
Mathematica Pannonica

23/1 (2012), 9–43

CLASSES OF SEMIGROUPS WITH
COMPATIBLE NATURAL PARTIAL
ORDER II

H. Mitsch

Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15,
1090 Wien, Austria

Dedicated to the memory of Professor Gyula I. Maurer (1927–2012)

Received : March 2010

MSC 2010 : 20 M 10, 06 F 05

Keywords : Semigroup, natural partial order, compatibility with multiplication.

Abstract: In continuation of the survey, “Classes of semigroups with compat-
ible natural partial order I” (Math. Pann. 22 (2011), 165–198), the problem of
(right) compatibility of the natural partial order of a semigroup is dealt with
for the classes of E-inversive, of eventually regular, and of regular semigroups,
respectively. Again, as far as possible the structure of the resulting semigroups
is described and methods to construct them are given. Furthermore, gen-
eral observations concerning the natural partial order of strong semilattices of
semigroups, (iterated) inflations of semigroups, and generalized Rees matrix
semigroups are included.

Introduction

This is the continuation of the survey, “Classes of semigroups with
compatible natural partial order I” (Math. Pann. 22 (2011), 165–198).
Recall that the natural partial order on a semigroup S is defined by

a≤S b if and only if a=xb=by, xa=a(= ay) for some x, y∈S1([18]).

Also, ≤S is right (left, two-sided) compatible if a ≤S b implies ac ≤S bc
(ca ≤S cb, both) for any c ∈ S.
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In part I necessary and/or sufficient conditions for a semigroup S
were given in order that the natural partial order ≤S of S be right (two-
sided) compatible (Sec. 1). Furthermore, semigroups S for which ≤S is
trivial or total were considered (Sec. 2). Also several well-known classes
of semigroups with right (two-sided) compatible natural partial orders
were specified (Sec. 3). In particular, (E-)medial semigroups were dealt
with (Sec. 4). Throughout, sufficient conditions for right compatibility
of ≤S with multiplication by particular elements were given.

In this second part, we give answers to the compatibility problem
for the classes of E-inversive (Sec. 5), of eventually regular (Sec. 6), and of
regular semigroups (Sec. 7). In an appendix, (1) a criterion for the right
(two-sided) compatibility of ≤S for strong semilattices of semigroups, in
which every element has a right and a left identity, is proved, (2) iterated
inflations of a trivially-ordered semigroup are introduced, thus providing
a method for the construction of semigroups with an arbitrary number
of elements and a non-trivial two-sided compatible natural partial order
(the same can be achieved by strong semilattices of trivially-ordered semi-
groups, in which every element has a right and a left identity), (3) semi-
groups, in which every element has a right and a left identity, are dealt
with, and (4) generalized Rees matrix semigroups are considered in more
detail.

A list of semigroups S for which ≤S is right (two-sided) compatible
and which are dealt with in parts I and II, is given in the Introduction of
part I. The numbering of the sections in part II is continued from part I.

5. E-inversive semigroups

A semigroup S is E-inversive if for every a ∈ S there exists x ∈ S
such that ax ∈ E(S) ([30]; see [3], EX.3.2(8)). Defining for any a ∈ S:

Wr(a) = {x ∈ S|ax ∈ E(S)}, W (a) = {x ∈ S|x = xax},

a semigroup S is E-inversive if and only if for every a ∈ S : Wr(a) 6= φ,
resp. W (a) 6= φ. The elements of W (a) are called weak inverses of a ∈ S.
For basic properties of E-inversive semigroups see [21].

Examples: Semigroups with zero; eventually regular semigroups,
in particular, regular or groupbound semigroups, hence periodic or finite
semigroups; simple semigroups S with E(S) 6= φ (if a ∈ S, e ∈ E(S), then
according to P.M. Higgins, e = xay for some x, y ∈ S and a·yex ∈ E(S));
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in particular, any Bruck-semigroup over a monoid; a generalized Rees
matrix semigroup S = M(I, T, Λ; P ) is E-inversive if and only if T is
E-inversive (sufficiency: if (i, a, λ) ∈ S then for any j ∈ I, µ ∈ Λ there is
x ∈ T with x = x · pµiapλj · x, hence (i, a, λ)(j, x, µ) ∈ E(S); necessity:
if a ∈ T then a · pλjbpµi ∈ E(T ) for j ∈ I, b ∈ T, µ ∈ Λ, given by
(i, a, λ)(j, b, µ) ∈ E(S)); inflations of an E-inversive semigroup; strong
semilattices S = 〈Y, Sα; ϕα,β 〉 of semigroups such that (Y,≤Y ) has a
least element µ ∈ Y and Sµ is E-inversive.

First we indicate the E-inversive semigroups S whose natural partial
order is the identity relation which is evidently two-sided compatible.
Note that if S has a zero and ≤S is trivial, then S consists of one element
only (see Sec. 2).

Result 5.1 ([19]). Let S be an E-inversive semigroup. Then ≤S is the
identity relation if and only if S is completely simple.

Corollary ([20]). Let S be a finite semigroup. Then ≤S is the identity
relation if and only if S is simple.

Result 5.2. Let S be an E-inversive semigroup. Then ≤S is the identity
relation and E(S)a ⊆ aS1 for any a ∈ S if and only if S is a right group.

Proof. Sufficiency is clear. Necessity: By Res. 5.1, S is completely
simple, i.e., S = M(I, G, Λ; P ) and E(S) 6= φ. Since E(S)a ⊆ aS1 for
any a ∈ S, it follows that |I| = 1, thus S is right simple. Therefore, S is
a right group, by [3], Th. 1.27. ♦

For monoids we have

Result 5.3. Let S be an E-inversive monoid. Then ≤S is the identity
relation if and only if S is a group.

Proof. Necessity: Let e ∈ E(S); then e ≤S 1S implies that e = 1S

and E(S) = {1S}. Thus for every a ∈ S there exists a′ ∈ S such that
aa′ = 1S. Therefore S is a group. ♦

By Res. 3.2, for a semigroup S satisfying Sa ⊆ aS1 for every a ∈ S,
≤S is right compatible. If S is E-inversive we have more precisely:

Result 5.4. Let S be an E-inversive semigroup such that Sa ⊆ aS1 for
every a ∈ S. Then ≤S is right compatible and non-trivial if and only if
S is not a right group.

Proof. Necessity: For any right group S, ≤S is the identity relation –
see Sec. 2. Sufficiency: If ≤S was the identity relation then by Res. 5.2,
S is a right group. ♦
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Remark. In particular, for any finite commutative semigroup S which is
not an abelian group, ≤S is non-trivial and two-sided compatible (since
a commutative right group is an abelian group).

Result 5.5. Let S be an E-inversive monoid such that a ≤S b implies
a = bf for some f ∈ E(S). Then ≤S is right compatible and non-trivial
if and only if ESa ⊆ aS for every a ∈ S and S is not a group.

Proof. Necessity holds by Res. 1.8(ii) and Res. 5.3. Sufficiency follows
from Res. 1.11 and Res. 5.3. ♦

Remark. In particular, for any finite monoid S with central idempotents
which is not a group, ≤S is non-trivial and two-sided compatible.

Next we consider E-inversive semigroups S, which are E-unitary:
ea, e ∈ E(S) implies a ∈ E(S). Note that for an E-unitary semigroup S,
also ae, e ∈ E(S) implies a ∈ E(S): since eae ∈ E(S) and eae ·a ∈ E(S),
it follows that a ∈ E(S). Furthermore, if S is E-inversive and E-unitary
then E(S) is a subsemigroup of S: let e, f ∈ E(S); then ef · x ∈ E(S)
for some x ∈ S; thus e · fx ∈ E(S) implies fx ∈ E(S), and therefore
x ∈ E(S); consequently, ef · x ∈ E(S) implies ef ∈ E(S).

For certain semigroups we have a characterization of E-unitariness,
which is known for inverse semigroups: following M. Petrich we call a
semigroup S pure if e ≤S a, e ∈ E(S), a ∈ S, implies a ∈ E(S). Note
that for inverse semigroups the general conditions in (i) and (ii) of Res. 5.6
below are always satisfied.

Result 5.6. (i) Let S be a semigroup such that E(S)a ⊆ aS1 for any
a ∈ S. Then S is E-unitary if and only if S is pure.

(ii) Let S be an E-inversive semigroup. Then S is E-unitary if and
only if S is pure and E(S) is a subsemigroup of S.

Proof. (i) Necessity: Let e ≤S a, e ∈ E(S). Then by [20], e = fa for
some f ∈ E(S). Since S is E-unitary, it follows that a ∈ E(S).

Sufficiency: Let e, ea ∈ E(S). Then the element f := ea = ax
(x ∈ S1) satisfies f ≤S a and f ∈ E(S); therefore a ∈ E(S).

(ii) Necessity: The first part is proved as in (i); the second holds
by the observation above. Sufficiency: Let e, ea ∈ E(S), a ∈ S. Then we
have for a′ ∈ Wr(a) that aa′ ∈ E(S) and f := aa′ · ea ∈ E(S). Since
f = (aa′e)a = a(a′ea) and aa′ · e ∈ E(S), we get f ≤S a and thus
a ∈ E(S). ♦

Remarks. (i) By the proof of necessity in Res. 5.6 (i) any E-unitary
semigroup is pure. (ii) Let S be a trivially-ordered semigroup such that
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E(S)a ⊆ aS1 for any a ∈ S; then S is E-unitary. In particular, any
trivially-ordered monoid is E-unitary (since E(S) = {1S}); more gen-
erally, any unipotent monoid is so. Furthermore, any inflation S of a
unipotent monoid T such that 1T ∈ T is not inflated is E-unitary (since
E(S) = {1T}).

Result 5.7. Let S be an E-inversive E-unitary monoid. Then ≤S is right
compatible if and only if E(S)a ⊆ aS for every a ∈ S. In particular, ≤S

is two-sided compatible if and only if aE(S) = E(S)a for any a ∈ S.

Proof. We show that a ≤S b implies a = eb = bf (e, f ∈ E(S)). Let
a ≤S b; then a = xb, xa = a (x ∈ S). Thus, for (any) a′ ∈ Wr(a),
x · aa′ = aa′ ∈ E(S), so that x ∈ E(S). Similarly, a = bf for some
f ∈ E(S). The first statement now follows from Res. 1.12, the second
from Res. 1.13. (See also Res. 5.5.) ♦

Remarks. (i) For any E-inversive E-unitary semigroup S, the natural
partial order has the form: a ≤S b if and only if a = eb = bf for some
e, f ∈ E(S1).

(ii) By [8], Th. 3.14, the E-inversive E-unitary monoids S are pre-
cisely the generalized F-monoids (i.e., there is a group congruence ρ on
S such that the identity ρ-class of S contains a greatest element with
respect to ≤S). Examples are given in [8].

By Remark (i) above we obtain the following

Corollary. Let S be an E-inversive E-unitary semigroup with central
idempotents. Then ≤S is two-sided compatible.

