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Abstract: We construct pedal curves of conics in the projective model of the
pseudo-Euclidean plane (further in text: PE-plane). Generally pedal curves are
circular quartics, but in certain cases they are degenerated into circular cubics
or even conics, as in the FEuclidean plane. Since the absolute points are real
and since there are more types of conics in the PE-plane, there are many types
of pedal curves of conics that we can not derive in the Euclidean plane. Those
are entirely circular quartics and cubics with different types of singularities in
the absolute points or special cases when a pedal curve is degenerated into such
type of a conic which does not exist in the Euclidean plane. In this article we
show only cases specific to the PE-plane, so we do not construct cases that are
analogous to the Euclidean plane.

1. Introduction

Given a curve k and a fixed point P (which we will call the pole of
pedal transformation or simply the pole), a pedal point is the intersection
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of a tangent line of the curve £ with the line from P perpendicular to the
tangent line. The pedal curve of the curve k with respect to the fixed
point P is the locus of all pedal points on all tangent lines of the given
curve k. Obtaining the pedal curve for a given curve k is so-called pedal
transformation. Instead of dealing with the pedal curve of any curve
k, in the present paper we will be dealing with pedal curves of conics.
It is well known that a pedal curve of a conic in the Euclidean plane
is generally a bicircular rational quartic [6] with singular points in the
absolute points and the pole of pedal transformation. Depending on the
type of a conic and its position to the pole, a singular point can be a
node, a cusp or an isolated double point, where the absolute points are
the conjugate-imaginary pair so they are always singular points of the
same type. The pedal curve of a parabola degenerates into a circular
cubic and the absolute line. If the pole is in a focus of a conic, the pedal
curve degenerates into the isotropic lines of that focus and a circle [6].
The absolute points in the PE-plane are real, so there are 9 types
of conics (Fig. 1) [3], [5] and more different types of pedal curves than in
the Euclidean plane. Some of pedal curves in the PE-plane are analogue
to the Euclidean case and we will not construct them here, but there are
many types of pedal curves that do not exist in the Euclidean plane. In
this article we will construct such curves and show their characteristics.

Figure 1

In the present paper, the curves are constructed in the projective
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model of the PE-plane with the absolute figure (f, Ji, J>) at finity. This
gives the clearer view of a type of singular points for a certain curve.
Besides that, this model is suitable because of the fact that we can rep-
resent any type of the conic of the PE-plane with the Euclidean circle
without loss of generality, which of course simplifies constructions.

2. Perpendicular lines in the PE-plane

In order to construct a pedal curve, it is necessary to explain the
construction of perpendicular lines in the PE-plane. It is well known that
two lines in the Euclidean plane are perpendicular if they intersect the
absolute line in a pair of points associated in the circular involution on
the absolute line [4]. In that plane the mentioned involution is elliptical
with the pair of conjugate-imaginary double absolute points. The real
absolute points J;, Jy on the absolute line f in the PE-plane as the
double points define a hyperbolic circular involution and the lines a, a
are perpendicular if they intersect the absolute line in a pair of points
associated in this hyperbolic involution. The construction (Fig. 2) is
based on the properties of the complete quadrangle and the following
known theorem about involutions:

Theorem 1. The double elements together with a pair of corresponding
elements of an involution form a harmonic range [1], [2].

Figure 2
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3. Entirely circular curves in the PE-plane

Definition 1. A curve k, of the n-th order in the PE-plane is called
circular if it passes through at least one absolute point. If a curve has
no other intersections with the absolute line but the absolute points, it
is called entirely circular.

Theorem 2. A pedal curve of a conic in the PE-plane is entirely circular
rational quartic.

Proof. The proof is analogue to the proof of the theorem about pedal
curves of conics in the Euclidean plane [1]. The pedal curve is the result
of associating the pencil of lines (P) of the 1st order with the vertex in the
pole and the pencil of lines (k3) of the 2nd order containing all tangent
lines of the given conic. A pair of tangent lines of a conic is associated to
every line in the pencil (P) and one line in the pencil (P) is associated to
every tangent line of the conic (k). From the Chasles’ relation [6] we can
conclude that the product of such an association is the curve of the 4th
order. Since the isotropic tangent line and its perpendicular line through
P pass through the same absolute point, it is clear that the absolute
points are double points of the pedal curve. Two tangent lines of a conic
pass through the pole P so it is a double point of the pedal curve too.

