fig. 7). We transform
the interior midpoint Fc of the side AB into the center K of the model
(Fig. 13). We proved in [1] and [3] that FaFb ‖ AB in euclidean sense.
It follows that GaGb ‖ AB in euclidean sense. By similar arguments we
can continue the proof as in Sec. 4.

You can define the interior and the exterior medians of the triangle
ABC. It is true that the interior medians, and two exterior medians and
the interior median belonging to the third vertex form a pencil (Fig. 13).
The proof is the same as in Sec. 5 (Fig. 8).

It can be defined the interior and exterior symmetry axes of the
sides (angle bisectors). It holds that the interior symmetry axes, and
two exterior symmetry axes and the interior symmetry axis belonging to
the third vertex form a pencil. We consider namely the common per-
pendicular lines to the pairs of the sides in ABC. We get the triangle
A∗B∗C∗ with ultra-ideal vertices and real sides (Fig. 12). The interior
and exterior perpendicular bisectors of the triangle A∗B∗C∗ are the sym-
metry axes (angle bisectors) of ABC (Fig. 13).
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Figure 13

Remark. The referee of our paper pointed out the paper [6]. He noticed
that [6] “contains similar results but different proofs”. The author of [6]
considers only triangles with real vertices. You can find his results for
altitudes and midlines in [1], too.
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