Remark. All semilattices and groups satisfy the conditions of the Corol-
lary; more generally, any Clifford semigroup with injective linking homo-
morphisms (see [13], V. Ex. 10). Also, any inflation S of a group G such
that the identity of G is not inflated has these properties (if S 6= G then
S is not regular); concerning ≤S see Sec. 8(C).

In case that an E-inversive semigroup is rectangular (see Remark
(iii) following Res. 4.7) we have

Result 5.8. Let S be an E-inversive rectangular semigroup. Then ≤S is
two-sided compatible; more precisely, a ≤S b implies ac = bc and ca = cb
for every c ∈ S.

Proof. By [3], Ex. 3.2(11), S is an inflation of a rectangular group T .
Since ≤T is the identity relation on T (see Sec. 2), the claim follows (see
Sec. 8(C)). ♦

Remarks. (i) By [33], a semigroup S is E-inversive and rectangular if
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and only if S is an inflation of a rectangular group.
(ii) By [30], see also [3], Ex. 3.2 (9), an E-inversive semigroup S is

rectangular if and only if S is stationary on the right (and on the left) –
see Remark (iv) following Res. 4.7. Therefore, Res. 5.8 also follows from
Res. 4.8 and its dual.

Finally, we consider E-inversive semigroups S such that whenever
ax = a (a, x ∈ S) then ax′ = a for some x′ ∈ Wr(x). Examples:

(1) Infinite monogenic semigroups with a zero adjoined, i.e., S =
= 〈c〉0; S is E-inversive since 0 ∈ S. Let ax = a; if a 6= 0 then also
x 6= 0 and thus a = cm, x = cn for some m, n > 0; therefore cn+m = cm, a
contradiction. Hence a = 0 and ax′ = a for (every) x′ ∈ Wr(x).

(2) Nilsemigroups: S is E-inversive since 0 ∈ S. If ax = a, then
axk = a for every k > 0, hence a = a0 = 0 if xn = 0. Thus ax′ = a for
(every) x′ ∈ Wr(x).

(3) Completely regular semigroups: S is E-inversive since S is reg-
ular. If ax = a and x = xx′x for x′ ∈ S such that xx′ = x′x, then
x′ ∈ Wr(x) and ax′ = ax · x′ = a · xx′ = a · x′x = ax · x′x = ax = a.

(4) Groupbound semigroups: S is E-inversive since for any a ∈ S
there is k>0 such that ak∈Ge (= subgroup of S with identity e∈E(S)).
If ax = a then axn = a for every n > 0, hence for some k > 0 : axk = a
where xk ∈ Ge. Thus ae = axk(xk)−1 = a(xk)−1 and so a = axk =
= a · exk = a(xk)−1 · xk = ae. Therefore x′ := xk−1(xk)−1 ∈ S satisfies:
xx′ = e ∈ E(S), i.e., x′ ∈ Wr(x), and ax′ = ax ·xk−1(xk)−1 = ae = a (for
k = 1 take x′ = x−1).

Result 5.9. Let S be an E-inversive semigroup such that ax=a (a, x∈S)
implies ax′ = a for some x′ ∈ Wr(x). If E(S)a ⊆ aS1 for every a ∈ S,
then ≤S is right compatible.

Proof. We show that a ≤S b (a, b ∈ S) implies a = bf for some f ∈
∈ E(S1). Let a <S b; then a = by, ay = a, for some y ∈ S. Thus
also ay′ = a for some y′ ∈ Wr(y), and a = ay′ = byy′ = bf with
f = yy′ ∈ E(S). Hence the statement follows from Res. 1.11. ♦

Remarks. (i) For any E-inversive semigroup S satisfying the first con-
dition in Res. 5.9, a ≤S b if and only if a = xb = bf for some x ∈ S1,
f ∈ E(S1).

(ii) The condition “E(S)a ⊆ aS1 for every a ∈ S” is not necessary
for ≤S to be right compatible: let S = M(I, G, Λ, P ) be a completely
simple semigroup with |I| > 1. If (i, g, λ)(j, x, µ) = (i, g, λ) then µ = λ
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and x = p−1

λj ; hence (j, x, µ) ∈ E(S) and (j, x, µ) ∈ Wr(j, x, µ). Further-
more, ≤S is the identity relation (see Sec. 2), hence is (right) compatible.
But for e = (i, p−1

λi , λ) ∈ E(S), a = (j, g, λ) ∈ S with i 6= j, we have
ea /∈ aS1. However, for monoids we get from Res. 1.8 (ii) and Res. 5.9:

Result 5.10. Let S be an E-inversive monoid such that ax = a (a, x ∈ S)
implies ax′ = a for some x′ ∈ Wr(x). Then ≤S is right compatible if and
only if E(S)a ⊆ aS for every a ∈ S.

With respect to compatibility of ≤S with multiplication by partic-
ular elements we have

Result 5.11. Let S be an E-inversive semigroup such that ≤S is right
(left) compatible with multiplication by idempotents. Then ≤S is right
(left) compatible with multiplication by all weak inverses of any element
of S.

Proof. Since for any c ∈ S, every c′ ∈ W (c) is a regular element of S,
the claim follows by Res. 1.14. ♦

Remark. Let S be an E-inversive semigroup with commuting idempo-
tents such that ax = a (a, x ∈ S) implies ax′ = a for some x′ ∈ Wr(a);
then by Remark (i) following Res. 5.9, ≤S is right compatible with mul-
tiplication by idempotents.

6. Eventually regular semigroups

A semigroup S is eventually regular (called: π-regular in [17]) if
for every a ∈ S there is n > 0 such that an ∈ S is a regular element.
Examples: regular semigroups and groupbound semigroups, in particu-
lar, periodic or finite or nil semigroups. Also, every inflation S of any of
these semigroups T is eventually regular (for every a ∈ S, a2 ∈ T ), but
not regular if S 6= T (axa ∈ T for any a, x ∈ S).

With respect to the form of the natural partial order of an eventu-
ally regular semigroup, we observe the following:

(1) Let Reg(S) be the set of all regular elements of an eventually
regular semigroup S. Then we have:

a ≤S b if and only if a = rb = bs, ra = a = as, for some r, s ∈ Reg(S1).

Indeed, let a <S b, i.e., a = xb = by, xa = a = ay, for some
x, y ∈ S. Then a = xkb = xka for every k > 0. Since xn ∈ Reg(S) for
some n > 0, we get a = rb, ra = a, for some r ∈ Reg(S). Similarly,
a = bs, as = a, for some s ∈ Reg(S). This gives the following
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Result 6.1. Let S be an eventually regular semigroup. If Reg(S)a⊆aS1

for every a ∈ S then ≤S is right compatible.

(2) Let CR(S) be the set of all completely regular elements of an
eventually regular semigroup S. If Reg(S) = CR(S) then we have:

a ≤S b if and only if a = eb = bf for some e, f ∈ E(S1).

Indeed, let a <S b; then by (1), a = rb = bs, ra = a = as for some
r, s ∈ Reg(S) = CR(S). Thus r = rr′r, r′r = r′r for some r′ ∈ S and

a=ra=rr′r · a=rr′ · ra=r′r · a=r′ · ra = r′ · rb = eb with e=r′r∈E(S).

Similarly, a = bf for f = ss′ ∈ E(S). This characterization of ≤S

yields (by Results 1.11, 1.12, and 1.13):

Result 6.2. Let S be an eventually regular semigroup such that Reg(S) =
= CR(S). Then the following hold:

(i) If E(S)a ⊆ aS1 for every a ∈ S then ≤S is right compatible.
(ii) If S is a monoid then ≤S is right compatible if and only if

E(S)a ⊆ aS for every a ∈ S.
(iii) If S is a monoid then ≤S is two-sided compatible if and only if

aE(S) = E(S)a for every a ∈ S.

Remark. By [17] (Theorem of Shevrin–Veronesi), an eventually regular
semigroup S satisfies Reg(S) = CR(S) if and only if S is a semilattice of
archimedean semigroups each of which contains a primitive idempotent.
For further characterizations of such semigroups see [17], Th. 1.5.7 and
Th. 3.5.4.

(3) Finally, we consider eventually regular semigroups S with cen-
tral idempotents. Their natural partial order has a very particular form:

a ≤S b if and only if a = eb for some e ∈ E(S1).

Indeed, such a semigroup S is groupbound: let a ∈ S; then an =
= anxan for some n > 0, x ∈ S, and thus an = x(an)2 = (an)2x;
it follows from [25], IV.1.2 that an is contained in a subgroup of S.
Therefore, a ≤S b if and only if a = eb = bf for some e, f ∈ E(S1) (see
the Introduction). Since the idempotents of S are central, the statement
follows. This characterization of ≤S gives

Result 6.3. Let S be an eventually regular semigroup with central idem-
potents. Then ≤S is two-sided compatible.

Examples of eventually regular semigroups with central idempo-
tents are given by:

(i) Nilsemigroups S (since E(S) = {0}); note that S is not regular.
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(ii) Inflations S of a Clifford semigroup T, S =
⋃

α∈T

Tα. If a ∈ S,

a ∈ Tα say, and e ∈ E(S) = E(T ), then e is central in T , hence ae =
= αe = eα = ea. Note that S is not regular and that ≤S is not trivial if
S 6= T (see Sec. 8(C)).

Two further classes of eventually regular semigroups should be men-
tioned in this context:

Result 6.4. Let S be an eventually regular semigroup such that E(S)
forms a right zero semigroup. Then ≤S is right compatible.

Proof. Let a, b ∈ S; then an = anxan, bm = bmy bm for some m, n > 0,
x, y ∈ S. Since anx, bmy ∈ E(S), we have an = (bmy · anx)an ∈ bS.
Therefore, S is a right archimedian semigroup. It follows by Res. 3.11
that ≤S is right compatible. ♦

Remark. By [17], Th. 1.4.6, a semigroup S satisfies the conditions in
Res. 6.4 if and only if S is a nil-extension of a right group. For example:
any inflation S of a right group T (note that ≤S is not trivial if S 6= T ;
see Sec. 8(C)).

Together with its dual, Res. 6.4 gives

Result 6.5. Let S be an eventually regular semigroup containing exactly
one idempotent. Then ≤S is two-sided compatible.

Remark. By [17], Th. 1.4.7, a semigroup S satisfies the condition in
Res. 6.5 if and only if S is a nil-extension of a group G. If G is finite
then S is powerjoined (and ≤S is two-sided compatible, by Res. 3.16):
let a, b ∈ S\G and k = |G|; then am, bn ∈ G for some m, n > 0 and
amk = 1G = bnk. For example: any inflation of a (finite) group.

With respect to compatibility of ≤S with multiplication by partic-
ular elements we have by Res. 1.14:

Result 6.6. Let S be an eventually regular semigroup such that ≤S is
right (left) compatible with multiplication by idempotents. Then ≤S is
right (left) compatible with multiplication by some power of any element
of S.

Remark. Let S be an eventually regular semigroup such that Reg(S)e ⊆
⊆ eS for any e ∈ E(S); then ≤S is right compatible with multiplication
by idempotents (see observation (1) at the beginning of this section).

