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Abstract: We consider classical functional equations on a special hypergroup
which is related to continuous unitary irreducible representations of the special
linear group in two dimensions.

1. Introduction

Functional equations on hypergroups have been treated in [6], [7].
In this paper we study functional equations on a special hypergroup,
which is related to the set of continuous unitary irreducible representa-
tions of the group G = SU(2), the special linear group in two dimensions.
We show how to determine all exponentials, additive functions and gener-
alized moment function sequences on this hypergroup. Moment functions
on other types of hypergroups have been described in [3], [4] and [5]. The
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definition of the underlying hypergroup is taken from [1].

If G is a compact topological group then its dual object G consists
of equivalence classes of continuous irreducible representations of G. For
any two classes U,V of this type their tensor product can be decom-
posed into its irreducible components Uy, Uz, ..., U, with the respective
multiplicities my, mo, ..., m, (see [2]). We define convolution on G by

n

(11) 5U * (5\/ = - W

5,

where d(U) denotes the dimension of U and ¢y is the Dirac measure
concentrated at U. Then G with this convolution and with the discrete
topology is a commutative hypergroup.

In the special case of G = SU(2) the dual object G can be identified
with the set N of natural numbers as it is indicated in [1]: the set of
equivalence classes of continuous unitary irreducible representations of
SU(2) is given by {T© 7MW T 1} where T™ has dimension n + 1,
and we identify this set with N.

For every m,n in N the tensor product of 7™ and T™ is unitary
equivalent to

(1.2) T (Im=nl) @ (Im=n|+2) @ . .@T(m—i-n) .

The convolution is given by

m-+n

S k1
(1.3) =) M+ Dn+ D)

k=|m—n)|

where the prime denotes that every second term appears in the sum,
only. With this convolution N becomes a discrete commutative hyper-
group, and since all the T are self-conjugate, the hypergroup is in fact
Hermitian. We call this hypergroup the SU(2)-hypergroup.

2. Exponential functions on the SU(2)-hypergroup

In this section we describe the exponential functions on the SU(2)-
hypergroup. We recall that the function M : N — C is an exponential if
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and only if it satisfies

(21)  M(m)M(n)=M(m=n)= Y '(

k=|m—n)|

kE+1
m+1)(n+1)

M(k)

for all natural numbers m, n.

Theorem 1. The function M : N — C is an exponential on the SU(2)-
hypergroup if and only if there exists a complex number \ such that

sinh[(n + 1)A]

(2.2) M) =

holds for each natural number n. (Here X\ = 0 corresponds to the expo-
nential M =1.)
Proof. Let M : N — C be a solution of (2.1) and let f(n) = (n+1)M(n)

for each n in N. Then we have
m+n

fm)fn)= > 'f(k)
k=|m—n|
for each m,n in N. With m = 1 it follows that f satisfies the following
second order homogeneous linear difference equation

(2.3) fin+2) = f()f(n+1)+ f(n) =0

for each n in N with f(0) = 1.

Suppose that f(1) = 2. Then from (2.3) we infer that f(n) =n+1
and M = 1 which corresponds to the case A = 0 in (2.2). Otherwise
f(1) # 2 and let A # 0 be a complex number with f(1) = 2cosh A\. Then
we have that

f(n) = ae™ 4 e~
holds for any n in N with some complex numbers «, 3 satisfying a+/3 = 1.
It is easy to see that in this case
sinh[(n + 1)A]
Jn) = sinh A
holds for each n in N. Finally, we have
sinh[(n + 1)A]
M(n) = (n+1)sinh A
Conversely, it is easy to check that any function M of the given form is
an exponential on the SU(2)-hypergroup, hence the theorem is proved. ¢
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3. Additive functions on the SU(2)-hypergroup

Now we describe the additive functions on the SU(2)-hypergroup.
We recall that the function A : N — C is an additive function if and only
if it satisfies

(1) A +A@) = Almen) = 30

k=|m—n)|

k+1
m+1)(n+1)

A(k)

for all natural numbers m, n.
Theorem 2. The function A : N — C is an additive function on the
SU(2)-hypergroup if and only if there exists a complex number ¢ such
that

A(n) = %n(n +2)

holds for each natural number n.

