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1. Introduction

It is well known [1-38] that many important phenomena and dy-
namics processes can be described by special nonlinear partial differential
equations (NPDEs). When a nonlinear PDE is used to characterize phys-
ical properties such as propagation or aggregation, it is of fundamental
physical interest to solve the nonlinear PDE in a closed form. In the past
several decades both mathematician and physicists have made many at-
tempts in this direction. Various methods (see [1-38]) which are used to
solve the nonlinear PDEs have been developed. Among them are the in-
verse scattering method [1, 16], the Backlund transformation method [8,
16], the tanhsech method [10, 13, 14, 24], the extended tanh-method |7,
12], the sine-cosine method [21, 28-30], the homogeneous balance method
[7], the Jacobi elliptic function method [18] and so on. In recent years,
the direct method for exact solutions of NPDEs becomes more and more
attractive partly due to the availability of computer symbolic systems
which allows us to perform the complex and tedious algebraic calcula-
tion on computer. It helps us to find new exact solutions of nonlinear
partial differential equations. One of the most effective direct method to
construct the exact solutions of NPDEs is that the tanh-method. The
tanh-method and its extended are widely used by the authors [22, 23,
25-27, 31, 32] and by the references given therein. A generalized tanh-
function method [33] has been presented to find the new exact solu-
tions of nonlinear partial differential equations. The goal of this work
is to extend the generalized tanh-function method to solve the (2 + 1)-
dimensional Nizhnik-Novikov—Veselov (NNV), the (2 + 1)-dimensional
Burgers equations and the (2 + 1)-dimensional Wu-Zhang (WZ) equa-
tions. In this method, the Riccati equation involving parameters and
symbolic computation are used to uniformly construct different forms of
traveling wave solutions for nonlinear evolution equations. It is shown
that the sign of these parameters can be applied in judging the existence
of various forms of traveling wave solutions. The objective of this article
is to use the generalized tanh-method for solving the (2 + 1)dimensional
Nizhnik-Novikov—Veselov equations [17, 19, 34]:

Ut + kg + Ty, + sug + quy, = 3k(uv), + 3r(uw),,
(11) Uy = Uy,

Uy = Wy,
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and the (24 1)-dimensional Painlevé integrable Burgers equations [3, 17,
34, 35, 37]:

—Uy + Uy + VU, + By + fBUg, =0,

1.2
(1.2) Uy — vy = 0,

as well as the (2 + 1)-dimensional Wu-Zhang equations [12, 36]

Up + Uy + VUy + w, = 0,
(1.3) Uy + uvg + vvy + wy = 0,
1
5
where 7, k. s, q, «, 0 are real parameters. In the past years, many people
studied the Nizhnik—Novikov—Veselov equations. For instance, Boiti et
al. [2] solved NNV equations via the inverse scattering transformation.
Ren [17] and Xia [34] also obtained the solutions of the NNV equations.
Lou [11] analyzed the coherent structures of the NNV equation by separa-
tion of variables approach. Recently, Zayed [37] found the exact solutions
of system (1.1) by using the & ——expansmn method. Zayed et al. [35] dis-
cussed the (2 4 1)-dimensional Burgers system (1.2) which is Painlevé
integrable and then used the generalized multiple Riccati equations ra-
tional expansion method to get some of its solutions. Wang et al. [20]
have obtained some traveling wave solutions of the system (1.2) by using
the Riccati equation rational expansion method. Cai et al. [3] used the
F-expansion method to generate some new exact solutions of the system
(1.2). Zayed [37] also discussed the system (1.2) using the %—expansion
method and found some exact solutions of it. The Wu-Zhang system of
equations (1.3) describes the nonlinear and dispersive long gravity waves
traveling in two horizontal directions on shallow waters of the uniform
depth. In system (1.3) w — 1 is the elevation of the water wave, u is the
surface velocity of water along the x direction and v is the surface veloc-
ity of water along the y direction. The explicit solutions of the system
(1.3) are very helpful for costal and civil engineers to apply the nonlinear
water wave model in harbor and costal design. Therefore, the explicit
solutions and the numerical results of the system (1.3) are fundamental
interest in fluid dynamics. Recently, Zayed et al. [36] have solved the sys-
tem (1.3) using the modified variational iteration method. The outline
of the generalized tanh-method can be described as follows.

