
Mathematica Pannonica

23/1 (2012), 157–160

A NOTE ON THE NUMBER OF ABE-
LIAN GROUPS OF A GIVEN ORDER

László Tóth
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Abstract: We point out an asymptotic formula for the power moments of
the function a(n), representing the number of non-isomorphic Abelian groups
of order n. For the quadratic moment this improves an earlier result due to
L. Zhang, M. Lü and W. Zhai.

Let a(n) denote the number of non-isomorphic Abelian groups of
order n. The arithmetic function a is multiplicative and for every prime
power pν (ν ≥ 1), a(pν) = P (ν) is the number of unrestricted partitions
of ν. Thus, for every prime p, a(p) = 1, a(p2) = 2, a(p3) = 3, a(p4) = 5,
a(p5) = 7, etc. Asymptotic properties of the function a were investigated
by several authors. See, e.g., [1, Ch. 14], [2, Ch. 7] for historical surveys.
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It is known that
∑

n≤x

a(n) = A1x + A2x
1/2 + A3x

1/3 + R(x),

where Aj :=
∏∞

k=1,k 6=j ζ(k/j) (j = 1, 2, 3), ζ denoting the Riemann zeta

function, and the best result for the error term is R(x) ≪ x1/4+ε for every
ε > 0, proved by O. Robert and P. Sargos [6]. The asymptotic behavior
of the sum

∑

n≤x 1/a(n) was investigated by W. G. Nowak [5].
An asymptotic formula for the quadratic moment of the function

a, i.e., for
∑

n≤x(a(n))2 was given by L. Zhang, M. Lü and W. Zhai [8].
In the present note we point out the following result for the r-th

power moment of the function a.
For j = (j1, . . . , jt) ∈ N

t with 1 ≤ j1 ≤ . . . ≤ jt consider the
generalized divisor function d(j; n) :=

∑

d
j1
1
···d

jt
t =n

1 and let ∆(j; x) stand

for the remainder term in the related asymptotic formula, i.e.,
∑

n≤x

d(j; n) = H(j; x) + ∆(j; x),

where H(j; x) is the main term, cf. [2, Ch. 6]. Furthermore, let ∆r(x) :=
:= ∆((1, 2, 2, . . . , 2

︸ ︷︷ ︸

2r−1

); x).

Theorem 1. Let r ≥ 2 be a fixed integer. Assume that ∆r(x) ≪
≪ xαr(log x)βr , with 1/3 < αr < 1/2. Then

∑

n≤x

(a(n))r = Crx + x1/2Q2r−2(log x) + Rr(x),

where

Cr :=
∏

p

(

1 +
∞∑

ν=2

(P (ν))r − (P (ν − 1))r

pν

)

,

Q2r−2 is a polynomial of degree 2r − 2 and Rr(x) ≪ xαr(log x)βr (is the
same).

According to a recent result of E. Krätzel [3], ∆2(x)≪x45/127(log x)5,
where 45/127 ≈ 0,3543 ∈ (1/3, 1/2), hence the same is the remainder
term for

∑

n≤x(a(n))2. This improves R2(x) ≪ x96/245+ε with 96/245 ≈
≈ 0,3918, obtained in [8] by reducing the error term to the Piltz divisor
problem concerning d3(n).

If r ≥ 3, then ∆r(x) ≪ xur+ε for every ε > 0, where ur := 2r+1−1
2r+2+1

∈
∈ (1/3, 1/2). See [2, Th. 6.10]. Therefore Rr(x) ≪ xur+ε holds as well.
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Th. 1 is a direct consequence of the next more general result, valid
for a whole class of arithmetic functions. Let ∆k,ℓ(x) :=∆((1, ℓ, ℓ, ..., ℓ

︸ ︷︷ ︸

k−1

); x).

Theorem 2. Let f be a complex valued multiplicative arithmetic func-
tion. Assume that

i) f(p) = f(p2) = · · · = f(pℓ−1) = 1, f(pℓ) = k for every prime p,
where ℓ, k ≥ 2 are fixed integers,

ii) f(pν) ≪ 2ν/(ℓ+1) (ν → ∞) uniformly for the primes p, i.e., there
is a constant C such that |f(pν)| ≤ C · 2ν/(ℓ+1) for every prime p and
every sufficiently large ν.

Then
∞∑

n=1

f(n)

ns
= ζ(s)ζk−1(ℓs)V (s),

absolutely convergent for ℜ(s) > 1, where the Dirichlet series V (s) is
absolutely convergent for ℜ(s) > 1/(ℓ + 1).

Furthermore, suppose that ∆k,ℓ ≪ xαk,ℓ(log x)βk,ℓ, with 1/(ℓ + 1) <
< αk,ℓ < 1/ℓ. Then

∑

n≤x

f(n) = Cfx + x1/ℓPf,k−2(log x) + Rf (x),

where Pf,k−2 is a polynomial of degree k − 2,

Cf :=
∏

p

(

1 +

∞∑

ν=ℓ

f(pν) − f(pν−1)

pν

)

,

and Rf (x) ≪ xαk,ℓ(log x)βk,ℓ.

Note that for every k, ℓ ≥ 2, ∆k,ℓ(x) ≪ xuk,ℓ+ε, where uk,ℓ :=
:= 2k−1

3+(2k−1)ℓ
∈ (1/(ℓ + 1), 1/ℓ). See [2, Th. 6.10]. Therefore Rf(x) ≪

xuk,ℓ+ε is valid as well.

Proof. This is a variation of the theorem proved in [7]. Here the same
proof works out, however the conditions are somewhat relaxed. Let
µℓ(n) = µ(m) or 0, according as n = mℓ or not, where µ is the Möbius
function. Let V (s) :=

∑∞
n=1 v(n)/ns. We obtain the desired Dirichlet

series representation by taking v = f ∗ µ ∗ µℓ ∗ · · ·µℓ
︸ ︷︷ ︸

k−1

in terms of the

Dirichlet convolution ∗.
Here v is multiplicative and easy computations show that v(pν) = 0

for any 1 ≤ ν ≤ ℓ. For ν ≥ ℓ + 1,
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v(pν) =

k−1∑

j=0

(−1)j

(
k − 1

j

)
(
f(pν−jℓ) − f(pν−jℓ−1)

)
,

leading to the absolute convergence of V (s) for ℜ(s) > 1/(ℓ + 1). Now
the asymptotic formula follows from the representation

f(n) =
∑

ab=n

d((1, ℓ, ℓ, . . . , ℓ
︸ ︷︷ ︸

k−1

); a)v(b). ♦

Choosing f(n) = (a(n))r, k = 2r and ℓ = 2 we deduce Th. 1. Note

that P (ν) < eπ
√

2ν/3 (ν ≥ 1), see e.g., [4, p. 236], thus condition ii) is
verified.

Th. 2 applies also for the r-th powers (r ≥ 2 integer) of the exponen-
tial divisor function τ (e) and the function φ(e), where φ(e) is multiplicative
and φ(e)(pν) = φ(ν) for every prime power pν (ν ≥ 1), φ denoting Euler’s
function. See [3, 7].
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