An important subclass of the class of all eventually regular semi-
groups is that of groupbound semigroups. Examples: nilsemigroups, pe-
riodic (in particular, finite) semigroups, completely regular semigroups,
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eventually regular semigroups with central idempotents (see the para-
graph preceding Res. 6.3), and every inflation S of any of these (since
a2 ∈ T for any a ∈ S).

Since the natural partial order of a groupbound semigroup S has the
particular form: a ≤S b if and only if a = eb = bf for some e, f ∈ E(S)
(see the Introduction), the Corollary of Res. 1.1 gives

Result 6.7. Let S be a groupbound semigroup. Then ≤S is right com-
patible if and only if aeb ∈ abS1 for all a, b ∈ S, e ∈ E(S), such that
ae ∈ S1a.

Furthermore we obtain (see Res. 4.7 and its dual)

Result 6.8. Let S be a groupbound semigroup with aeb = ab for all
a, b ∈ S, e ∈ E(S). Then ≤S is two-sided compatible; more precisely,
a ≤S b implies ac = bc and ca = cb for every c ∈ S.

Remark. Let S be an inflation of a group G : S =
⋃

g∈G

Tg. Then S

is groupbound (a2 ∈ G for every a ∈ S) and satisfies aeb = ab for all
a, b ∈ S, e ∈ E(S), since E(S) = E(G) = {1G}. Note that any inflation S
of a completely regular semigroup T (that is, of a union of groups) is also
groupbound, but in general S does not satisfy aeb = ab for all a, b ∈ S,
e ∈ E(S): by [27], II.1.4, T is a semilattice Y of completely simple
semigroups Tα (α ∈ Y ); if |Y | > 1, α >Y β, a, b ∈ Tα, and e ∈ E(Tβ),
then ab ∈ Tα, but aeb ∈ Tβ. However, if ≤T is right compatible then so
is ≤S (see Sec. 8(C)).

Again we have a sufficient condition, which for monoids is also
necessary (see Results 1.12 and 1.13):

Result 6.9. Let S be a groupbound semigroup. If E(S)a ⊆ aS1 for every
a ∈ S then ≤S is right compatible.

Result 6.10. Let S be a groupbound monoid. Then ≤S is right com-
patible if and only if E(S)a ⊆ aS1 (equivalently, E(S)a ⊆ aE(S)) for
every a ∈ S. In particular, ≤S is two-sided compatible if and only if
aE(S) = E(S)a for every a ∈ S.

7. Regular semigroups

Recall that for a regular semigroup S, a ≤S b if and only if a =
= eb = bf for some e, f ∈ E(S). First, we indicate the regular semigroups
S for which the natural partial order is trivial. Since S is E-inversive,
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Res. 5.1 gives

Result 7.1. Let S be a regular semigroup. Then ≤S is the identity
relation if and only if S is completely simple.

Corollary ([4]). Let B be a band. Then ≤B is the identity relation if
and only if B is a rectangular band (i.e., efe = e for any e, f ∈ B).

With respect to the general problem of compatibility we first have,
by Res. 1.14:

Result 7.2. For a regular semigroup S, ≤S is right (left, two-sided)
compatible if and only if ≤S is right (left, two-sided) compatible with
multiplication by idempotents.

Remark.Let S be a regular semigroup such that aef ∈afS for any a∈S,
e, f ∈ E(S); then obviously ≤S is right compatible with multiplication
by idempotents. For example, let S = Y × G, where Y is a semilattice
and G is a group; thus the idempotents of S commute and the condition
is trivially satisfied (note that S is inverse – see Res. 7.8). Also, every
right group S has this property, since E(S) forms a right zero band
(see Res. 7.28, Corollary). Note that a regular semigroup S has this
property if and only if aeb ∈ abS for all a, b ∈ S, e ∈ E(S) (necessity: if
b = bb′b ∈ S then aeb = (a · e · bb′)b ∈ a · bb′Sb ⊆ abS) – see Res. 7.11
below.

Besides of this result there are three characterizations of regular
semigroups S, for which ≤S is right compatible.

Result 7.3. ([1]) Let S be a regular semigroup. Then ≤S is right com-
patible if and only if S is locally L-unipotent (i.e., for every e ∈ E(S),
each L-class of eSe contains exactly one idempotent).

For monoids this yields a simple characterization of right compati-
bility.

Result 7.4. Let S be a regular monoid. Then ≤S is right compatible
if and only if E(S) forms a right regular band (i.e., efe = fe for all
e, f ∈ E(S)).

Proof. Necessity holds by Res. 1.8(i). Sufficiency: For any c = cc′c ∈ S,
ac = e · bc = bfc = b · fcc′ · c = b · cc′fcc′ · c = bc · z (z ∈ S); hence
ac ≤S bc. ♦

Remark. By [32] (see also [27], II. 4.10), for a regular semigroup S,
E(S) is a right regular band if and only if S is L-unipotent. In [32] such
a semigroup is called right inverse. Since sufficiency in Res. 7.4 holds for
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any regular semigroup we obtain the following

Corollary. Let S be a right inverse semigroup. Then ≤S is right com-
patible.

Remark. Let S be a right inverse semigroup; then a ≤S b if and only if
a = eb for some e ∈ E(S): necessity holds since S is regular; conversely,
a = eb = (e · bb′)b = (bb′ · e · bb′)b = bx (x ∈ S) implies a ≤S b (note that
x ∈ E(S) choosing b′ ∈ S such that b = bb′b, b′ = b′bb′).

In the case of a completely regular semigroup S, note first that
every local submonoid Se = eSe (e ∈ E(S)) of S is again completely
regular: for a ∈ Se let a∗ = ea′e ∈ Se with a′ ∈ S such that aa′a = a,
aa′ = a′a; then (since ae = ea = a) aa∗a = a, aa∗ = aea′e = aa′e =
= a′ae = a′a = aa′ = eaa′ = ea′a = ea′ea = a∗a. By Res. 7.3 and the
Remark above, ≤S is right compatible if and only if for any e ∈ E(S),
E(Se) is a right regular band. By [27], V.3.1 (dual), E(Se) is a right
regular band if and only if Se is a semilattice of right groups. Thus we
obtain

Result 7.5. Let S be a completely regular semigroup. Then ≤S is right
compatible if and only if S is locally a semilattice of right groups.

Remark. For completely regular monoids S we have by Res. 7.4 that
≤S is right compatible if and only if S is a right regular orthogroup. A
construction of the latter was given in [35] (see also [27], V.2.5).

With respect to two-sided compatibility, Res. 7.3 gives

Result 7.6. ([23]) Let S be a regular semigroup. Then ≤S is two-sided
compatible if and only if S is locally inverse.

Again, for monoids we obtain a simple characterization:

Result 7.7. Let S be a regular monoid. Then ≤S is two-sided compatible
if and only if S is inverse.

Proof. Necessity: By Res. 7.4 and its dual, E(S) is a commutative band.
Hence S is an inverse semigroup. Sufficiency holds by Res. 7.8 below. ♦

By [27], IV.2.3, this result implies the following

Corollary. Let S be a completely regular monoid. Then ≤S is two-sided
compatible if and only if S is a Clifford semigroup.

Result 7.8 ([31]). Let S be an inverse semigroup. Then ≤S is two-sided
compatible.

The second characterization of right compatibility is given in

Result 7.9 ([27], II.4.11).Let S be a regular semigroup. Then ≤S is right
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compatible if and only if S satisfies L-majorization (i.e., if a, b, c ∈ S
are such that a ≥S b, a ≥S c and bL c, then b = c; equivalently, if
e, f, g ∈ E(S) are such that e ≥S f , e ≥S g, then fgf = gf).

By [27], II.4.14, for completely regular semigroups the conjunction
of L- and R-majorization is equivalent to D-majorization. Thus we ob-
tain by Res. 7.9 and its dual the following

Corollary ([27], IV.1.6). Let S be a completely regular semigroup. Then
≤S is two-sided compatible if and only if S satisfies D-majorization.

The third characterization of right compatibility follows from the
proof of the Corollary of Res. 1.1:

Result 7.10. Let S be a regular semigroup. Then ≤S is right compatible
if and only if aeb ∈ abS for all a, b ∈ S, e ∈ E(S), such that ae ∈ E(S)a.

Using the last remark following Res. 7.2 we obtain the following

Corollary. Let S be a regular semigroup. Then ≤S is right compatible if
and only if aef ∈ afS for any a ∈ S, e, f ∈ E(S), such that ae ∈ E(S)a.

This result again allows to specify particular classes of regular semi-
groups, for which ≤S is right or even two-sided compatible.

Result 7.11. Let S be a regular semigroup such that aeb ∈ abS for all
a, b ∈ S, e ∈ E(S) (equivalently, aef ∈ afS for any a ∈ S, e, f ∈ E(S)).
Then ≤S is right compatible.

Remarks. (i) A regular semigroup S satisfies the condition in Res. 7.11
if and only if efg ∈ egS for any e, f, g ∈ E(S) – sufficiency: let a = aa′a,
b = bb′b ∈ S, e ∈ E(S); then for some x ∈ S, aeb = a(a′a · e · bb′)b =
= a(a′a · bb′ · x)b ∈ abS.

(ii) Every right inverse semigroup (see the Corollary of Res. 7.4)
satisfies the condition in Res. 7.11, by Remark (i): fg = gfg. Further-
more, any rectangular group S (in particular, right or left group) satisfies
this condition – and its dual: aeb ∈ Sab (note that in this case, ≤S is the
identity relation). Also, any regular semigroup with commuting idempo-
tents, that is, every inverse semigroup, satisfies the condition in Res. 7.11
and its dual – see Res. 7.8. More generally, every regular E-medial semi-
group, i.e., any generalized inverse semigroup, satisfies both conditions –
see Remarks (i) and (iv) following Res. 7.18 below. Finally, every com-
pletely simple semigroup S = M(I, G, Λ; P ) satisfies both conditions;
note that in this case, ≤S is the identity relation (see Res. 7.1) and that
in general, E(S) is not a subsemigroup of S.

(iii) Let S be a regular semigroup; then S satisfies aeb ∈ abS for
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any a, b ∈ S, e ∈ E(S) and E(S) is a subsemigroup of S if and only if
E(S) is right seminormal band (i.e., egefg = efg for all e, f, g ∈ E(S)):
concerning sufficiency, let a = aa′a, b = bb′b ∈ S, e ∈ E(S); then aeb =
= a(a′a·e·bb′)b = a(a′a·bb′ ·a′a·e·bb′) ∈ abS; with respect to necessity, let
e, f, g ∈ E(S); then for some x ∈ S, efg = egx and eg · efg = eg · egx =
= egx = efg. It follows that the class of regular semigroups, for which
≤S is right compatible, properly contains the class of regular semigroups
S such that E(S) forms a right seminormal band (see the last example
in (ii) above and Res. 7.27 below).

As a particular case we obtain (see Res. 4.7):

Result 7.12. Let S be a regular semigroup such that aeb = ab for all
a, b ∈ S, e ∈ E(S). Then ≤S is the identity relation; in fact, S is a
rectangular group.