wy + (uw), + (vw)y + = (Ugge + Usyy + Vazy + Vyyy) = 0,
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2. The description of the generalized tanh-function
method

In this section, we describe the generalized tanh-function method
as follows:
Consider the general nonlinear PDE

(2.1) w = Pty Uy, Uggy - - ),

where the independent variables x and t are combined into a new variable,
¢ = k(z — wt), where k and w represent the wave number and velocity
of the traveling wave, respectively. Therefore, u(z,t) replaced by u(&)
which defines the traveling wave solution of Eq. (2.1). Thus Eq. (2.1) is
then transformed into the following ODE:

2.2 —kwu' = P(u, ku', K>, .. .).
(2.2) (u, ,

Hence, under the transformation £ = k(x — wt), the PDE (2.1) has been
reduced to an ordinary differential equation (ODE) given by (2.2). The
resulting ODE is then solved by a finite series of tanh functions of the
form

(2.3) u(§) = Zn: a; tanh? ¢,
=0

where n is a positive integer which can be determined by balancing be-
tween the highest derivatives with the nonlinear term in (2.2) where
ag,ai,...,a, are parameters to be determined. The main idea of the
generalized tanh-function method [21-33] is to replace tanh ¢ in (2.3) by
the solutions Y (&) of the Riccati equation which are listed in Table 1
below. The Riccati equation is given by

(2.4) Y'= A+ BY +CY?,

where Y/ = % while A, B and C are constants. It is formulated that

the Riccati equation has several kinds of solutions in different cases are
listed in Table 1.
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Table 1. The relation between the values of (A4, B,C') and the corresponding
Y (€) in the Riccati equation is as follows:

A B C Y(§)

0 1 -1 L+itanh$

0 ~1 1 1—1lcoths

% 0 —% coth&+ fsch &, tanh &+ Aisech €

1 0 —1 tanh¢&, coth¢

1 1

g o i g et et
2 2 ;

1(-1) 0 1(—1) tang,coté

0 0 #0 cgﬁ’ m is a constant

arbitrary constant 0 0 A¢

arbitrary constant # 0 0 %

Therefore, the solution of Eq. (2.1) can be written in the form

(2.5) u(z, t) = u(é) = Z ;Y7

By balancing the highest order derivatives with the nonlinear term in
Eq.(2.2), we can determine n. Substituting (2.5) along with (2.4) into
Eq. (2.2) and collect the coefficients of Y7 (j = 0, 1,2, ...,n), then set each
coefficient to zero produce algebraic equations in terms of ag, aq, ..., a,,
A, B and C. Solving these algebraic equations, selecting A, B, C, Y (&)
from Table 1 and substituting them along with ag, a4, ..., a, into (2.5)
we obtain the exact solutions of Eq. (2.1).

3. On solving the (2+1)-dimensional Nizhnik—Novi-
kov—Veselov equations

In order to apply the generalized tanh-method to Egs. (1.1), we use
the transformations u(x,y,t) = U(§), v(z,y,t) = V(§), w(z,y,t) = Z(£),
where £ = nx + \y — pt and
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vy, t) =V(€) =D bY,
=0

l

w(z,y,t)=Z(§) =Y Y

i=0
Then Eqgs. (1.1) are transformed into the following form:

—pU" + knPU" + rX3U" + snU’ + g\U'—
_3kn(UV' + U'V) = 3rANUZ +U'Z) = 0,
DU’ — V' =0,
AU — 7' = 0.

(3.2)

Balancing U"” term with the UV’ U" term with the UZ’ term in the first
equation and U’ term with V' or U’ term with Z’ in the third equation
in (3.2) gives

m+3=m+n+1,
(3.3) m+3=m+1+1,
m+l=n+1lm+1=10+1.

