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Abstract: We consider classical functional equations on a special hypergroup
which is related to continuous unitary irreducible representations of the special
linear group in two dimensions.

1. Introduction

Functional equations on hypergroups have been treated in [6], [7].
In this paper we study functional equations on a special hypergroup,
which is related to the set of continuous unitary irreducible representa-
tions of the group G = SU(2), the special linear group in two dimensions.
We show how to determine all exponentials, additive functions and gener-
alized moment function sequences on this hypergroup. Moment functions
on other types of hypergroups have been described in [3], [4] and [5]. The
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definition of the underlying hypergroup is taken from [1].

If G is a compact topological group then its dual object Ĝ consists
of equivalence classes of continuous irreducible representations of G. For
any two classes U, V of this type their tensor product can be decom-
posed into its irreducible components U1, U2, . . . , Un with the respective
multiplicities m1, m2, . . . , mn (see [2]). We define convolution on Ĝ by

(1.1) δU ∗ δV =

n∑

i=1

mi d(Ui)

d(U) d(V )
δUi

where d(U) denotes the dimension of U and δU is the Dirac measure

concentrated at U . Then Ĝ with this convolution and with the discrete
topology is a commutative hypergroup.

In the special case of G = SU(2) the dual object Ĝ can be identified
with the set N of natural numbers as it is indicated in [1]: the set of
equivalence classes of continuous unitary irreducible representations of
SU(2) is given by {T (0), T (1), T (2), . . . }, where T (n) has dimension n+ 1,
and we identify this set with N.

For every m,n in N the tensor product of T (m) and T (n) is unitary
equivalent to

(1.2) T (|m−n|)
⊕

T (|m−n|+2)
⊕

· · ·
⊕

T (m+n) .

The convolution is given by

(1.3) δm ∗ δn =
m+n∑

k=|m−n|

′ k + 1

(m+ 1)(n+ 1)
δk ,

where the prime denotes that every second term appears in the sum,
only. With this convolution N becomes a discrete commutative hyper-
group, and since all the T (n) are self-conjugate, the hypergroup is in fact
Hermitian. We call this hypergroup the SU(2)-hypergroup.

2. Exponential functions on the SU(2)-hypergroup

In this section we describe the exponential functions on the SU(2)-
hypergroup. We recall that the function M : N → C is an exponential if
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and only if it satisfies

(2.1) M(m)M(n) = M(m ∗ n) =

m+n∑

k=|m−n|

′ k + 1

(m+ 1)(n+ 1)
M(k)

for all natural numbers m,n.

Theorem 1. The function M : N → C is an exponential on the SU(2)-
hypergroup if and only if there exists a complex number λ such that

(2.2) M(n) =
sinh[(n+ 1)λ]

(n+ 1) sinhλ

holds for each natural number n. (Here λ = 0 corresponds to the expo-
nential M = 1.)

Proof. Let M : N → C be a solution of (2.1) and let f(n) = (n+1)M(n)
for each n in N. Then we have

f(m)f(n) =

m+n∑

k=|m−n|

′ f(k)

for each m,n in N. With m = 1 it follows that f satisfies the following
second order homogeneous linear difference equation

(2.3) f(n+ 2)− f(1)f(n+ 1) + f(n) = 0

for each n in N with f(0) = 1.
Suppose that f(1) = 2. Then from (2.3) we infer that f(n) = n+1

and M = 1 which corresponds to the case λ = 0 in (2.2). Otherwise
f(1) 6= 2 and let λ 6= 0 be a complex number with f(1) = 2 coshλ. Then
we have that

f(n) = αenλ + βe−nλ

holds for any n in N with some complex numbers α, β satisfying α+β = 1.
It is easy to see that in this case

f(n) =
sinh[(n + 1)λ]

sinhλ
holds for each n in N. Finally, we have

M(n) =
sinh[(n+ 1)λ]

(n+ 1) sinhλ
.

Conversely, it is easy to check that any function M of the given form is
an exponential on the SU(2)-hypergroup, hence the theorem is proved. ♦
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3. Additive functions on the SU(2)-hypergroup

Now we describe the additive functions on the SU(2)-hypergroup.
We recall that the function A : N → C is an additive function if and only
if it satisfies

(3.1) A(m) + A(n) = A(m ∗ n) =

m+n∑

k=|m−n|

′ k + 1

(m+ 1)(n+ 1)
A(k)

for all natural numbers m,n.

Theorem 2. The function A : N → C is an additive function on the
SU(2)-hypergroup if and only if there exists a complex number c such
that

A(n) =
c

3
n(n + 2)

holds for each natural number n.

Proof. Let A : N → C be a solution of (3.1) and let f(n) = (n+1)A(n)
for each n in N. Then we have

(n+ 1)f(m) + (m+ 1)f(n) =

m+n∑

k=|m−n|

′ f(k)

for each m,n in N. With m = 1 it follows that f satisfies the following
second order homogeneous linear difference equation

f(n+ 2)− 2f(n+ 1) + f(n) = 2c(n+ 2)

for each n in N with f(0) = 0 and f(1) = 2c. As the second difference of
f is linear it follows that f is a cubic polynomial and simple computation
gives that A has the desired form.