Proof. We have for all e, f ∈ E(S) : efe = e2 = e, thus E(S) is
a rectangular band. It follows by [25], IV.3.5 that S is a rectangular
group. Therefore, ≤S is the identity relation – see Sec. 2. ♦

Res. 1.20 implies for regular semigroups:

Result 7.13. Let S be a regular semigroup such that aeb = eab (aeb =
= abe) for all a, b ∈ S, e ∈ E(S) (equivalently, aef = eaf (efa = eaf)
for any a ∈ S, e, f ∈ E(S)). Then ≤S is two-sided compatible.

Remark. Let S be a regular semigroup satisfying aeb = eab for any
a, b ∈ S, e ∈ E(S). Then S is completely regular: for any a ∈ S,
a = a · a′a = a(a′ · aa′ · a) = a(aa′ · a′ · a) ∈ a2S; it follows by [3],
Th. 4.3, that S is completely regular. Thus, S satisfies the identity
ax◦b = x◦ab, where x◦ ∈ S denotes the identity of the subgroup of S
to which x ∈ S belongs. Hence we obtain by [27], IV.2.12 (dual), that
a regular semigroup S satisfies aeb = eab for every a, b ∈ S, e ∈ E(S),
if and only if S is a strong semilattice Y of right groups Sα (α ∈ Y ).
Note that ≤S is not trivial if |Y | > 1, since for α >Y β and e ∈ E(Sα),
eϕα,β <S e (eϕα,β ∈ E(Sβ)). Observe also that S is E-medial – see
Res. 7.18 below.

Result 7.14. Let S be a regular semigroup such that aba = ba for all
a, b ∈ S. Then ≤S is right compatible; in fact, S is a right regular band.

Proof. For every a∈S, a=aa′a=a′a∈E(S), and for all e, f ∈E(S) = S,
efe = fe. The statement now follows from Res. 1.9, Corollary. ♦

As a particular case of Res. 7.13 we get

Result 7.15. Let S be a regular semigroup such that axy = ayx for
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all a, x, y ∈ S (i.e., S is right commutative). Then ≤S is two-sided
compatible.

Remarks. (i) In Res. 7.15, “right” can be replaced by “left”.
(ii) By [26], IV.4.5(3) ([22], Cor. 10.1), a semigroup S satisfies the

conditions in Res. 7.15, if and only if S is a strong semilattice of left
abelian groups. Note that S is medial – see the following Res. 7.16.

Since every regular element of a semigroup has a right and a left
identity, we obtain from Res. 4.1 and its dual the following generalization
of Res. 7.15:

Result 7.16. Let S be a regular medial semigroup (i.e., axyb = ayxb
for all a, x, y, b ∈ S). Then ≤S is two-sided compatible.

Remarks. (i) By [26], IV. 3.10(8) (see also [22], Th. 9.10), a semigroup S
is regular and medial if and only if S is a strong semilattice of rectangular
abelian groups.

(ii) A regular semigroup S is medial if and only if exyf = eyxf
for any e, f ∈ E(S), x, y ∈ S: concerning sufficiency we have for a =
= aa′a, b = bb′b ∈ S that a′a · xy · bb′ = a′a · yx · bb′ (see Res. 4.12 and
Remark (iii) following it).

(iii) A regular medial semigroup S is completely regular (see also
(i)): for any a ∈ S, a = aa′a = a · a′ · aa′ · a = a · aa′ · a′ · a ∈ a2S, hence
the claim follows from [3], Th. 4.3. Thus by [27], IV.2.16, (xii) (δ), a
semigroup is regular and medial if and only if it is a normal orthogroup
with abelian subgroups. In particular, E(S) is a normal band, hence S
is a generalized inverse semigroup (see Res. 7.28, Remark, below).

A particular class of medial semigroups is that of externally commu-
tative semigroups (see [22], Lemma 11.1). Hence Res. 7.16 and Remark
(iii) following Res. 4.2 give

Result 7.17. Let S be a regular semigroup such that axb = bxa for all
a, b, x ∈ S. Then ≤S is two-sided compatible; in fact, S is commutative.

Remark. By [22], Th. 11.4, an externally commutative semigroup S is
regular if and only if S is a commutative Clifford semigroup. Note that
such semigroups are inverse and have a two-sided compatible, in general
non-trivial, natural partial order.

Res. 7.16 still holds for the larger class of E-medial semigroups:
aefb = afeb for any a, b ∈ S, e, f ∈ E(S) – see Sec. 4. In fact, Res. 4.5
and its dual give

Result 7.18. Let S be a regular E-medial semigroup. Then ≤S is two-
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sided compatible.

Remarks. (i) Every regular E-medial semigroup S satisfies aeb ∈ abS
and aeb ∈ Sab for all a, b ∈ S, e ∈ E(S). Hence Res. 7.18 also follows
from Res. 7.11 and its dual.

(ii) In Res. 7.18, regularity of S is not necessary. Let S =
⋃

α∈T

Tα

be a proper inflation of a rectangular group T . Then S is non-regular
and E-medial (since T is), but still ≤S is two-sided compatible since ≤T

is the identity relation (see Sec. 8(C)).
(iii) Any inverse semigroup S is regular and E-medial and ≤S is

two-sided compatible (see Res. 7.8). Also every rectangular (non)abelian
group is regular and E-medial; in this case, ≤S is the identity relation.

(iv) A regular semigroup S is E-medial if and only if E(S) is a
normal band (i.e., efgh = egfh for all e, f, g, h ∈ E(S)): with respect to
sufficiency, for any a = aa′a, b = bb′b ∈ S, a′a · fg · bb′ = a′a · gf · bb′ for
all f, g ∈ E(S). Equivalently, S is a generalized inverse semigroup (see
Remark and Corollary following Res. 7.28, below).

As a particular case of Res. 7.18, we obtain (see Res. 4.10):

Result 7.19. Let S be a regular semigroup such that axeb = aexb for
all a, x, b ∈ S, e ∈ E(S). Then ≤S is two-sided compatible.

Remarks. (i) The converse of Res. 7.19 holds for certain semigroups. In
fact, we have: Let S be a regular semigroup such that E(S) is an ideal
of S and the semilattice Y of rectangular bands Eα (α ∈ Y ); then ≤S is
two-sided compatible and for any a, b, x ∈ S there is α ∈ Y with axeb,
aexb ∈ Eα, if and only if axeb = aexb for any a, b, x ∈ S, e ∈ E(S) (see
Res. 4.11).

(ii) Let S be a regular semigroup satisfying the condition in Res. 7.19.
Then first, S is completely regular: for any a ∈ S, a = aa′ · a =
= a · a′ · aa′ · a = a · aa′ · a′ · a ∈ a2S; it follows by [3], Th. 4.3, that
S is completely regular. Thus, S satisfies the identity axyoa = ayoxa,
where yo ∈ S denotes the identity of the subgroup of S, to which y ∈ S
belongs. Hence we obtain by [27], IV.2.7, that a regular semigroup S
satisfies axeb = aexb for all a, x, b ∈ S, e ∈ E(S), if and only if S
is a strong semilattice of rectangular groups (equivalently, S is a nor-
mal orthogroup). In this case, S is a generalized inverse semigroup (see
Res. 7.28, Corollary and Remark, below).

Corollary ([27], IV.2.7. and IV.1.6). Let S be a normal orthogroup (i.e.,
a completely regular semigroup such that E(S) is a normal band). Then
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≤S is two-sided compatible.

Result 7.20. Let S be a regular semigroup such that eaf = afe (eaf =
= fea) for any a ∈ S, e, f ∈ E(S). Then ≤S is two-sided compatible.

Proof. Every idempotent e ∈ E(S) is central in S, since for any a ∈ S :
ea = e · a · a′a = a · a′a · e = ae. Hence S is a Clifford semigroup; in
particular, S is inverse and so ≤S is two-sided compatible (by Res. 7.8). ♦

Remark. By the proof of Res. 7.20, a regular semigroup S satisfies
eaf = afe for any a ∈ S, e, f ∈ E(S), if and only if S is a Clifford
semigroup.

As a particular case we obtain (see Res. 1.22):

Corollary. Let S be a regular semigroup such that abe = bea (eab = bea)
for all a, b ∈ S, e ∈ E(S). Then ≤S is two-sided compatible.

Remark. By the proof of Res. 1.22, a regular semigroup S satisfies
the condition in the Corollary if and only if S is commutative, that
is, S is a strong semilattice of abelian groups. For the particular case
that S is regular and satisfies axy = xya for any a, x, y ∈ S (i.e., S is
(1,2)-commutative), the characterization of S as commutative Clifford
semigroup is known (see [22], Cor. 15.9).

Concerning a generalization of regular medial semigroups, different
from the E-medial case, we obtain from Res. 1.24 and its dual:

Result 7.21. Let S be a regular semigroup such that axyb ∈ aySxb for
all a, x, y, b ∈ S. Then ≤S is two-sided compatible.

Remarks. (i) Every regular medial semigroup S satisfies the condition
in Res. 7.21 since any y ∈ S has a right (and a left) identity in S. Also,
any regular E-externally medial semigroup S has this property – but in
this case S is already medial (see Res. 4.12 and Remark (iii) following
it).

(ii) Let S be a regular semigroup satisfying the condition in Res. 7.21.
Then again, S is completely regular: for any a ∈ S, a = aa′a =
= a · a′ · aa′ · a ∈ a · aa′ · S · a′ · a ⊆ a2S, hence a is completely reg-
ular by [3], Th. 4.3. Thus we obtain by [25], IV.4.9(1) that a regular
semigroup S satisfies axyb ∈ aySxb for all a, x, y, b ∈ S if and only if
S is a strong semilattice of completely simple semigroups. Note that
the condition given in Res. 7.21 does not characterize the regular semi-
groups S for which ≤S is two-sided compatible. For example, any inverse
semigroup S, which is not a Clifford semigroup, has a two-sided natu-
ral partial order; but S does not satisfy the indicated condition (if so S
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would be an inverse union of groups by the above – see [3], Lemma 4.8).

Corollary ([27], IV.1.6). Let S be a completely regular semigroup. Then
≤S is two-sided compatible if and only if S is a strong semilattice of
completely simple semigroups.

These semigroups are also characterized in the Corollary of Res. 7.9
and the following

Result 7.22 ([27], IV.1.6). Let S be a completely regular semigroup.
Then ≤S is two-sided compatible if and only if S is a normal cryptogroup
(i.e., H is a congruence on S such that S/H is a normal band).

For a particular class of semigroups considered in Res. 7.21 we have

Result 7.23. Let S be a regular semigroup such that axy ∈ aySx (xya ∈
∈ ySxa) for all a, x, y ∈ S. Then ≤S is two-sided compatible.

Remark. By [25], IV.4.9(2), a semigroup S satisfies the conditions in
Res. 7.23 if and only if S is a strong semilattice of left (right) groups.

Another sufficient condition for right compatibility follows from
Res. 3.2:

Result 7.24. Let S be a regular semigroup such that Sa ⊆ aS for every
a ∈ S. Then ≤S is right compatible.