Consequently, we have m = n = [ = 2. Thus, the solutions have the
forms

U(QE, Y, t) = U(é-) = ap+ aIY + CL2Y2,
(3.4) v(x,y,t) =V (E) = by + bY + bY?,
w(z,y,t) = Z(€) = co+ 1Y + Y.

Substituting (3.4) along with (2.4) into (3.2) and setting the coefficients
of the powers of Y (§) to zero, then we obtain the following system of
algebraic equations:

(3.5)

— pAay — 3Aa1bonk — 3Aagbik + 6A%ay B0’k + Aay B*nPk+

+ 2A%a1m3Ck + Aai\q — 3Aaico\r — 3Aagei A\r+

+ 6A%a, BA3r + Aay B*\3r + 2A%a,CN*r + Aayns = 0,

— 2pAay — pay B — 6 Aasbonk — 3a, Bbognk — 6 Aa1bink — 3agBbink—
— 6Aagbonk + 14Aas B0k + a1 B*n*k + 16 A%aon3Ck + 8 Aay Bn*Ck,
2Aas\q + a1 BAq — 6 AascoA\r — 3a1 BegAr — 6 Aaici A\r — 3agBeg Ar—
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— 6Aagco\r + 14Aas B2X3r + a1 B3X3r + 16 A%2a5C \2r + 8 Aay BCN3r+
+ 2Aascs + a;Bns = 0,

— 2pas B — pa;C' — 6as Bbynk — 9Aasbynk — 6a, Bbink — 9Aa bonk—

— 6agBbynk + 8as B*n*k — 3a1b0nCk — 3aobinCk + 52Aas Bn*Ck+

+ Ta1 B*1n*Ck + 8Aa1n>C?k + 2a, BAq + a1C\q — 6asBcoAr—

— 3a,CcoAr — 9Aase  \r — 6a; BeyA\r — 3agCei A\r — 9Aaco\r—

— 6agBeaAr + 8ay B*A%r + 52Aa; BOXr+

+ Ta1 B*C X3 4 8Aa; C* N*r + 2a5,Bns 4+ anC's = 0,

— 2pasC'—9ay Bbynk —12 Aasbonk —9ay Bbank —6a2bgnCk — 6a1bynCk—
— 6agbonCk + 38ay B*n>Ck + 40 Aasn®C%k + 12a, Bn*C?k + 2a,C \q—
— 6ay,CcoAr — as By \r — 6a,Cei A\r — 12Aasco\r — 9ay Beg A\r—

— 6agCea\r + 38ay B2 CA3r 4+ 40 AayC?\3r + 12a, BC?*\3r + 2a9nC's=0,
— 12a5Bbank — 9asbinCk — 9a1bonCk + 54a: Bn>C?k + 611> C3k—

— 9asC'er A — 12as Beshr — 9a3Cegr + 54ay BC? N3r+

+ 6a,C3N3r = 0,

— 12a5b51nCk + 24a5m3C2k — 12a2Cca\r + 24a,C3X3r = 0,

Aayn — AbyA =0, 2Aasm 4+ a1 Bn — Bby A — 2Aby\ = 0,

2a9Bn + a1nC — 2Bbs\ — biCA = 0, 2a9nC — 2b,C\ = 0,

— Ancy + Aa A =0, —Bney — 2Ancy 4+ 2Aas A + a1 BA =0,
—nCecy —2Bncy + 2as BN+ a,CA =0, —2nCcy + 2a,CA = 0.

The algebraic equations (3.5) can be solved by Mathematica and give the
following solutions:

1
(3.6) p= 77_)\ —3aon®k — 3bon* Nk + B?n* Ak + 8An*C Mk + N2qn—

— 3o\t = 3ap\Pnr + B2 My + 8AnCAYr + n?Xs|,
a; = 2BAnC, b, = 2Bn°C, c1 = 2BC)N?,
as = 2n\C?, by = 20°C?, ey = 20%)2.
Substituting (3.6) into (3.4) we have
u(z,y,t) = ag + 2BAnCY (€) + 2n\C?Y?(€),
(3.7) 0@y, 1) = by + 2B2CY (€) + 22 C2Y(€),
w(x,y,t) = co + 2BON?Y (€) 4+ 202 X?Y?(€).
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From Table 1, choosing A =0, B=1,C=-1,Y({) =1+ %tanh(%)
and inserting them into (3.7) we obtain the exact solutions

