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Abstract: The object of the present paper is to study generalized Sasakian-
space-forms admitting W2-curvature tensor. We consider generalized Sasakian-
space-forms satisfying some conditions such as W2 ·S = 0, R(ξ, U) ·W2 = 0 and
W2 · R = 0. We also construct an example of generalized Sasakian-space-form
which is W2-flat.

1. Introduction

It is well known that in differential geometry the curvature of a
Riemannian manifold plays a basic role and the sectional curvatures of
a manifold determine the curvature tensor R completely. A Riemannian
manifold with constant sectional curvature c is called a real-space-form
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and its curvature tensor R satisfies the condition

(1.1) R(X, Y )Z = c{g(Y, Z)X − g(X, Z)Y }.

Models for these spaces are the Euclidean spaces (c = 0), the spheres
(c > 0) and the hyperbolic spaces (c < 0).

In contact metric geometry, a Sasakian manifold with constant φ-
sectional curvature is called Sasakian-space-form and the curvature ten-
sor of such a manifold is given by

R(X, Y )Z =
c + 3

4

{

g(Y, Z)X − g(X, Z)Y
}

+(1.2)

+
c−1

4

{

g(X, φZ)φY −g(Y, φZ)φX+2g(X, φY )φZ
}

+

+
c − 1

4

{

η(X)η(Z)Y − η(Y )η(Z)X+

+ g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ
}

.

These spaces can also be modeled depending on c > −3, c = −3 or
c < −3.

As a generalization of Sasakian-space-form, in [1] Alegre, Blair
and Carriazo introduced and studied the notion of generalized Sasakian-
space-form with the existence of such notions by several interesting ex-
amples. An almost contact metric manifold M(φ, ξ, η, g) is called gener-
alized Sasakian-space-form if there exist three functions f1, f2, f3 on M

such that [1]

R(X, Y )Z = f1

{

g(Y, Z)X − g(X, Z)Y
}

+(1.3)

+ f2

{

g(X, φZ)φY −g(Y, φZ)φX+2g(X, φY )φZ
}

+

+ f3

{

η(X)η(Z)Y − η(Y )η(Z)X+

+ g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ
}

for all vector fields X, Y , Z on M , where R is the curvature tensor of M

and such a manifold of dimension (2n + 1), n > 1 (the condition n > 1
is assumed throughout the paper), is denoted by M2n+1(f1, f2, f3).

If, in particular, f1 = c+3

4
, f2 = f3 = c−1

4
then the generalized

Sasakian-space-forms reduces to the notion of Sasakian-space-forms. But
it is to be noted that generalized Sasakian-space-forms are not merely
generalization of Sasakian-space-forms. It also contains a large class of
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almost contact manifolds. For example it is known that [3] any three
dimensional (α, β)-trans Sasakian manifold with α, β depending on ξ

is a generalized Sasakian-space-form. However, we can find generalized
Sasakian-space-forms with non-constant functions and arbitrary dimen-
sions.

The generalized Sasakian-space-forms have been studied by sev-
eral authors such as Alegre and Carriazo ([2], [3], [4]), Belkhelfa, Deszcz
and Verstraelen [5], Carriazo [7], Ĉırnu [8], De and Sarkar ([10], [11]),
Ghefari, Solamy and Shahid [12], Gherib, Gorine and Belkhelfa [13],
Kim [14], Narain, Yadav and Dwivedi [16], Olteanu ([17], [18]), Shukla
and Chaubey [27], Sular and Özgür [28], Yadav, Suthar and Srivastava
[32] and many others. In [14] Kim studied conformally flat generalized
Sasakian-space-forms. Also in [10] De and Sarkar studied the Weyl pro-
jective curvature tensor of generalized Sasakian-space-forms.