4. Pedal curves analogue to the ones in the Euclidean
plane

With the general position of the pole, the pedal curve of an ellipse,
a hyperbola of type hy, hs and a circle ¢ is analogue to the corresponding
bicircular quartic in the Euclidean plane. The pedal curve of a parabola
degenerates into a circular cubic and the absolute line, which is also
analogue to the Euclidean plane. The pedal curve has nodes in the
absolute points in the case of an ellipse and a hyperbola of type hq,
isolated double points in the case of a hyperbola of type hs and cusps
in the case of a circle ¢. In the case of a parabola p, the pedal curve
intersects the absolute line in the point F”. In the circular involution
on the absolute line f, this point is associated to the point F' where
the absolute line touches the parabola p. If the pole is in a focus of
any of these conics, the pedal curve is degenerated analogously to such
degenerations in the Euclidean plane. All of these cases are not shown
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in this article. The focus of a conic is defined analogously as in the
Euclidean plane — as the intersection of isotropic tangent lines of that
conic.

5. Pedal curves with no analogue curves in the Eu-
clidean plane

5.1. Entirely circular quartics

An entirely circular rational quartic which does not exist in the
Euclidean plane is the pedal curve of a hyperbola of type hy with the
general position of the pole (Fig. 3). Since one of the absolute points is
inside and the other outside of the hyperbola, this conic has one pair of
the conjugate-imaginary isotropic tangent lines and one pair of the real
isotropic tangent lines. Hence this pedal curve has the isolated double
point in one absolute point and the node in the other absolute point.

A cusp in one absolute point and a node in another one appears in
the case of the pedal curve of a special hyperbola hs; (Fig. 4). A cusp
in one and an isolated double point in another absolute point is on the
pedal curve of a special hyperbola of type hs, with the general position
of the pole P (Fig. 5).

Figure 3 Figure 4
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hs,

Figure 5

5.2. Emtirely circular cubics

Since the absolute points in the PE-plane are real, the pole of the
pedal transformation may be on the real isotropic tangent line of a conic.
The results for such positions of the pole are very interesting and orig-
inal pedal curves. The pedal curve in such cases degenerates into the
isotropic tangent line that contains the pole and an entirely circular cu-
bic. This isotropic tangent line passes through one absolute point and in
that absolute point the cubic intersects the absolute line f. In another
absolute point the cubic has a double point.

We construct such cubics as the pedal curves of an ellipse and two
special hyperbolae (Figures 6, 7, 8). In the case of an ellipse e (or the
hyperbola of type h;), the double point in the absolute point is a node
since two real tangent lines of the conic pass through Jy (Fig. 6). In the
case of a special hyperbola of type hs; we have a cusp in the absolute
point J; (Fig. 7), since we have a double tangent line through that point.
For a special hyperbola of type hss the absolute point J; is an isolated
double point of the cubic (Fig. 8) because two tangent lines through that
point make a conjugate-imaginary pair. We observe in that same Fig. 8
that the conic and the pedal curve hyperosculate in another absolute
point.

In the sense of circularity, such circular cubics do not exist in the
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Euclidean plane.
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We get a very interesting pedal curve of a circle ¢ when the pole
is on one of the isotropic tangent lines (Fig. 9). This cubic is of the
same type as the cubic in Fig. 7, but it’s interesting because the pedal
curve and the circle hyperosculate in the absolute point that lies on the
mentioned isotropic line.

In Fig. 10 we show the pedal curve of a special parabola ps with the
general position of the pole. In the sense of circularity, this is the entirely
circular cubic which does not exist in the Euclidean plane. Namely, the
absolute line f is tangent both to the parabola p, and the cubic.
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Figure 10

6. Special degenerations in the PE-plane

When the pole is in a focus of a conic, the pedal curve degenerates
into a circle and a pair of isotropic lines as in the Euclidean plane. Here
are the cases of degeneration which are specific for the PE-plane:

1. If the pole is on the isotropic tangent line of a parabola p, the
pedal curve degenerates into that isotropic tangent line, the absolute line
and a special hyperbola of type hsy (Fig. 11). This does not exist in the
Euclidean plane since there is no such a hyperbola in that plane.

2. In Fig. 12 we see the pedal curve of a special hyperbola of type
hsy with the pole in its focus. The pedal curve degenerates into a pair of
isotropic tangent lines through that focus and the hyperosculating circle
of the given hyperbola in its absolute vertex J;.

3. Besides a circle, a special parabola py is also an entirely circular
conic, although it contains only one absolute point. We show its pedal
curve with the pole on the isotropic tangent line in Fig. 13. The pedal
curve degenerates into the absolute line f, the isotropic tangent line and
a special parabola.
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Figure 11 Figure 12

Figure 13

7. Conclusion

We can conclude that by using the pedal transformation we can
construct six types of entirely circular quartics and four types of entirely
circular cubics. Since those are not all the possible types of entirely cir-
cular quartics and cubics in the PE-plane, the authors intend to continue
searching for other types of those curves and other possibilities how to
obtain them using other types of transformations.
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