(3.8)

uy(z,y,t) = ag — 2)@){% + %tanh (g)} + 29\ {% + %tanh (g) }2,
vi(z,y,t) = by — 2n° {% + %tanh <g)} + 2n? {% + %tanh (g) }2,
wy (2, y,t) = cg — 2\ {% + %tanh (g)} + 2\ {% + %tanh (g) }2,

where £ = nx + Ay — pt and p = —[ 3agn3k — 3bgn? Mk + n* Mk + N2qn—
—3co\? — Sao)\3nr + Mrn+n?As]. From Table 1, choosing A=0, B=—1,

C=1Y(¢)=5-1 coth( ) and inserting them into (3.7) we obtain the
exact solutlons

(3.9)

2

st == ()} oy <o (5}
2

vz(l‘,y,t)zbo—mz{__% <g)} {_ %COth@)}’
2

wz(a:,y,t)zco—”z{“%coth@)}”AQ{ %C‘)th(g)}’

where £ = nx + Ay — pt and p = —[ 3agn3k — 3bgn? Mk + n* Mk + N2qn—
—3co N2 — 3ag\3nr — Ny + 7]2)\5}.
From Table 1, choosing A =1, B =0, C = Y (&) = coth&+

)
teschéorY(§) = tanhf +isech & and inserting them mto (3.7) we obtain
the exact solutions

ug(z,y,t) = ag + %{cothg + csch £},
2
(3.10) v3(z,y,t) = by + 77E{cothg + csch £},

2
wz(x,y,t) = co + %{cothg + csch £},
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A
ug(x,y,t) = ag + %{tanh{ + isech £},

2
(3.11) va(z,y,t) = by + %{tanhf + isech £},

)\2
wy(z,y,t) = co + ?{tanhf + isech £},

where £ = nx + Ay — pt and p = n%\ [—3aon®k — 3bon® Xk — 20* Xk + A2qn—
—3coA? — 3ag\3nr — 2nX\*r + P Xs].

From Table 1, choosing A =1, B =0, C = —1, Y(£) = tanh§ or
Y (§) = coth & and inserting them into (3.7) we obtain the exact solutions

us(x,y,t) = ag + 2n\* tanh? €,
(3.12) vs(,y,t) = by + 2n* tanh® ¢,

ws(x,y,1) = co + 222 tanh? €,
and

ug(,y,t) = ag + 2n\? coth ¢,
(3.13) v6(,y,t) = by + 2n* coth® €,

we(w,y,t) = co + 2A* coth? €,

where £ = nx+ Ay — pt and p = n%\ [—3aon®k — 3bon® Xk — 8 Ak + A2qn—
—3coA?nr — Bag\*nr — 8nAtr + n?As].

From Table 1, choosing A =1, B=10, C' =3, Y(§) =sec& + tan¢
or Y(§) = csc& — cot € and inserting them into (3.7) we obtain the exact
solutions

A
ur(z,y,t) = ag + %{Secf + tan €12,
2
(3.14) vr(x,y,t) = by + %{sec& + tan €12,

)\2
wr(x,y,t) = co + ?{secf + tan €12,

A
us(,y,t) = ap + - {ese € — ot €17,

2

(3.15) vs(,y,8) = by + T-{esc € — cot €2
)\2

wg(l', Y, t) = Co + ?{Cscg — cot 6}27
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where £ =nx + Ay — pt and p = n%\ [—Baon?’k‘ — 3bon? Mk + 20" Mk + N2qn—

—3coA2nr — 3agA*nr + 2nA*r + n?As| while ag, by and o are arbitrary
constants.

4. On solving the (2+41)-dimensional Painlevé inte-
grable Burgers equations

In this section, we will use the generalized tanh-function method to
solve Egs. (1.2). To this end, we use the transformations u(x,y,t) = U(¢),
v(z,y,t) = V(£), £ =nlz + Ay — pt) where

u(z,y, ) =U() = > aY?,
(4.1) =0
vz, y,t) = V(€)= ZbiYi.