In 1970 Pokhariyal and Mishra [23] introduced new tensor fields,
called W2 and E tensor fields, in a Riemannian manifold and studied
their properties. According to them a W2-curvature tensor on a manifold
(M2n+1, g), n > 1, is defined by [23]

(1.4) W2(X, Y )Z = R(X, Y )Z +
1

2n

[

g(X, Z)QY − g(Y, Z)QX
]

,

where Q is the Ricci-operator, i.e., g(QX, Y ) = S(X, Y ) for all X, Y . In
this connection it may be mentioned that Pokhariyal and Mishra ([23],
[24]) and Pokhariyal [19] introduced some new curvature tensors defined
on the line of Weyl projective curvature tensor.

The W2-curvature tensor was introduced on the line of Weyl pro-
jective curvature tensor and by breaking W2 into skew-symmetric parts
the tensor E has been defined. Rainich conditions for the existence of
the non-null electrovariance can be obtained by W2 and E, if we replace
the matter tensor by the contracted part of these tensors. The tensor E

enables to extend Pirani formulation of gravitational waves to Einstein
space ([21], [22]). It is shown that [23] except the vanishing of complexion
vector and property of being identical in two spaces which are in geodesic
correspondence, the W2-curvature tensor possesses the properties almost
similar to the Weyl projective curvature tensor. Thus we can very well
use W2-curvature tensor in various physical and geometrical spheres in
place of the Weyl projective curvature tensor.

The W2-curvature tensor have also been studied by various authors
in different structures such as De and Sarkar [9], Matsumoto, Ianus and
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Mihai [15], Pokhariyal ([20], [21], [22]), Shaikh, Jana and Eyasmin [25],
Shaikh, Matsuyama and Jana [26], Taleshian and Hosseinzadeh [29], Tri-
pathi and Gupta [30], Venkatesha, Bagewadi and Kumar [31], Yildiz and
De [33] and many others.

Motivated by the above studies, the object of the present paper
is to study W2-curvature tensor field in a generalized Sasakian-space-
form. In this paper we have obtained many interesting results out of
which some results are similar in case of the study of Weyl projective
curvature tensor and some results are not. The paper is organized as
follows. Sec. 2 is concerned with preliminaries. Sec. 3 is devoted to the
study of W2-flat generalized Sasakian-space-forms and obtain a necessary
and sufficient condition for a generalized Sasakian-space-form to be W2-
flat. In Sec. 4, we study generalized Sasakian-space-form satisfying the
condition W2 · S = 0. In Sec. 5, we study W2-semisymmetric generalized
Sasakian-space-forms and in this case, it is proved that either f1 = f3

or the curvature tensor R satisfies a definite condition. The last section
deals with generalized Sasakian-space-form satisfying W2 · R = 0. It is
shown that if a generalized Sasakian-space-form satisfies W2 ·R = 0 then
either the manifold is W2-flat or the curvature tensor R of the manifold
satisfies a definite condition.

2. Preliminaries

In an almost contact metric manifold, we have [6]

φ2(X) = −X + η(X)ξ, φξ = 0,(2.1)

η(ξ) = 1, g(X, ξ) = η(X), η(φX) = 0,(2.2)

g(φX, φY ) = g(X, Y ) − η(X)η(Y ),(2.3)

g(φX, Y ) = −g(X, φY ), g(φX, X) = 0,(2.4)

(∇Xη)(Y ) = g(∇Xξ, Y ).(2.5)

From (1.3) we have in a generalized Sasakian-space-form M2n+1(f1, f2, f3),

QX = (2nf1 + 3f2 − f3)X − {3f2 + (2n − 1)f3}η(X)ξ,(2.6)

S(X, Y ) = (2nf1+3f2−f3)g(X, Y )−{3f2+(2n−1)f3}η(X)η(Y ),(2.7)

r = 2n(2n + 1)f1 + 6nf2 − 4nf3,(2.8)
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R(X, Y )ξ = (f1 − f3){η(Y )X − η(X)Y },(2.9)

R(ξ, X)Y = (f1 − f3){g(X, Y )ξ − η(Y )X},(2.10)

η(R(X, Y )Z) = (f1 − f3){g(Y, Z)η(X)− g(X, Z)η(Y )},(2.11)

S(X, ξ) = 2n(f1 − f3)η(X),(2.12)

S(ξ, ξ) = 2n(f1 − f3),(2.13)

W2(X, Y )ξ = −
1

2n
{3f2 + (2n − 1)f3}{η(Y )X − η(X)Y },(2.14)

W2(ξ, Y )Z =
1

2n
{3f2 + (2n − 1)f3}η(Z){Y − η(Y )ξ} = −W2(Y, ξ)Z.