Remarks. (i) By [25], IV. 3.10, a semigroup S satisfies the conditions
in Res. 7.24 if and only if S is a semilattice of right groups (equivalently,
S is completely regular such that E(S) is a right regular band). A con-
struction of these semigroups was given in [35] (see also [27], V.2.5). Note
that ≤S is non-trivial if the semilattice Y has more than one element: if
α <Y β, e ∈ E(Sα), b ∈ Sβ, then a := eb <S b (a ∈ Sα).

(ii) Examples of semigroups considered in Res. 7.24 are given in the
following way: let H be a commutative semigroup with E(H) 6= φ, I and
Λ sets with |I| = 1, |Λ| > 1, P = (pλ1) with pλ1 = e for every λ ∈ Λ,
e ∈ E(H) fixed, and T = M(I, H, Λ; P ) the Rees matrix semigroup over
H . Then S = Reg(T ) 6= φ, since (1, e, λ) ∈ E(T ) for every λ ∈ Λ. S is a
regular semigroup by [10], since fg ∈ S = Reg(T ) for all f, g ∈ E(S) =
= E(T ) (fg · x · fg = fg with x = (1, e, λ) ∈ T ). Clearly, Sa ⊆ aS for
any a ∈ S.

(iii) Generalizing Res. 7.24, let S be a (regular) semigroup such
that E(S)e ⊆ eS for any e ∈ E(S). Then E(S) is a right regular band
(if e, f ∈ E(S) then fe = ex for some x ∈ S, hence efe = fe). Since
the converse is evident, we obtain that a regular semigroup S satisfies
E(S)e ⊆ eS for any e ∈ E(S) if and only if S is a right inverse semigroup
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(see Remark and Corollary following Res. 7.4). In particular, if S is a
regular semigroup satisfying Se ⊆ eS for any e ∈ E(S), then S is right
inverse.

Result 7.25. Let S be a regular semigroup such that aS = Sa for every
a ∈ S. Then ≤S is two-sided compatible.

Remarks. (i) By [25], II.4.10, a semigroup S satisfies the conditions in
Res. 7.25 if and only if S is a Clifford semigroup.

(ii) Generalizing Res. 7.25, let S be a (regular) semigroup which
satisfies eE(S) ⊆ Se, E(S)e ⊆ eS for any e ∈ E(S). Then the idem-
potents of S commute (if e, f ∈ E(S) then ef = xe, fe = ey for some
x, y ∈ S, hence ef = efe = fe). Since the converse is evident, we obtain
that a regular semigroup S satisfies the indicated conditions if and only
if S is an inverse semigroup.

In the following we consider in a general setting regular semigroups
S, for which E(S) forms a subsemigroup, that is, orthodox semigroups.
For example, right (left) inverse or inverse semigroups, more generally
S = B × T where B is a band and T an inverse semigroup, orthogroups
and regular E-medial semigroups are orthodox. First, we have with
respect to trivially-ordered semigroups of this kind:

Result 7.26. Let S be an orthodox semigroup. Then ≤S is the identity
relation if and only if E(S) is a rectangular band (equivalently, S is a
rectangular group).

Proof. Necessity holds by Res. 7.1, Corollary.
Sufficiency: Let a ≤S b (a, b ∈ S); then a = eb = bf (e, f ∈ E(S))

and thus for b = bb′b, a = bf = bb′ ·bf = bb′ ·eb = bb′ ·e ·bb′ ·b = bb′ ·b = b.
The statement in the parenthesis holds by [25], IV.3.5. ♦

Remark. Let S be a regular semigroup such that E(S) is a trivially-
ordered subsemigroup; then S is trivially-ordered (by Res. 7.1, Corollary,
and Res. 7.26).

Result 7.27 ([9]). Let S be an orthodox semigroup. Then ≤S is right
compatible if and only if E(S) is a right seminormal band (i.e., eg ·efg =
= efg for all e, f, g ∈ E(S)).

Proof. Necessity holds by Res. 1.6(i).
Sufficiency: If b = bb′b and c = cc′c ∈ S then ac = e · bc = bfc =

= b(b′b ·f ·cc′)c = b(b′b ·cc′ ·b′b ·f ·cc′)c = bc ·z (z ∈ S); hence ac ≤S bc. ♦

Corollary ([26], II.3.15.1, II.3.8). For a band B, ≤B is right compatible
if and only if B is right seminormal.
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Concerning two-sided compatibility we have

Result 7.28 ([12], p. 48). Let S be an orthodox semigroup. Then ≤S is
two-sided compatible if and only if E(S) is a normal band (i.e., efgh =
= egfh for all e, f, g, h ∈ E(S)).

Proof. Necessity holds by Res. 1.7(i).
Sufficiency: If b = bb′b and c = cc′c ∈ S, then ac = e · bc = bfc =

= b(b′b ·f ·cc′ ·cc′)c = b(b′b ·cc′ ·f ·cc′)c = bc ·x (x ∈ S), ca = cb ·f =ceb=
= c(c′c · c′c · e · bb′)b = c(c′c · e · c′c · bb′)b = y · cb (y ∈ S); hence ac ≤S bc
and ca ≤S cb. ♦

Corollary ([13], Ex. IV.12). For a band B, ≤B is two-sided compatible
if and only if B is normal.

Remark. Regular semigroups S, for which E(S) forms a normal band,
are called generalized inverse semigroups in [34] (see also [12]). Hence we
get the following

Corollary ([12]). Let S be an orthodox semigroup. Then ≤S is two-sided
compatible if and only if S is generalized inverse.

Remark. In the Corollary, the condition that E(S) is a subsemigroup
can not be dropped – see the paragraph preceding Res. 1.6 (also, compare
with Res. 7.6).

In the lattice of subvarieties of the variety of all bands, the class of
right seminormal bands has several interesting subclasses (see [26], p. 29).
In particular, we obtain from Res. 7.27 that for a regular semigroup S,
≤S is right compatible in the following cases: E(S) is a right zero, a
rectangular, a right normal, a right regular, or a right quasinormal band
(i.e., efgf = egf for all e, f, g ∈ E(S)). More precisely, we have by
Res. 7.26:

Corollary. Let S be a regular semigroup such that E(S) forms a rect-
angular band (in particular, a right zero band). Then ≤S is the identity
relation.

Remark. By [25], IV. 3.9, for a regular semigroup S, E(S) is a right
zero band if and only if S is a right group. Note that in the Corollary
“right” can be replaced by “left”.

Result 7.29. Let S be a regular semigroup such that E(S) is a right
normal band (i.e., efg = feg for all e, f, g ∈ E(S)). Then ≤S is two-
sided compatible.

Proof. Since a right normal band is normal, the statement follows form
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Res. 7.28. ♦

Remarks. (i) In Res. 7.29, “right” can be replaced by “left”.
(ii) Let S be a regular semigroup with E(S) a right normal band;

then a ≤S b if and only a = eb for some e ∈ E(S) (a right normal band is
right regular, hence S is right inverse – see the Remark following Res. 7.4,
Corollary).

(iii) For a regular semigroup S, E(S) is a right normal band if and
only if S satisfies the identity efa = fea for any e, f ∈ E(S), a ∈ S
(necessity: ef · aa′ = fe · aa′ for a = aa′a).

(iv) A completely regular semigroup S satisfies efa = fea for any
e, f ∈ E(S), a ∈ S, if and only if S is a strong semilattice of right
groups, equivalently, S is a right normal orthogroup (by the duals of
[27], IV.2.16(xiii) and IV.2.12).

(v) More generally, let S be a regular semigroup satisfying efg ∈
∈ fSg for any e, f, g ∈ E(S). Then we still have: a ≤S b if and only if
a = eb for some e ∈ E(S) (sufficiency: a = eb = e·bb′ ·bb′ ·b = bb′ ·s·b = by
for some s, y ∈ S). Note that a (regular) semigroup S satisfies the
indicated condition if and only if E(S) is a right regular band (S is
right inverse): concerning necessity, ef = eff = fsf(s ∈ S) implies
fef = f 2sf = ef for any e, f ∈ E(S); sufficiency: if e, f, g ∈ E(S) then
efg = fef · g ∈ fSg (see Res. 7.4, Corollary and Remark).

As a particular case of Res. 7.29 we have

Result 7.30. Let S be a regular semigroup such that eaf = aef (efa =
= eaf) for all e, f ∈ E(S), a ∈ S. Then ≤S is two-sided compatible.

Remark. Let S be a semigroup satisfying the conditions in Res. 7.30.
Then S satisfies eab = aeb for any e ∈ E(S), a, b ∈ S: if b = bb′b ∈ S
then ea · bb′ = ae · bb′. Since the converse is evident, a characterization of
such semigroups S as strong semilattices of right groups is given in the
Remark following Res. 7.13. Note that S is completely regular (by [3],
Th. 4.3): for any a ∈ S, a = aa′a = aa′ ·a ·a′a = a ·aa′ ·a′a ∈ a2S. Hence
this characterization of S also holds by Remark (iv) following Res. 7.29.

Summarizing we obtain by Res. 7.27 and its Corollary (resp., their
duals) and Res. 7.28 and its Corollary, the following sharpening of Res. 7.2:

Corollary. Let S be an orthodox semigroup. Then ≤S is right (left,
two-sided) compatible if and only if the natural partial order on E(S) is
right (left, two-sided) compatible with multiplication by idempotents.

Remark. If S is a monoid (not necessarily regular) such that the natural
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partial order on E(S) is two-sided compatible with multiplication by
idempotents, then E(S) is a commutative subsemigroup of S, i.e., a
semilattice: indeed, let e, f ∈ E(S); since e ≤S 1S we have ef ≤S 1Sf =
= f ≤S 1S; hence by [20], Lemma 2.1, ef ∈ E(S). It follows by Res. 7.28,
Corollary, that E(S) is a normal band; hence (because of 1S ∈ S) ef = fe
for any e, f ∈ E(S). In particular, we obtain that a regular monoid
is inverse if and only if the natural partial order on E(S) is two-sided
compatible with multiplication by idempotents (see Res. 7.8).

8. Appendix

(A) In Sec. 7, particular classes of regular semigroups for which the
natural partial order is two-sided compatible were specified. Besides of
these there are two easy methods constructing such semigroups. Both of
them yield locally inverse semigroups (see Res. 7.6).

(1) Regular Rees matrix semigroups S = Reg(T ), where T =
= M(I, U, Λ; P ) is a Rees matrix semigroup over an inverse semigroup
U (see [16]).

(2) Regular semidirect products S = U ×ϕ C, where U is an inverse
semigroup and C is a completely simple semigroup (see [14]).

(B) Strong semilattices of semigroups
At several points in the above considerations, strong semilattices of

semigroups have appeared. With respect to their natural partial order,
a general observation can be made. Denoting by ≤α the natural partial
order on the semigroup Sα (α ∈ Y ) we have

Result 8.1. Let S = 〈Y, Sα; ϕα,β〉 be such that for any α ∈ Y , every
a ∈ Sα has a right and a left identity in Sα. Then ≤S is right (two-sided)
compatible if and only if ≤α is right (two-sided) compatible on Sα for any
α ∈ Y .