Conversely, it is easy to check that any function A of the given form
is an additive function on the SU(2)-hypergroup, hence the theorem is
proved. ♦

4. Generalized moment functions on the SU(2)-

hypergroup

Finally we describe the generalized moment functions on the SU(2)-
hypergroup. Let N be a nonnegative integer. We recall that the functions
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ϕ0, ϕ1, . . . , ϕN : N → C form a generalized moment function sequence if
and only if they satisfy

(4.1) ϕk(m ∗ n) =

k∑

j=0

(
k

j

)
ϕj(m)ϕk−j(n)

for all natural numbers m,n and for k = 0, 1, . . . , N .

Making use of the results in Sec. 2 we introduce the function

(4.2) Φ(n, λ) =
sinh[(n+ 1)λ]

(n+ 1) sinhλ

for each n in N and λ 6= 0 in C, while Φ(n, 0) = 1 for each n in N.
The function Φ : N × C → C is called an exponential family for the
SU(2)-hypergroup: each exponential on this hypergroup has the form
n 7→ Φ(n, λ) with some unique λ in C, and, conversely, the function
n 7→ Φ(n, λ) is an exponential on the SU(2)-hypergroup for every com-
plex λ.

Theorem 3. Let K denote the SU(2)-hypergroup and Φ the exponential
family given by (4.2). The functions ϕ0, ϕ1, ..., ϕN : K → C form a
generalized moment sequence of order N on K if and only if there exist
complex numbers cj for j = 1, 2, . . . , N such that

ϕk(n) =
dk

dtk
Φ(n, f(t))(0)

holds for each n in N and for k = 0, 1, . . . , N , where

(4.3) f(t) =
N∑

j=0

cj

j!
tj

for each t in C.

Proof. First we note that, by (1.3), we have for n ≥ 1

(4.4) δn ∗ δ1 =

n+1∑

k=n−1

′ k + 1

2(n+ 1)
δk =

n

2(n+ 1)
δn−1 +

n + 2

2(n+ 1)
δn+1 ,

hence, by 3.2.1 Prop. in [1], K is a polynomial hypergroup, that is,
there exists a sequence (Pn)n∈N of polynomials such that deg Pn = n for
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n = 0, 1, . . . , there exists an x0 in R such that Pn(x0) = 1 for n = 0, 1, . . . ,
and

(4.5) Pn(x)Pm(x) =

∞∑

k=0

c(m,n, k)Pk(x)

holds for each x in R and m,n in N with some nonnegative numbers
c(m,n, k), further we have

(4.6) δm ∗ δn =

∞∑

k=0

c(m,n, k)δk

for each m,n in N. Here we shall determine this sequence of polynomials.
Our basic observation is that the function λ 7→ Φ(n, λ) is a poly-

nomial of coshλ of degree n for each n in N. We apply mathematical
induction. For n = 0 and n = 1 we have by (4.2)

Φ(0, λ) =
sinhλ

sinhλ
= 1,

Φ(1, λ) =
sinh(2λ)

2 sinhλ
= cosh λ .

Suppose that for k = 0, 1, . . . , n there exists a polynomial Pk of degree k

such that

(4.7) Φ(k, λ) = Pk(cosh λ)

holds. Clearly P0(x) = 1 and P1(x) = x. Then, by eq. (4.4), we have

(4.8) Pn(coshλ) coshλ =
n

2(n+ 1)
Pn−1(coshλ) +

n + 2

2(n+ 1)
Φ(n + 1, λ) ,

that is

(4.9) Φ(n + 1, λ) =
2(n+ 1)

n+ 2
Pn(cosh λ) coshλ−

n

n + 2
Pn−1(cosh λ) ,

and here the right-hand side is a polynomial of degree n + 1 in coshλ:

Pn+1(x) =
2(n+ 1)

n+ 2
xPn(x)−

n

n+ 2
Pn−1(x) ,

hence
Φ(n + 1, λ) = Pn+1(cosh λ) ,
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which was to be proved.
Finally, we have for all m,n in N and λ in C

Pn(coshλ)Pm(cosh λ) = Φ(n, λ)Φ(m, λ) = Φ(n ∗m, λ) =

=

m+n∑

k=|m−n|

′ k + 1

(m+ 1)(n+ 1)
Φ(k, λ) =

m+n∑

k=|m−n|

′ k + 1

(m+ 1)(n+ 1)
Pk(cosh λ),

which implies

Pn(x)Pm(x) =
m+n∑

k=|m−n|

′ k + 1

(m+ 1)(n+ 1)
Pk(x)

for each x in R and m,n in N. This means that K is the polynomial
hypergroup associated to the sequence of polynomials (Pn)n∈N. Then, by
Th. 4 in [4], our statement follows. ♦
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