(2.15)

If an almost contact Riemannian manifold M satisfies the condition

(2.16) S = ag + bη ⊗ η

for some functions a and b on M , then M is said to be an η-Einstein
manifold.

If, in particular, a = 0 then this manifold will be called a special
type of η-Einstein manifold.

3. W2-flat generalized Sasakian-space-forms

Let us consider a generalized Sasakian-space-form M2n+1(f1, f2, f3),
which is W2-flat. Then from (1.4), we get

(3.1) R(X, Y )Z =
1

2n

[

g(Y, Z)QX − g(X, Z)QY
]

.

By virtue of (1.3) and (2.6), (3.1) yields

f1

{

g(Y, Z)X − g(X, Z)Y
}

+(3.2)

+ f2

{

g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY )φZ
}

+

+ f3

{

η(X)η(Z)Y − η(Y )η(Z)X+

+ g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ
}

=

=
1

2n

{

(2nf1 + 3f2 − f3){g(Y, Z)X − g(X, Z)Y }−

− {3f2 + (2n − 1)f3}{g(Y, Z)η(X)− g(X, Z)η(Y )}ξ
}

.
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Replacing X by φX in (3.2), we get

f1

{

g(Y, Z)φX − g(φX, Z)Y
}

+(3.3)

+ f2

{

g(φX, φZ)φY − g(Y, φZ)φ2X + 2g(φX, φY )φZ
}

+

+ f3

{

g(φX, Z)η(Y )ξ − η(Y )η(Z)φX
}

=

=
1

2n

{

(2nf1 + 3f2 − f3){g(Y, Z)φX − g(φX, Z)Y }+

+ {3f2 + (2n − 1)f3}g(φX, Z)η(Y )ξ
}

.

Setting Z = ξ in (3.3), we obtain

(3.4) {3f2 + (2n − 1)f3}η(Y )φX = 0.

Again putting Y = ξ in (3.4), we get
{3f2 + (2n − 1)f3}φX = 0,

which implies that

(3.5) f3 =
3f2

1 − 2n

as φX is not identically zero, in general.
Conversely, we now consider the relation (3.5) holds. Now in view

of (1.3) and (2.7), we have from (1.4) that

W̃2(X, Y, Z, U) =

(3.6)

= f2

{

g(X, φZ)g(φY, U) − g(Y, φZ)g(φX, U) + 2g(X, φY )g(φZ, U)
}

+

+ f3

{

η(X)η(Z)g(Y, U)− η(Y )η(Z)g(X, U) + g(X, Z)η(Y )η(U)−

− g(Y, Z)η(X)η(U)− g(X, Z)g(Y, U) + g(Y, Z)g(X, U)
}

,

where W̃2(X, Y, Z, U) = g(W2(X, Y )Z, U).
Substituting X by φX and Y by φY , we get from (3.6) that

W̃2(φX, φY, Z, U) =(3.7)

= f2

{

g(φX, φZ)g(φ2Y, U) − g(φY, φZ)g(φ2X, U)+

+ 2g(φX, φ2Y )g(φZ, U)
}

+

+ f3

{

g(φY, Z)g(φX, U)− g(φX, Z)g(φY, U)}.
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Let {ei} be an orthonormal basis of the tangent space at each point of
the manifold. Then setting Y = U = ei in (3.7) and taking summation
over i, 1 ≤ i ≤ 2n + 1, we obtain

2n+1
∑

i=1

W̃2(φX, φei, Z, ei) =

= f2

{2n+1
∑

i=1

g(φei, φei)g(φX, φZ) − g(φ2Z, φ2X)

}

+

+ f3g(φX, φZ).