Proof. First we show:
a ≤S b (a ∈ Sα, b ∈ Sβ) if and only if α ≤Y β and a ≤α bϕβ,α.

(For the particular case that each Sα, α ∈ Y , is a monoid, see [20]).
Suppose that a ≤S b, a ∈ Sα, b ∈ Sβ . If a = b then α = β and

a = bϕα,α. If a 6= b then a = xb = by, xa = a, for some x, y ∈ S.
For x ∈ Sγ, y ∈ Sδ say, a = xb implies that α = γβ ≤Y γ, β; further-
more, a = xb = (xϕγ,γβ) (bϕβ,γβ) = (xϕγ,α) (bϕβ,α), (xϕγ,α)a = (xϕγ,α)·
·(aϕα,α) = (xϕγ,αγ)(aϕα,αγ) = xa = a, and similarly, a = (bϕβ,α)(yϕδ,α),
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i.e., a ≤α bϕβ,α (note that xϕγ,α, yϕδ,α ∈ Sα). Conversely, let a ∈ Sα,
b ∈ Sβ, be such that α ≤Y β, a ≤α bϕβ,α. If a = bϕβ,α then by hy-
pothesis, a = xa = ay for some x, y ∈ Sα. Thus a = xa = x(bϕβ,α) =
= (xϕα,α)(bϕβ,α) = (xϕα,αβ)(bϕβ,αβ) = xb, and similarly, a = by; there-
fore a ≤S b. If a <α bϕβ,α, then a = x(bϕβ,α)=(bϕβ,α)y, xa = a, for
some x, y ∈ Sα. Hence a = (xϕα,α) (bϕβ,α)=(xϕα,αβ) (bϕβα,β)= xb, and
similarly, a = by; therefore a ≤S b.

The proof of Res. 8.1 now follows.
Sufficiency: If a ≤S b, a ∈ Sα, b ∈ Sβ, and c ∈ Sγ say, then α ≤Y β

implies αγ ≤Y βγ, and a ≤α bϕβ,α implies aϕα,αγ ≤αγ (bϕβ,α)ϕα,αγ =
= bϕβ,αγ (because any homomorphism is order-preserving). Since ≤αγ is
right compatible on Sαγ we get

ac = (aϕα,αγ)(cϕγ,αγ) ≤αγ (bϕβ,αγ)(cϕγ,αγ) =

=
[

(bϕβ,βγ)ϕβγ,αγ

]

·
[

(cϕγ,βγ)ϕβγ,αγ

]

=

=
[

(bϕβ,βγ)(cϕγ,βγ)
]

ϕβγ,αγ = (bc)ϕβγ,αγ ,

that is, ac ≤S bc. Necessity is obvious. ♦

Remarks. (i) Note that for S = 〈Y, Sα; ϕα,β〉, ≤α (α ∈ Y ) is the re-
striction of ≤S on S to Sα: let a <S b with a, b ∈ Sα; then a = xb = by,
xa = a = ay for some x, y ∈ S, x ∈ Sγ, y ∈ Sδ say; hence α = γα =
= αδ and a = (xϕγ,α)(bϕα,α) = (bϕα,α)(yϕδ,α), (xϕγ,α)(aϕα,α) = a =
= (aϕα,α)(yϕδ,α), i.e., a = x′b = by′, x′a = a = ay′ for x′ = xϕγ,α,
y′ = yϕδ,α ∈ Sα.

(ii) In particular, it follows from Res. 8.1 that under the hypothesis
of the existence of left and right identities, ≤S is two-sided compatible
if each ≤α (α ∈ Y ) is the identity relation. Note that ≤S is not trivial
if |Y | > 1 : for α <Y β and b ∈ Sβ, a := bϕβ,α <S b (see the proof of
sufficiency in (iii) below).

(iii) As can be seen from the characterization of the natural partial
order, candidates for comparable elements in general strong semilattices
of semigroups S = 〈Y, Sα; ϕα,β〉 are elements and their images. For these
we have: If b ∈ Sβ and α <Y β, then a := bϕβ,α <S b if and only if a ∈ Sα

has a left and right identity in Sα. Necessity: If a <S b then a = xb = by,
xa = a = ay for some x, y ∈ S, x ∈ Sγ , y ∈ Sδ, say. Hence γα = α = αδ
and (xϕγ,γα)(aϕα,αγ) = a = (aϕα,αδ)(yϕδ,δα), i.e., x′a = a = ay′ for
x′ = xϕγ,α, y′ = yϕδ,α ∈ Sα. Sufficiency: If xa = a = ay for some
x, y ∈ Sα then xb = (xϕα,αβ)(bϕβ,βα) = (xϕα,α)(bϕβ,α) = xa = a and
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similarly, by = a, i.e., a ≤S b; since a ∈ Sα, b ∈ Sβ and α <Y β we get
a <S b.

(C) Inflations of semigroups
Throughout the text particular inflations S of semigroups T have

occurred. Again, general observations concerning their natural partial
order can be made. Let S =

⋃

α∈T

Tα be such that any α ∈ T has a right

and a left identity in T . Then by [5] Lemma 4.1,

a ≤S b (a ∈ Tα, b ∈ Tβ) if and only if a = b or a = α ≤T β.

Note that if S 6= T then ≤S is not trivial: for x ∈ Tα, x 6= α, we have
α <S x.

If T is any semigroup then ≤S is right (two-sided) compatible if and
only if ≤T is so (on T ): concerning sufficiency, let a <S b, a ∈ Tα, b ∈ Tβ;
then a = α ≤T β, hence for any c ∈ S, c ∈ Tγ say, ac = αγ ≤T βγ = bc;
thus also ac ≤S bc. In particular, it follows that for any trivially-ordered
semigroup T , ≤S is two-sided compatible on S; more precisely, a ≤S b
implies ac = bc and ca = cb for every c ∈ S.

(D) Iterated inflations of semigroups
Recall that a semigroup S =

⋃

α∈T

Tα is an inflation of the semigroup

T over U ⊆ T if Tα = {α} for any α ∈ T\U (that is, only elements in
U may be inflated; see [25]). Iterated inflations of this kind provide a
method to construct semigroups S with an arbitrary number of elements
and a nontrivial two-sided compatible natural partial order, with a pre-
assigned number of layers in its diagram and a given number of minimal
elements:

Starting with a trivially-ordered semigroup S0 let S1 be any infla-
tion of S0; define S2 to be an inflation of S1 over S1\S0 (that is, only the
new elements in S1 may be inflated, those in S0 are not); generally: define
Sn+1 to be an inflation of Sn over Sn\Sn−1, and let S = Sk (k ∈ N). In
this way, if |S0| = 1 then (S,≤S) is a directed rooted tree. Generally, for
any α ∈ S0 let Tα be the set of all elements in S obtained from α ∈ S0 by
the iterated inflations performed. Then Tα is a directed rooted tree and
Tα ∩ Tβ = φ for all α 6= β in S0. Hence, if a, b ∈ S then a ∈ Tα, b ∈ Tβ,
say, and ab = αβ (by definition). Furthermore a <S b (a ∈ Tα, b ∈ Tβ)
implies α = β (see (C) above and (F) below). Thus, if a <S b and c ∈ S,
then a, b ∈ Tα, c ∈ Tγ, for some α, γ ∈ S0, so that ac = αγ = bc and
ca = γα = cb.
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(E) An other method for the construction of semigroups having
the properties mentioned in (D) is that of forming strong semilattices of
semigroups:

Let S = 〈Y, Sα; ϕα,β〉 be such that (Y,≤Y ) is a chain (with least
element) and each Sα (α ∈ Y ) is a trivially-ordered semigroup such that
any a ∈ Sα has a left and a right identity in Sα. Then by Remark (ii)
in (B) above, ≤S is two-sided compatible. Note that completely simple
semigroups, in particular groups, provide examples of semigroups Sα of
this kind (and of arbitrary size).

(F) Elements with right (left) identity
In the study of the natural partial order, elements having a right

(left) identity play an important role – see, in particular, Res. 2.2: a
necessary condition for ≤S to be non-trivial is that there are elements in
S having a left and a right identity. Examples: Any element of a monoid
has a right (and left) identity. Also, every regular element of a semigroup
has this property. Furthermore, let S = M(I, T, Λ; P ) be a Rees matrix
semigroup over a semigroup T ; then every element of S has a right (left)
identity if and only if for any a ∈ T, λ ∈ Λ (i ∈ I), there exist j ∈ I
(κ ∈ Λ) and t ∈ T such that apλj t = a (tpκia = a). For example, this
occurs if for any a ∈ T , λ ∈ Λ (i ∈ I) there exists j ∈ I(κ ∈ Λ) with
apλj = a (pκia = a). In particular, this holds if T is a monoid and each
row (column) of P contains 1T ∈ T . In this case, every element of S
has an idempotent right (left) identity. Note that in a semigroup S, for
which a ≤S b iff a = eb = bf (e, f ∈ E(S1)) and such that (S,≤S) has
no maximal elements, any element has both an idempotent left and right
identity.

More generally, if S is a semigroup without maximal elements then
every element of S has a right and a left identity (see the proof of
Res. 2.2). If in a semigroup S, every element has a right and a left
identity then S is weakly reductive (by [25], III.1.14(1)), i.e., ax = bx,
xa = xb for all x ∈ S implies a = b. This can be proved using the
natural partial order of S: if a′a = a = aa′′ for some a′, a′′ ∈ S then
a = a′a = a′b, a = aa′′ = ba′′, hence a ≤S b; similarly, b ≤S a, so that
a = b. It follows that any semigroup without maximal elements is weakly
reductive. With respect to the construction of semigroups without max-
imal elements we mention infinitely iterated inflations S = S∞ (see (D)
above). Also we have the following

Result 8.2. Let S = 〈Y, Sα, ϕα,β〉 be a strong semilattice of semigroups
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Sα such that (Y,≤Y ) has no maximal elements and each linking homo-
morphism is surjective. Then (S,≤S) has no maximal elements if and
only if any a ∈ S, a ∈ Sα say, has a right and a left identity in Sα.

Proof. Necessity: Let a ∈ S, a ∈ Sα say. Then a <S b for some
b ∈ S, i.e., a = xb = by, xa = a = ay, for some x, y ∈ S. If x ∈ Sγ

say, then a = xa implies α = γα ≤Y γ; therefore a = xa = (xϕγ,αγ)·
·(aϕα,αγ) = (xϕγ,α) (aϕα,α) = a′a for a′ = xϕγ,α ∈ Sα. Similarly if
y ∈ Sδ, a = aa′′ for a′′ = yϕδ,α ∈ Sα.