Then Egs. (1.2) become

pU' + \U'U + aVU' +n\?BU" + napU” =0,

U - \V'=0.
Balancing the highest derivatives term with highest nonlinear terms in
Egs. (4.2) gives m = n = 1. Thus, the solutions have the forms:

U(§) = ao + 1Y (§),
V(&) = by + b1Y(§).
Substituting (4.3) along with (2.4) into (4.2) and equating the coef-

ficients of the powers of Y (§) to zero, then we obtain the following system
of algebraic equations:

4.4

(aAczlbo + aAa1fBn + Aaga A + Aai SBnA\* + Aaip = 0,

aay Bby + aAaiby + aay 3B%n + 2aAa Cn + Aai X + agay BA+

+ a1 6B*n\* 4+ 24a,8Cn)\? + a;Bp = 0,

aay Bby +aaibyC +3aa, BBCY+ai BA+aga; CA+3a, BBCA*+a;Cp=0,
aab,C + 2Ba;8C%*n + a3 CX + 2a; C*nA\* = 0,

Aay — A\ =0, a B — Bby\ =0, a,C — biCX = 0.

(4.2)

(4.3)
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The algebraic equations (4.4) can be solved by Mathematica and
give the following set of solutions:

(4.5) p = (—aby—afBn—agA\—FBn)\?), a; = —2BCnA, by = —24nC.
Substituting (4.5) into (4.3) we have

u(z,y,t) = ag — 26nA\CY(£),

v(x,y,t) = by — 268nCY (£).

From Table 1, choosing A =0, B=1,C = -1, Y(¢) = 5 + %tanh(%)
and inserting them into (4.6) we obtain the exact solutions

1 1
wtat) = an 2000 {5 4 (5

vi(z,y,t) = by +267){% + ltanh <§)},

(4.6)

(4.7)
2 2

where £ = n(x + Ay — pt) and p = (—aby — affn — agh — BnA?).
From Table 1, choosing A = 0, B = -1, C =1, Y(§) = %—
—% coth(%) and inserting them into (4.6) we obtain the exact solutions

us(z,y,t) = ag — 200\ {% — %coth (g) } ,
vo(x,y,t) = by — 20n {% — %coth (g) } ,

where £ = n(x + Ay — pt) and p = (—aby + afSn — agh + Bn)?).

From Table 1, choosing A = %, B=0C= —%, Y (&) = coth&+
+esch € or Y(§) = tanh € tisech £ and inserting them into (4.6) we obtain
the exact solutions

(4.8)

us(x,y,t) = ap + FnA{coth& £ csch ¢},

(4.9) v3(z,y,t) = by + Pn{coth & + csch £},

ug(z,y,t) = ap + SnA{tanh & +isech £},

(4.10) va(z,y,t) = by + Bn{tanh & £ isech £},

where £ = n(x + Ay — pt) and p = (—abg — ag)).
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From Table 1, choosing A =1, B=10, C = —1, Y(£) = tanh{ or
Y (£) = coth ¢ and inserting them into (4.6) we obtain the exact solutions

us(x,y,t) = ag + 20nAtanh &,

4.11

( ) U5(Iuy7t) = bO +2/677taﬂhfa
and

(4.12) ug(x,y,t) = ag + 20nA coth¢,

Uﬁ(xu Y, t) = bO + 2577 COthgv

where £ = n(x + Ay — pt) and p = (—aby — ag)), ag, by are arbitrary
constants.

From Table 1, choosing A =1, B=10,C =3, Y(§) =sec& + tan§
or Y(§) = csc& — cot&, inserting them into (4.6) we obtain the exact
solutions

u7(ll§', Y, t) =ap — ﬁn)\{secf + tang}a

(4.13) vr(2,y,t) = by — Bn{sec & + tan £},

ug(z,y,t) = ag — PnA{csc& — cot £},
Ug(l’,y,t) = bO - ﬁn{CSCS — cot 6}7

where £ = n(z+ Ay — pt) and p = (—aby — apA) while ag, by are arbitrary
constants.