Again contracting the last equation over X and Z and using (3.5), we
get f2 = 0 and hence f3 = 0. Consequently we have from (1.3) that

(3.8) R(X, Y )Z = f1{g(Y, Z)X − g(X, Z)Y }.

Also from (3.8), we get

(3.9) S(Y, Z) = 2nf1g(Y, Z),

i.e.,

(3.10) QY = 2nf1Y.

By virtue of (3.8) and (3.10) we have from (1.4) that W2(X, Y )Z = 0.
Thus we can state the following:

Theorem 3.1. Every generalized Sasakian-space-form M2n+1(f1, f2, f3)
is W2-flat if and only if f3 = 3f2

1−2n
.

This result is similar to the result as in case of projectively flat
generalized Sasakian-space-form [10]. In [10] De and Sarkar proved that
a generalized Sasakian-space-form M2n+1(f1, f2, f3) is projectively flat if
and only if f3 = 3f2

1−2n
. Thus by virtue of above theorem we can state the

following:

Theorem 3.2. A generalized Sasakian-space-form M2n+1(f1, f2, f3) is

W2-flat if and only if it is projectively flat.

Again in [10] it is proved that a generalized Sasakian-space-form
M2n+1(f1, f2, f3) is projectively flat if and only if it is Ricci semisymmet-
ric. By virtue of Th. 3.2, we can state the following:

Theorem 3.3. A generalized Sasakian-space-form M2n+1(f1, f2, f3) is

W2-flat if and only if it is Ricci semisymmetric.
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Corollary 3.1. A Sasakian-space-form is W2-flat if and only if c = 1.

Every flat manifold is W2-flat. However the converse is not true.
If the manifold is W2-flat then by virtue of (2.6) and (3.5) we have from
(1.4) that

R(X, Y )Z = (f1 − f3){g(Y, Z)X − g(X, Z)Y }.

Thus we can state the following:

Theorem 3.4. Every flat generalized Sasakian-space-form is W2-flat but

the converse is true when f1 = f3.

Example 3.1. Let N(a, b) be a generalized complex space-form of di-
mension 4. Then M = R ×f N endowed with the almost contact metric
structure (φ, ξ, η, gf) is a generalized Sasakian-space-form M(f1, f2, f3)
of dimension 5 with

f1 =
a − f ′

2

f 2
, f2 =

b

f 2
, f3 =

a − f ′
2

f 2
+

f ′′

f 2
,

where f is a function of t ∈ R and f ′ denotes differentiation of f with
respect to t [3]. We now choose f as a constant and a = −b. Then
f3 = 3f2

1−2.2
and f1 = f3. Consequently by virtue of Th. 3.1, we may

conclude that the manifold M under consideration is W2-flat.

4. Generalized Sasakian-space-forms satisfying

W2 · S = 0

Let us take a generalized Sasakian-space-form M2n+1(f1, f2, f3) with
W2 · S = 0. Then we get

(4.1) S(W2(X, Y )Z, ξ) + S(Z, W2(X, Y )ξ) = 0.

Using (2.14) in (4.1), we get
(4.2)

S(W2(X, Y )Z, ξ)−
1

2n
{3f2+(2n−1)f3}

[

η(Y )S(X, Z)−η(X)S(Y, Z)
]

= 0.

Setting X = ξ in (4.2) and using (2.12), (2.13) and (2.15), we get

(4.3) {3f2 + (2n − 1)f3}
[

S(Y, Z) − 2n(f1 − f3)η(Y )η(Z)
]

= 0,

which implies that either f3 = 3f2

1−2n
or

S(Y, Z) = 2n(f1 − f3)η(Y )η(Z).