Proof. Let A: N — C be a solution of (3.1) and let f(n) = (n+1)A(n)

for each n in N. Then we have
m—+n

(n+1)f(m)+(m+1)f(n)= > ' f(k)

k=|m—n|
for each m,n in N. With m = 1 it follows that f satisfies the following
second order homogeneous linear difference equation

f(n+2)=2f(n+1)+ f(n) =2c(n+2)

for each n in N with f(0) = 0 and f(1) = 2¢. As the second difference of
f is linear it follows that f is a cubic polynomial and simple computation
gives that A has the desired form.

Conversely, it is easy to check that any function A of the given form
is an additive function on the SU(2)-hypergroup, hence the theorem is
proved. ¢

4. Generalized moment functions on the SU (2)-
hypergroup

Finally we describe the generalized moment functions on the SU(2)-
hypergroup. Let N be a nonnegative integer. We recall that the functions
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0o, P1,---,9n : N —= C form a generalized moment function sequence if
and only if they satisfy

k

(41) autmsm =3 (*) oy men o

=0

for all natural numbers m,n and for £k =0,1,..., N.
Making use of the results in Sec. 2 we introduce the function

(4.2) B(n, ) = %

for each n in N and A # 0 in C, while ®(n,0) = 1 for each n in N.
The function ® : N x C — C is called an ezponential family for the
SU(2)-hypergroup: each exponential on this hypergroup has the form
n +— ®(n,\) with some unique A in C, and, conversely, the function
n +— ®(n, \) is an exponential on the SU(2)-hypergroup for every com-
plex .

Theorem 3. Let K denote the SU(2)-hypergroup and ® the exponential
family given by (4.2). The functions g, @1,....,on : K — C form a
generalized moment sequence of order N on K if and only if there exist

complex numbers c; for j =1,2,..., N such that
k

piln) = b(n, £(1))(0)

holds for each n in N and for k=0,1,..., N, where
(43) OEDSET

for each t in C.
Proof. First we note that, by (1.3), we have for n > 1

n+1

k+1 n n-+2
4.4 = E 5, = — B
(4.4) On % 01 Bt 2(n + 1)5k 2(n+ 1)5" ! 2(n+ 1)67”rl ’

hence, by 3.2.1 Prop. in [1], K is a polynomial hypergroup, that is,
there exists a sequence (P,)nen of polynomials such that deg P, = n for
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n=0,1,..., there exists an o in R such that P,(zo) = 1forn =0,1,...,
and

(4.5) ZcmnkPk (x)
k=0

holds for each x in R and m,n in N with some nonnegative numbers
¢(m,n, k), further we have

(4.6) O * O, = Z c(m,n, k)o
k=0

for each m,n in N. Here we shall determine this sequence of polynomials.

Our basic observation is that the function A — ®(n, \) is a poly-
nomial of cosh A of degree n for each n in N. We apply mathematical
induction. For n = 0 and n = 1 we have by (4.2)

sinh A
d(0,\) = =
(0, %) sinh A ’
_sinh(2)\)
q)(]_,)\) = m = COSh)\.

Suppose that for k£ = 0,1, ..., n there exists a polynomial P, of degree k
such that

(4.7) ®(k,\) = Pr(cosh \)
holds. Clearly Py(z) =1 and P;(z) = x. Then, by eq. (4.4), we have

n n+2

4.8) P, h hA= P, h
(4.8) P,(cosh \) cosh A O 1(cos )\)+2(n+1)

d(n+1,N),
that is

2n+1) P,(cosh \) cosh A —

n—+2 n

(4.9) ®(n+1,)) =

n 2Pn_1(cosh A,

and here the right-hand side is a polynomial of degree n 4+ 1 in cosh A:

2(n+1) n
Pn-l—l(x) = n+2 Z’Pn(llf) - n+2pn—l(x)a

hence
®(n+1,\) = P,iq(cosh \),
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which was to be proved.
Finally, we have for all m,n in N and X in C
P,(cosh \)P,,(cosh A) = ®(n, \)®(m,\) = ®(n*m, \) =

m—+n

, kE+1 B , k41
= 2 D1 A= 2 T D 1) L ecoshA),

k=|m—n)| k=|m—n|

which implies

POPa) = 3 e Pue)

k=|m—n)|
for each x in R and m,n in N. This means that K is the polynomial

hypergroup associated to the sequence of polynomials (P,),en. Then, by
Th. 4 in [4], our statement follows. ¢
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