(4.14)

5. On solving the (241)-dimensional Wu—Zhang equa-
tions

In order to apply the generalized tanh-function method to Egs. (1.3),
we use the transformation u(x,y,t) = U(&), v(z,y,t) = V(§), w(z,y,t) =
= Z(&) with & = nx + \y — pt, where

u(z,y,1) Z aY",

(5.1) v(w,y,t) Zb Y?

w(z,y,t) Z Y
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Then Egs. (1.3) are transformed into the following forms:
(5.2)

—pU +nUU + \VU +nZ' =0,

—pV' + UV + AVU' + \Z' =0,

1
- pz/ +7](UZ)/+>\(VZ)/+ g{773lj'///_'_n)\QZj’///_i_,'72)\‘////_'_)\3‘/’///} — 0

Balancing the highest derivatives term with highest nonlinear terms in
Egs. (5.2) gives so that m = 1, n = 1, | = 2. Thus, the solutions have
the forms

U(§) = ap + a1,
(5.3) V(&) = by + Y,
Z(&) =co+ 1Y + Y2
Substituting (5.3) along with (2.4) into Egs. (5.2) and equating the coef-
ficients of the powers of Y to zero, then we obtain the following system
of algebraic equations:
(5.4)
— pAay + Aagan + Acin + Aabg) = 0,
— pa1 B + Aain + apay By + Bein + 2Acon + ay BboA + Aaibi A = 0,
— pa,C' + a%Bn + apa,Cn + Ceyn + 2Bean + a1 Bbi A 4+ a1 bgC A = 0,
a2Cn + 2Ccon + a1byC\ = 0,
— pAby + Aagbin + Abgbi A + Acy A = 0,
— pBby + Aai1byn + agBbin + Bbobi A + Ab%)\ + BeiA 4+ 2Ac )\ = 0,
— pbiC + a1 Bbin + aghiCn + BN + bobi C X + Ccy A + 2Bey A = 0,
a1b;Cn 4+ bICA + 2Ce\ = 0,

— pAcy + Aaycon + Aagern + %AalB%?’ + §A2a10n3+

+ Abico + Abyei A + %AB%mz)\ + §A2blCn2>\ + %AalB2n>\2+
+ %AzalCn)\z + %Aszl)\?’ + §A2b10)\3 =0,

— pBcey — 2pAcy + a1 Begn + 2Aacin + agern + 2Aagcon+

1
+ galBgn?’ + ACLlBC’f]g + Bblc(])\ + Bb001>\ + 2Ab101)\+

8 1
+ 2Ab002)\ + ng1772)\ + gABblan)\ + galBgn)\2+
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8 1 8
+ gAalBCnA2 + §B3b1/\3 + gABblCA3 =0,
— pC’cl — 2pBCQ + alC’con + 2@13017] + CLoCClT] + 314@1027] + QCLOBCQT]+

+ galB2C773 + gACLlCQ?]g + blCco)\ + 236101)\ + boCCl)\ + 23[)002)\—}—

+ 3Abico) + ngblc’nz)\ + §Ab102n2A + galfﬂcnv + §Aa16’2n)\2+

+ gB%lcx” + gAbl(??)\?’ =0,
—2pCcy + 2a,Ccyn + 3a1 Bean + 2a9Ccan + 4alBC2773 + 2b;Cei A+
+ 33[)102)\ + 260002)\ + 4361027’]2)\ + 4alBC’277)\2 + 4BblC2)\3 = 0,

3a1Ccon + 2a1C%n3 + 3b1Cca) + 20, C30* X\ + 2a,CPnA? + 20,C3\3 = 0.