On generalized Sasakian-space-forms 121

Hence we can state the following:

Theorem 4.1. If a generalized Sasakian-space-form M2n+1(f1, f2, f3)
satisfies W2 · S = 0, then either f3 = 3f2

1−2n
or the manifold under consid-

eration is a special type of η-Einstein manifold.

Remark. The above result is not similar to the case of generalized
Sasakian-space-form with P · S = 0. In [10] it is shown that if a general-
ized Sasakian-space-form M2n+1(f1, f2, f3) satisfies P · S = 0 then either
f1 = f3 or the manifold under consideration is Einstein.

5. W2-semisymmetric generalized Sasakian-space-

forms

Let us suppose that the generalized Sasakian-space-form
M2n+1(f1, f2, f3) be W2-semisymmetric. Then we have

(5.1) R(ξ, U) · W2 = 0,

which can be written as

R(ξ, U)W2(X, Y )ξ − W2(R(ξ, U)X, Y )ξ−(5.2)

− W2(X, R(ξ, U)Y )ξ − W2(X, Y )R(ξ, U)ξ = 0.

In view of (2.10), (5.2) yields

(f1 − f3)
[

g(U, W2(X, Y )ξ)ξ − η(W2(X, Y )ξ)U−(5.3)

− g(U, X)W2(ξ, Y )ξ + η(X)W2(U, Y )ξ − g(U, Y )W2(X, ξ)ξ+

+ η(Y )W2(X, U)ξ − η(U)W2(X, Y )ξ + W2(X, Y )U
]

= 0.

Using (2.14) and (2.15) in (5.3), we get

(f1 − f3)

[

W2(X, Y )U−(5.4)

−
1

2n
{3f2 + (2n − 1)f3}{g(U, X)Y − g(U, Y )X}

]

= 0.

By virtue of (1.4) we have from (5.4) that

(f1 − f3)
[

R(X, Y )U −
1

2n
{g(X, U)QY − g(Y, U)QX}−

−
1

2n
{3f2 + (2n − 1)f3}{g(U, X)Y − g(U, Y )X}

]

= 0,
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which implies that either f1 = f3 or

R(X, Y )U =
1

2n

{

3f2 + (2n − 1)f3

}{

g(U, X)Y − g(U, Y )X
}

+(5.5)

+
1

2n

{

g(X, U)QY − g(Y, U)QX
}

.

This leads to the following:

Theorem 5.1. If a generalized Sasakian-space-form is W2-semisymmet-

ric, then either f1 = f3 or the curvature tensor of the manifold satisfies

the relation (5.5).

6. Generalized Sasakian-space-forms satisfying

W2 · R = 0

We now consider a generalized Sasakian-space-form M2n+1(f1, f2, f3)
satisfying W2 · R = 0. Then we have

W2(ξ, U)R(X, Y )Z − R(W2(ξ, U)X, Y )Z−(6.1)

− R(X, W2(ξ, U)Y )Z − R(X, Y )W2(ξ, U)Z = 0.

Setting Z = ξ in (6.1) and using (2.9) and (2.15), we get

{3f2 + (2n − 1)f3}
[

R(X, Y )U − (f1 − f3)η(U){η(Y )X − η(X)Y }
]

= 0,

which implies that either f3 = 3f2

1−2n
or

(6.2) R(X, Y )U = (f1 − f3)η(U){η(Y )X − η(X)Y }, provided f1 6= f3.

This leads to the following:

Theorem 6.1. If a generalized Sasakian-space-form M2n+1(f1, f2, f3)
satisfying W2 · R = 0 then either f3 = 3f2

1−2n
or the curvature tensor R of

the manifold satisfies the relation (6.2).

From Th. 3.1 and Th. 7.1, we may conclude the following:

Theorem 6.2. If a generalized Sasakian-space-form M2n+1(f1, f2, f3)
satisfies the condition W2 · R = 0 then either the manifold is W2-flat or

the curvature tensor R of the manifold satisfies the relation (6.2).
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