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Abstract: We state a condition under which the well-known Levine’s Th. 15
of [7] is reversible. A topology 7, determined by a given topology 7 on X is
introduced in order to generalize the Hamlett’s main result of [5].

1. Preliminaries

Throughout the present paper (X, 7), (Y, o), and (Z, ) mean topo-
logical spaces on which no separation axioms are assumed unless explic-
itly stated. The closure and the interior of a subset S in (X, 7) are
denoted by ¢l (S) and int (S) respectively. A subset S of (X, 7) is said
to be semi-open [7] (resp. semi-closed [2, Th. 1.1]) if there exists an
open set O with O C S C cl(O) (resp. if there exists a closed F' with
int (F') C S C F). The family of all semi-open (resp. semi-closed; closed)
subsets of (X, 7) is denoted as SO (X, 7) (resp. SC (X, 7); ¢(7)). Obvi-
ously, ' € SC (X, 1) if and only if X\ F' € SO (X, 7). It is well-known [7]



196 Z. Duszynski and T. Noiri

that (J,cr S; € SO (X, 7) for every collection {S; : t € T} C SO (X, 7).
In [7, Th. 7] Levine proved that if A € SO (X, 7), then A =G U N for a
certain G' € 7 and a certain nowhere dense N. Dlaska et al. made a deeper
remark [3, Sec.1, p.1163]: A € SO (X, 7) if and only if A = G4 UN, with
G 4 being a suitable open set and a nowhere dense N4 C Fr(G4) (Fr(5)
stands for the boundary of 5).

A space (X, 1) is said to be extremally disconnectedif cl (S) € T
for every S € 7.

2. Two semi-continuous functions

In 1963 Levine has shown [7, Th. 15], that if h: (X,7) — (Y,0)Xx
X (Z,7) defined by h(z) = (f(x),g(z)), where f: (X,7) — (Y,0) and
g: (X,7) = (Z,7), is semi-continuous, then also f and g are both semi-
continuous. [7, Ex. 10] shows that the converse to this theorem fails to
be true in general. In our note we propose a condition under which the
converse holds.

The remark of Dlaska et al. [3] concerning representation of semi-
open sets is reformulated as follows.
Lemma 1. Let (X,7) be a topological space. Then, A € SO (X, 1) if
and only if A =1int (A) UN for a certain N C Fr (int (A4)).
Proof. Obvious. ¢

Lemma 2. Let (X, 1) be a topological space. For each S C X and G € T

we have
GNnFr(S) CcFr(GNS).

Proof. We calculate as follows:

GNFr(S) = (GNel(S))\ (GNint(S))
CA(@NS)\int (GNS)=F(GNS). ¢

Theorem 1. Let f: (X,7) — (Y,0), g: (X,7) — (Z,7) be both semi-
continuous on (X, 7). If for each U € 0 and V' € v we have

Fr (int (f7'(U))) NFr (int (971 (V))) =0,
then the function h: (X, 1) — (Y xZ,0x7) defined as h(z) = (f(z), g(x))
for x € X, is semi-continuous on (X, T).

Proof. Let U xV be any basic open subset of the product (Y x Z, 0 x 7).
By semi-continuity of f and g we infer that f~*(U) = int (f~*(U))UNy
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and g~'(V) = int (g7 (V)) U Ny, where Ny C Fr(int (f~1(U))),
Ny C Fr (mt (9~ (V))) see Lemma 1). Clearly, we have
W (UxV)= 1(U) (V) =
=int (f~H(U)Ng~"(V)) U (int (f~1(U)) N Ny)U
U (int (g~ )mNU) (Ny N Ny)Cint (f(U)ng ™ (V))u

U Fr (int (f "U)Ng(V))) U(Ny N Ny)

by Lemma 2. Thus with the assumption one gets

AU x V) Cint (f7'U)Ng (V) UFr (int (f~H(U)Ng ' (V))) =
=cl (int (f(U)Ng " (V))) = cl (int (U x V))),

whence h is semi-continuous. ¢

With the aid of Lemma 1 one can easily obtain the following corol-

lary.
Corollary 1. Let f: (X,7) — (Y,0) and g: (X,7) — (Z,7) be any
functions. Then, h = (f,g) is semi-continuous if and only if for each
Ué€oandV €~ we have (U x V) =int (f~1(U)N g (V)) UNyy,
where Ny,y C Fr (int (f~(U) ng~1(V))).

A classical theorem concerning continuous functions (see for in-
stance [4, Th. 1.5]), was generalized by Hamlett [5] as follows: Let (X, 7)
be arbitrary, (Y, o) be Hausdorff, and f,g: (X,7) — (Y,0), where f is
continuous and g is semi-continuous. Then

(1) {z e X: f(z) =g(z)} € SC(X,7),

(2) if DC X isdenseand f | D =g | D, then f =g on X.

[5, Ex. 2.2] shows that for the case 'f and g are both semi-continuous’,
(1) and (2) do not hold, in general.

The reader is advised to compare the following lemma to Lemma 1.
Lemma 3. For any space (X, 7), B € SC (X, 1) if and only if there exist
Fec(r) and M C X with

(1) B=1int (F)U M and

(2) M C Fr (F).