Sufficiency: Let a ∈ S, a ∈ Sα say; then a′a = a = aa′′ for some
a′, a′′ ∈ Sα. Since there exists β >Y α, and there are b, x, y ∈ Sβ with
a = bϕβ,α, a′ = xϕβ,α, a′′ = yϕβ,α, we have: a = a′a = (xϕβ,α)(bϕβ,α) =
= xb, a = aa′′ = (bϕβ,α) (yϕβ,α) = by, xa = (xϕβ,αβ)(aϕα,αβ) = (xϕβ,α)·
·(aϕα,α) = a′a = a; hence a ≤S b; since α 6= β, we get a <S b. ♦

Remarks. (i) Note that the two general conditions on S are used only
in the proof of sufficiency. Hence in any strong semilattice of semigroups
without maximal elements each component is weakly reductive (by the
observation made prior to 8.2).

(ii) Concerning inflations S of a semigroup T , no element a ∈ S\T
has a right or a left identity (since ax, xa ∈ T for every x ∈ S). Therefore
any two elements in S\T are incomparable, by Res. 2.2.

(G) Generalized Rees matrix semigroups
At several occasions in the text Rees matrix semigroups S =

= M(I, T, Λ; P ) over semigroups T with (Λ× I) – sandwich matrix P =
= (pλi), pλi ∈ T , have occurred. Recall that S = I ×T ×Λ endowed with
the operation: (i, a, λ)(j, b, µ) = (i, apλjb, µ). Some general observations
concerning their structure and their natural partial order will be made.

(i) S = M(I, T, Λ; P ) is commutative if and only if |I| = |Λ| = 1
and P = (p11) satisfies ap11b = bp11a for any a, b ∈ T ; in this case, ≤S is
two-sided compatible. In particular, S = M(I, T, Λ; P ) is commutative
for any P if and only if |I| = |Λ| = 1 and T is externally commutative (see
Res. 4.2). (This is one of the rare cases that S has a stronger property
than T .)

(ii) S is right (left) cancellative if and only if apλkc = bpµkc (cpκia =
= cpκjb) implies λ = µ (i = j) and a = b; in this case, ≤S is the
identity relation (see Sec. 2). For instance, this occurs if T is right
(left) cancellative and |Λ| = 1 (|I| = 1). Conversely, if S is right (left)
cancellative and T is a monoid such that 1T ∈ T is an entry of P , then
T is right (left) cancellative. On the other hand, if P contains a right
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(left) zero of T then S is not right (left) cancellative.
(iii) S is right (left) simple – for any P – if and only if |I| = 1

(|Λ| = 1) and T is right (left) simple; in this case, ≤S is the identity
relation (as is ≤T ) – see Sec. 2. In particular, S is a right (left) group
if and only if |I| = 1 (|Λ| = 1) and T is a right (left) group (sufficiency:
since T is right simple and left cancellative, so is S – see above; necessity:
T is right simple since S is so, and E(T ) 6= φ, because E(S) 6= φ implies
that a = apλia for some a ∈ T, i ∈ I, λ ∈ Λ, whence apλi ∈ E(T ) – see
[3], Th. 1.27).

(iv) S is simple if and only if T is simple.
(v) S admits a primitive idempotent if T has a primitive idem-

potent e that is an entry of P : if e = pκk, say, then (k, e, κ) ∈ E(S); let
(i, a, λ) ≤S (k, e, κ), where (i, a, λ) ∈ E(S), i.e., a = apλia; then (i, a, λ) =
= (i, a, λ)(k, e, κ) = (k, e, κ)(i, a, λ), hence i = k, λ = κ, and a = apλi·e =
= e · pλia; since apλi ∈ E(T ) it follows that a ≤T e; therefore a ∈ E(T ),
by [20], and a = e; thus (k, e, κ) ∈ S is a primitive idempotent. Since
every idempotent of a completely simple semigroup is primitive (see [25],
IV.2.4) we obtain by (iv):

Result 8.3. Let S = M(I, T, Λ, P ) be such that T is completely simple
and P contains an idempotent of T . Then S is completely simple (and
≤S is the identity relation).

Remarks. (i) If T is a group then P can be normalized (see [3], §2.7);
hence the (unique) idempotent 1T ∈ T can be chosen to be an entry of P .

(ii) By the Rees theorem it follows from Res. 8.3 that S is isomor-
phic with a Rees matrix semigroup over a group.

(iii) Let I and Λ be finite sets and T be a finite simple semigroup
(i.e., T is completely simple); then (for any P ) S is completely simple,
too (since S is simple and also finite). It follows that the converse of
Res. 8.3 does not hold with respect to the property of P .

(iv) If T is any semigroup and if there is e ∈ E(T ) which is an entry
of P, e = pκk say, then (k, f, κ) ∈ E(S) for any f ∈ E(T ) with f ≤T e,
and (k, f, κ) ≤S (k, e, κ).

Recall that a Rees matrix semigroup S over a group G is isomor-
phic with a rectangular group S ′ = B × G if and only if E(S) forms a
subsemigroup of S (see [25], IV. 3.3). Analyzing the proof we obtain the
following generalization:

Result 8.4. Let S = M(I, T, Λ; P ) be a Rees matrix semigroup over a
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unipotent monoid T such that P contains a row and a column, each of
which consists of invertible elements only. Then S is isomorphic with
S ′ = B × T , where B is a rectangular band, if and only if E(S) forms a
subsemigroup of S.

Proof. Sufficiency: First, E(S) = {(i, a, λ) ∈ S | pλi ∈ T is invertible,
a = p−1

λi } since apλia = a implies apλi, pλia ∈ E(T ) = {1T}. By hy-
pothesis, there are k ∈ I, κ ∈ Λ, such that pλk, pκi ∈ T are invertible
for any λ ∈ Λ, i ∈ I (hence E(S) 6= φ). We have pλkp

−1

κk pκj = pλj for
any λ ∈ Λ, j ∈ I, since (k, p−1

λk , λ), (j, p−1

κj , κ) ∈ E(S), hence by hypoth-

esis, (k, p−1

λk pλjp
−1

κj , κ) ∈ E(S) and p−1

λk pλjp
−1

κj = p−1

κk . Giving I resp. Λ
the multiplication of a left resp. right zero semigroup the direct product
B = I × Λ is a rectangular band. It follows that ϕ : S → S ′ = B × T ,
ϕ(i, a, λ) = ((i, λ), p−1

κk pκi · a · pλk), is an isomorphism: if (α, a) ∈ S ′

with α = (i, λ), then ϕ(i, p−1

κi pκkap−1

λk , λ) = (α, a); ϕ is injective since
pλk, pκi ∈ T are cancellable for any i ∈ I, λ ∈ Λ; ϕ is a homomorphism
because of the above equation of any pλj ∈ P .

Necessity: Since E(S ′) = {(α, 1T ) ∈ S ′|α ∈ B}, E(S ′) is a subsemi-
group of S ′. It follows that E(S) is a subsemigroup of S, too. ♦

Remarks. (i) If S = M(I, T, Λ; P ) is of the above kind then ≤S is
determined by the natural partial order of T (that on B is the identity
relation, by Res. 7.1, Corollary): (α, a) ≤S (β, b) ⇔ α = β, a ≤T b. In
fact, if S = A×B is the direct product of two semigroups A and B, then
(a1, b1) ≤S (a2, b2) if and only if a1 ≤A a2 and b1 ≤B b2. In particular,
≤S is the identity relation if and only if ≤A and ≤B both are so.

(ii) In Res. 8.4, the general conditions are satisfied for example if
T is a unipotent monoid and every element of some row and some col-
umn of P is equal to 1T ∈ T (i.e., P is “normalized”). In this case,
E(S) is a subsemigroup of S if and only if each entry of P is 1T ∈T :
necessity holds by the proof of Res. 8.4; sufficiency is evident since
E(S) = {(i, 1T , λ) ∈ S | i ∈ I, λ ∈ Λ}. In this way we obtain two
reminiscents of the completely simple case:

(1) If T is a unipotent monoid and if each entry of P is equal to
1T ∈ T , then S is isomorphic with S ′ = B × T , B a rectangular band. If
T is a group then S is a rectangular group.

(2) If T and P are as in (1) and if |Λ| = 1 then S is isomorphic
with S ′ = I × T giving I the multiplication of a left zero semigroup. If
T is a group then S is a left group. Generalizing we have
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Result 8.5. Let S = M(I, T, Λ; P ) be such that T is a semigroup and P
satisfies: apλib = ab for any a, b ∈ T , i ∈ I, λ ∈ Λ. Then S is isomorphic
with S ′ = B × T , where B is the rectangular band I × Λ.

Proof. Giving I resp. Λ the multiplication of a left resp. right zero
semigroup, B = I × Λ is a rectangular band. The mapping ϕ : S → S ′,
ϕ(i, a, λ) = ((i, λ), a), is an isomorphism. ♦

The condition in Res. 8.5 says that each entry of P is a “middle
unit” for T ; this is satisfied for example if T is a monoid and if each
entry of P is 1T ∈ T . It is also fulfilled by any semigroup T such that
axb = ab for any a, b, x ∈ T (by Res. 4.6, Remark, T is an inflation
of a rectangular band). In this case, Res. 8.5 holds for any matrix P .
Evidently, any semigroup T with zero multiplication has this property,
too. Note that for any Rees matrix semigroup S considered in Res. 8.5,
≤S is determined by ≤T ; in particular, ≤S is the identity relation resp.
is right (left) compatible if and only if ≤T is so.

For the natural partial order on generalized Rees matrix semigroups
S = M(I, T, Λ; P ) we have by [5]:

(i, a, λ) ≤S (j, b, µ) ⇔ i = j, λ = µ, and

a = b or a = xpνib = bpλly, xpνia = a (= apλly),

for some x, y ∈ T, l ∈ I, ν ∈ Λ.

In particular, if T is trivially-ordered then so is S. The converse holds in
case that T is a monoid and 1T ∈ T is an entry of P : in fact, if a ≤T b
and 1T = pκk, say, then (k, a, κ)≤S (k, b, κ) and thus a = b. Furthermore,
if T is an E-inversive monoid without zero and 1T ∈ T is an entry of P
then S is trivially-ordered if and only if T is a group, i.e., S is completely
simple (see [5]). Finally, if (i, a, λ) <S (i, b, λ) for some i ∈ I, λ ∈ Λ, then
a <T b. The converse holds, for example, if P contains a middle unit of T ;
in particular, if T is a monoid and 1T ∈ T is an entry of P . With respect
to right (left) compatibility we have the following characterization:

Result 8.6. Let S = M(I, T, Λ; P ). Then ≤S is right (resp. left) com-
patible if and only if for any a, b, c ∈ T, k ∈ I, κ ∈ Λ, either apλkc = bpλkc
(resp. cpκia = cpκib) or there are m ∈ I (resp. σ ∈ Λ) and t ∈ T such
that apλkc = bpλkcpκmt (resp. cpκia = tpσkcpκib) whenever a = xpνib =
= bpλly, xpνia = a (resp. apλly = a), for some x, y ∈ T, i, l ∈ I, ν, λ ∈ Λ.