The algebraic equations (5.4) can be solved by Mathematica and give the
following solutions:

2AC 2BC
COI_T(U2+>‘2>7 C1=—T(U2+)\2),
207, 22 \? —2C2n\
=—""(n*4+ %, by = ———, — 7
Co 3 ( ) 1 \/§ ay \/g
(5.5)
ag = ! 4pCn? —4boCn A + 4pC N> —4b C)F’—w—
0T 40 gy | P T EREAT AL 0 v3
CABNC? 4ABpSCPN 8Bp'AC2 ABiPAC?
V3 VBMPA+ A3 VBIPA+ A3 VBN [
Substituting the solution (5.5) into (5.3) we have
(5.6)
2020\
w(x,y,t) = ag — Y (&),
202 )\?
v(z,y,t) = by — Y (&),
(. y,t) 0 /3 (&)
2BC 2BC 207
w(z,y,t) = —T(U2+>\2)— T(ﬁ2+>\2)y(f)— T(U2+>\2)Y2(f)-

From Table 1, choosing A =0, B=1,C = -1, Y(£) = % + %tanh(%)

2
and inserting them into (5.6) we obtain the exact solutions
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2
wl(zvyvt) = 5(772"’)\2)

(e )i G

where ap = m{—élp?f + 4bon* X — 4pA? + 4bo\® + L\%—m—l—

+ —4nS—8n* AtA2—4n2 N6 }

V32 A+23)

From Table 1, choosing A = 0, B = -1, C =1, Y(§) = 3—

—1coth(%) and inserting them into (5.6) we obtain the exact solutions
(5.8)

3 son()-f- 3o O]

where ayp = m{zlpn? — by A 4+ 4p\2 — 4bg\® + 4772>j-§i-4>\5_|_
RS TG
V(2 A+2?)

From Table 1, choosing A = %, B=0C= —%, Y (&) = coth&+
+esch € or Y (€) = tanh & + isech {, inserting them into (5.6) we obtain
the exact solutions

ug(z,y,t) = ag — %{cothg + cesch &},

(5.9) v3(z,y,t) = by — 2A—\;§{coth§ + csch ¢}

1
wg(l', Y, t) = _6(7]2 + >\2){00th£ + csch 5}27
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ug(x,y,t) = {tanh & + isech ¢},

5
)2
(5.10) vy(z,y,t) = by — —={tanh & £ isech},
23
1
wa(x,y,t) = —6(77 + A?){tanh ¢ £ isech £},
where ag = W{ 2p77 + 260772)\ — 2p)\2 + 2b0)\3}

From Table 1, choosing A =1, B=10, C = —1, Y({) = tanh{ or
Y (&) = coth &, inserting them into (5.6) we obtain the exact solutions

2\
u5(l’,y,t) = ap — Ltanh&,

V3
(511) U5(l’,y,t) = bO - 2—)\2 tanh&,
V3
2
ws(,y,1) = =3 (" + X*) tanh” €,

2nA
UG(SL’,y,t) = ap — L COthga

V3
(512) /Uﬁ(xvyat) = bO - 2—)\2 COthé-v
V3
2
wﬁ(x7y7t) = _g(n2 + >‘2) COth2 57

where ay = m{—élmf + 4bon? X — 4pA% + 4y A3}

From Table 1, choosing A =1, B=0, C =1, V() =sec& + tan¢
or Y(§) = csc€ — cot&, inserting them into (5.6) we obtain the exact
solutions

r(a,.8) = a0 = S lseo€ +tan).
2
(5.19) ur(@, 1) = by — ——{sect + tan €},

23
wil, 1) = — 507 + X)sec € +tang)?
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A
us(a,y,t) = ag — ”—B{cscg — cot £},

2/3
>\2

(5.14) vg(x,y,t) = by — 2—{csc§ — cot &},

V3

Wi, 9,0) = — g0 + W){ese — coré ),

where ag = mﬁpﬁ — 200m* X + 2pA? — 20023} and € = nz + Ay — pt.

6.

Conclusion

In this article, the generalized tanh-function method is applied

to find the traveling wave solutions of the coupled (2 + 1)-dimensional
Nizhnik-Novikov—Veselov, the (2 + 1)-dimensional Painlevé integrable
Burgers equations and the (2 + 1)-dimensional Wu—Zhang equations.
The generalized tanh-function method is successfully used to establish
these solutions. So this method provides a powerful mathematical tool
to obtain more general exact solutions of many other nonlinear partial
differential equations in mathematical physics.
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