Proof. (=). Let B € SC(X, 7). Then int (F) C B C F for a certain
set F' € ¢(1). Clearly, B = int (F') UM and M = B\ int (F') C Fr (F),
where Fr (F') is a nowhere dense subset of X.

(«<). Obvious. ¢
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Remark 1. It should be noticed that the boundary of each semi-open
and each semi-closed subset S of (X, 7), is nowhere dense in (X,7).
Indeed, by [8, Lemma 2] and its dual we have

int [cl (cl (int (S)) \ int (S))] = int [c] (1 (S) \ int (1 (S)))] = 0.
Lemma 4. Let (X, 7) be any topological space and (Y, o) be a Ti-space.
Let f,g: (X,7) — (Y,0) be both semi-continuous. Then the set {x €
€ X: f(z) =g(x)} is of the form () (Go U Ny), where {Go}o C T and
each N, is a certain nowhere dense subset of (X, 7).
Proof. Consider theset A = X\{x € X : f(z) = g(z)} and an arbitrary
x € A. We have f(x) # g(z). Since (Y,0) is Ty, then {f(z)}, {g(z)} €
€ c¢(o). By hypothesis we obtain

F{f@)}), 97 ({9(2)}) € SC(X, 7).

Let for each z € A, U, = f~*({f(2)})Nng~' ({g(z)}). Obviously, for each
z € U, we have f(z) # g(2), thus z € A. Consequently (J,., U = A.
We calculate now as follows:

R={reX: f(x) = g(z)} = X\A = X\ JU, :X\<UAmU ULZ>,

€A T€A z€A
where for each v € A, U, = A, U L, with A, € 7, L, is nowhere

dense in (X, 7), since U, € SC(X,7) (see Lemma 3). We have (denote
A =J,cqAz) that R = (X \ A") N,ca(X \ Ly), where X \ A’ € ¢(7)
and X \ L, € SO (X,7) for each x € A (since L, € SC(X,7); see [2,
Th. 1.3]). Clearly X \ A" = Gy U N, for a certain Gy € 7 and a nowhere
dense Ny C X. Similarly, for each x € A, X \ L, = G, U N,, where
G, € 7 and N, is nowhere dense in (X, 7) [7, Th. 7]. So, it means that

R=(GyUNy) N ()(GzUN,).

€A

The proof is complete. ¢
Lemma 5. Let (X, 7) be any topological space. Let 7, denote the family
of all subsets of X of the form X \(,ca(GaUN,), where A is arbitrary,
Go € T for each o € A, and each N, is nowhere dense in (X, 7). Then
Tw 1S a basis for a certain topology, designed as T, on X.
Proof. One easily checks that ), X € 7,. Consider arbitrary V; =
= X\ Naen, (Ga UN,) € 7y and Vo = X \ (N5, (G U Np) € 7. We
have (use [4, Th. 4.2(1)])

VinVe=X\ [(ﬂl(GauNa)> u(ﬂ(GBUNﬁN -

acA BEA
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=X\ () [(GaUGs)U(N,UN).
(a,B)EAI x Ao

Thus ViNV, € 7. O
Theorem 2. Let (X, 7) be any topological space and let (Y,0) be a Ti-
space. If f,g: (X, 7) — (Y, 0) are both semi-continuous, then

(1) The set {x € X : f(z) = g(x)} is closed in (X, Ty).

(2) If D C X is dense in (X,7,) and f | D =g | D, then f =g

on X.

Proof. (1) follows from Lemma 4. To prove (2) apply (1) together with
[4, Th. 4.13). ¢

Recall that a subset A of a space (X, 1) is called simply open [1]
if A=GUN, where G € 7 and N is nowhere dense.
Lemma 6. Let (X, 7) be any topological space. Then, each simply open
subset of (X, 1) is T,-clopen.
Proof. Let A= OUN for a certain O € 7 and nowhere dense N. Hence
X\A=X\0O)N(X\N) = (int(X\O)UF(X\0)) Nn(GUM),
where G € 7 and M C Fr(G) (each nowhere dense set is semi-closed
and hence the complement to X of it is semi-open). Thus X \ A =
= int ((X \ O)NG) UL for a certain nowhere dense L (in (X, 7)). So,
X\ A € ¢(ry). Finally, A is 7,-open. ¢

The following statement is now obvious.

Corollary 2. FEach semi-closed (or semi-open) subset of (X, T) is Ty-
open.
Theorem 3. Let (X, 7) be extremally disconnected and (Y,o) be Haus-
dorff. If both f,g: (X,7) — (Y,0) are semi-continuous, then

(1) {z € X: f(z) = g(2)} € SC(X,7);

(2) if D C X is dense in (X,7) and f | D =g | D then f =g

on X.

Proof. (1). The proof is analogous to the classical one. We use the fact
that in extremally disconnected space (X, 1), V1NV, € SO (X, 7) for any
Vi, V2 € SO (X, 1) [6, Prop. and Rem.].

(2). Use [5, Th. 2.4]. O
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