Proof. (Right compatibility). Necessity: Let a, b, c ∈ T, k ∈ I, κ ∈ Λ,
and a = xpνib = bpλly, xpνia = a for some x, y ∈ T , i, l ∈ I, ν, λ ∈ Λ.
Then (i, a, λ) ≤S (i, b, λ), and thus (i, a, λ)(k, c, κ) ≤S (i, b, λ)(k, c, κ),
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i.e., (i, apλkc, κ) ≤S (i, bpλkc, κ). Therefore either apλkc = bpλkc or there
are m ∈ I, t ∈ T, such that apλkc = bpλkc.pκm.t, since (i, apλkc, κ) =
= (i, bpλkc, κ)(m, t, κ) for some (m, t, κ) ∈ S.

Sufficiency: Let (i, a, λ) <S (j, b, µ); then j = i, µ = λ, (a 6= b)
and a = xpνib = bpλly, xpνia = a, for some x, y ∈ T, l ∈ I, ν ∈ Λ.
Let (k, c, κ) ∈ S; then either apλkc = bpλkc or there are m ∈ I, t ∈ T ,
such that apλkc = bpλkcpκmt. It follows also in the second case that
(i, a, λ)(k, c, κ) = (i, apλkc, κ) ≤S (i, bpλkc, κ) = (i, b, λ)(k, c, κ), since
a.pλkc = xpνib.pλkc, xpνia.pλkc = a.pλkc, whence (i, x, ν)(i, bpλkc, κ) =
= (i, apλkc, κ)=(i, bpλkc, κ)(m, t, κ), (i, x, ν)(i, apλkc, κ)=(i, apλkc, κ). ♦

By this result we obtain examples of generalized Rees matrix semi-
groups S = M(I, T, Λ; P ) with right compatible natural partial order:

(i) T is a right simple semigroup – note that ≤T is the identity
relation (see Sec. 2), hence ≤S is so, too (see [5]). More generally,

(ii) T is a semigroup such that aT = bT for any a, b ∈ T ; for
instance, T is a semigroup with zero multiplication (in this case, ≤S is
even two-sided compatible).

(iii) T is a semigroup containing one or more right zeros and each
entry of P is a right zero in T ; in this case apλkc = bpλkc and A ≤S B
implies AC = BC for any C ∈ S.If in addition in each column of P
all entries are equal (i.e, for any k ∈ I, pλk = pκk for any λ, κ ∈ Λ)
then S satisfies AXB = AB for any A, B, X ∈ S; thus by Res. 4.6
and the Remark following it, S is an inflation of the rectangular band
E(S) and ≤S is even two-sided compatible (more precisely, we also have
that A ≤S B implies CA = CB for any C ∈ S). Note that ≤S is not
the identity relation if there are b ∈ T, pλi ∈ P , such that pλib 6= b :
in fact, (i, a, λ) <S (i, b, λ) for a := pλib since (i, a, λ) = (i, pλi, λ)·
·(i, b, λ) = (i, b, λ)(i, b, λ), (i, pλi, λ)(i, a, λ) = (i, a, λ) (observe that
(i, b, λ) /∈E(S) since bpλib = pλib 6= b, hence S 6= E(S): see (C) above).

A somewhat stronger (and more illuminating) sufficient condition
is given by

Result 8.7. Let S = M(I, T, Λ; P ) be such that for any a, b, c ∈ T ,
k, l∈I, λ, κ ∈ Λ, either apλkc = bpλkc (cpκia = cpκib) or there are m ∈ I
(σ ∈ Λ) and t ∈ T satisfying: a.pλlb.pλkc = a.pλkc.pκmt (cpλl.bpκl.a =
= tpσk.cpλl.a). Then ≤S is right (left) compatible.

Proof. (Right compatibility). Following the proof of sufficiency in
Res. 8.6, we have in the case that apλkc 6= bpλkc:

a.pλkc = xpνib.pλkc, xpνia.pλkc = apλkc,
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and by hypothesis,
a.pλkc = bpλly.pλkc = bpλkcpκmt, for some m ∈ I, t ∈ I;

and this implies right compatibility of ≤S. ♦

From this result we can deduce further examples of generalized Rees
matrix semigroups S = M(I, T, Λ; P ) for which ≤S is right compatible:

(i) Evidently, the condition is satisfied if P is the zero-matrix or if
T is a semigroup with zero-multiplication. In both cases, S is isomorphic
with the direct product S ′ = B × T ′, where B = I × Λ is a rectangular
band (giving I resp. Λ the multiplication of a left resp. right zero semi-
group) and T ′ = T (endowed with the zero-multiplication if P = 0): the
mapping ϕ : S → S ′, ϕ(i, a, λ) = ((i, λ), a), is an isomorphism. There-
fore, ≤S is even two-sided compatible since (α, a) ≤S (β, b) if and only if
α = β, a = 0;≤S is non-trivial if |T | 6= 1.

(ii) T is a left zero semigroup; in this case, ≤T is the identity
relation, whence so is ≤S (and ≤S is even two-sided compatible).

(iii) T is a commutative semigroup and any two rows of P consist
(up to permutations) of the same elements (i.e., for any λ, κ ∈ Λ, l ∈ I,
there exists m ∈ I such that pλl = pκm); in particular, in each column of
P all entries are equal; more specifically, all entries of P are equal – note
that in the last case, ≤S is two-sided compatible. More generally:

(iv) T is a right commutative semigroup and any two rows of P
consist (up to permutations) of the same elements – note that ≤T is
right compatible by Res. 3.6.

(v) T is an externally commutative semigroup and any two rows
of P consist (up to permutations) of the same elements (a.pλlbpλk.c =
= a.pλkbpλl.c = apλk.cpλlb = apλkc.pκmt with t = b) – note that ≤T is
two-sided compatible by Res. 4.2.

(vi) T is a semigroup satisfying axb = ab for any a, b, x ∈ T –
in this case, ≤S is even two-sided compatible. Note that by the Re-
mark following Res. 4.6, such semigroups T are precisely the inflations
of a rectangular band, and ≤T is two-sided compatible. Furthermore by
Res. 8.5, S is isomorphic with S ′ = B×T where B is a rectangular band.

(vii) T is a semigroup, each entry of P is a left zero of T , and in
each row of P all entries are equal (i.e., for any λ ∈ Λ, pλl = pλk for all
l, k ∈ I). In this case, we have again AXB = AB for any A, B, X ∈ S.
Therefore, as in example (iii) following Res. 8.6, S is an inflation of the
rectangular band E(S), and A ≤S B implies AC = BC, CA = CB for
any C ∈ S (see (C) above).
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(viii) T is a monoid satisfying Tc ⊆ cT for any c ∈ T and each
entry of P is 1T ∈ T – note that ≤T is right compatible by Res. 3.2.
Furthermore, S is isomorphic with S ′ = B × T where B is a rectangular
band (by Res. 8.5).

In several examples above the natural partial order of the under-
lying semigroup T was right compatible and also that of the resulting
semigroup S = M(I, T, Λ; P ). There is no relation between these prop-
erties, in general:

(i) If ≤S is right compatible, then ≤T is not necessarily so: let
T = L1, where L is a left zero semigroup with at least two elements, and
consider T 0; then ≤T 0 is not right compatible (for e, f ∈ L : e <T 1 and
ef = e 6≤T 0 f = 1f); but for S = M(I, T 0, Λ; P ), where each entry of P
is 0, ≤S is right (and left) compatible. But note that in case that T has
a (right, left) identity e ∈ T , which is an entry of P , right compatibility
of ≤S implies that of ≤T : if pκk = e say, then a <T b implies a = xpκkb =
= bpκky, xpκka = a, for some x, y ∈ T ; hence (k, a, κ) <S (k, b, κ), so
that (k, ac, κ) = (k, a, κ)(k, c, κ) ≤S (k, b, κ)(k, c, κ) = (k, bc, κ) for any
c ∈ T ; thus ac = bc or ac = wpνk.bc = bc.pκlz, wpνk.ac = ac, for some
w, z ∈ T, ν ∈ Λ, l ∈ I; therefore ac ≤T bc for any c ∈ T .

(ii) Conversely, right compatibility of ≤T does not imply that of
≤S: for example, if T is the semilattice 0 <T e <T f , I = Λ = {1, 2},
and P is given by p11 = e, p12 = f, p21 = p22 = 0, then ≤T is even two-
sided compatible, but ≤S is not right compatible (see the first Remark
in Sec. 4). A sufficient condition for the implication to hold is given by

Result 8.8. Let S = M(I, T, Λ; P ) be such that ≤T is right (resp. left)
compatible. If for any a, b ∈ T, k ∈ I, κ, λ ∈ Λ (resp. i, k ∈ I, κ ∈ Λ)
there exists m ∈ I with apλkbT ⊆ apλkbpκmT (resp. µ ∈ Λ with Tbpκia ⊆
⊆ Tpµkbpκia), then ≤S is right (resp. left) compatible.

Proof. (Right compatibility). Let (i, a, λ) <S (j, b, µ). Then i = j,
λ = µ, a 6= b, and there are x, y ∈ T , l ∈ I, ν ∈ Λ, such that a =
= xpνi.b = b.pλly, xpνi.a = a; hence a <T b. Let (k, x, κ) ∈ S; then we
have: a.pλkc = xpνib.pλkc and xpνia.pλkc = a.pλkc. Furthermore, a <T b
implies that a.pλkc ≤T b.pλkc. If apλkc <T bpλkc then apλkc = bpλkc.z for
some z ∈ T . If follows by hypothesis that there are m ∈ I, t ∈ T , such
that bpλkcz = bpλkcpκmt; thus apλkc = bpλkcpκmt. Consequently,

(i, a, λ)(k, c, κ) = (i, apλkc, κ) ≤S (i, bpλkc, κ) = (i, b, λ)(k, c, κ),

since (i, x, ν)(i, bpλkc, κ) = (i, apλkc, κ) = (i, bpλkc, κ)(m, t, κ), and
(i, x, ν)(i, apλkc, κ) = (i, apλkc, κ).
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If apλkc = bpλkc, then clearly (i, apλkc, κ) = (i, bpλkc, κ). ♦

This result yields some classes of semigroups T such that right
compatibility of ≤T implies that of ≤S. The first example is independent
of Res. 8.8.

(i) T is a semigroup for which ≤T is the identity relation (see Sec. 2);
then ≤S is the identity relation, by [5].

(ii) T is a semigroup and each entry of P is a left zero of T – in this
case, ≤S is also left compatible: in fact, A ≤S B implies CA = CB for
any C ∈ S. In particular, for any left (right) zero semigroup T and any
matrix P , S = M(I, T, Λ; P ) has a trivial, hence two-sided compatible
natural partial order, since ≤T has this property. In fact, by Res. 8.5, S
is a rectangular band: S ∼= S ′ = (I ×T )×Λ, where I ×T is a left, and Λ
a right zero semigroup. Note that S is not a left (right) zero semigroup
if |Λ| 6= 1 (|I| 6= 1).

(iii) T is a monoid and each row of P contains 1T ∈ T . In this case,
≤S is the identity relation if and only if ≤T is so (by [5]). More generally,

(iv) T is a monoid and each row of P contains an invertible element
of T .
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