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Abstract: In this paper we determine the unit group of a local endomorphism
nearring of a finite p-group G that is generated by a group of automorphisms
of G. As a consequence, we then determine the unit group of the endomor-
phism nearring of G generated by the inner automorphisms of G for any finite
nilpotent group G.

1. Introduction

By an automorphism nearring of a group G, we naturally mean
an endomorphism nearring of G generated by a group of automorphisms
of G. In this paper we will determine the units of local automorphism
nearrings of a finite p-group G. These nearrings have been studied in [4],
[8], and [9] and include the nearring I(G) for a finite p-group G by [4,
Cor. 3.3] where I(G) is the nearring of G generated by the group of inner
automorphisms Inn(G) of G (or equivalently, the zero-symmetric part of
the polynomial nearring of the group G). In particular, we shall see that
we can use our knowledge of units of local automorphism nearrings to
determine of units of I(G) for any finite nilpotent group G. We conclude
with the application of this knowledge of units to the case when I(G) is a
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ring. In a sense, this paper is a companion paper to [1] where many of the
results focused on the case where any minimal factors of G that are ring
modules were self-centralizing. Here we will be considering a situation
on the other extreme where centralizers of minimal factors of G are the
entire group G. Indeed both [1] and this paper involve generalizations
of results that grew out of efforts to determine the units of polynomial
nearrings.

Our results on the units of our local automorphism nearrings will
involve using ideals that are similar to the augmentation ideals found
in the study of group rings to describe the J2-radical of our nearrings.
Before dealing with units in the third and final section of this paper, we
first develop some basic facts about these augmentation ideals and their
connection with the J2-radical in the next section.

Throughout this paper, functions will be written on the right and
consequently our nearrings will be left nearrings. Our basic reference on
nearrings will be [6] which also follows these conventions.

2. Augmentation ideals

We begin this section with the following result:

Proposition 2.1. Suppose that R is a nearring distributively generated

by a multiplicative semigroup S of R. Then the normal subgroup ∆(S)
of the additive group of R generated by the elements of R of the form

1 − α, α ∈ S, is an ideal of R.

Proof. By [6, Cor. 9.22], it suffices to show that ∆(S) is closed un-
der right and left multiplication by elements of S. Since elements of S
distribute on both sides, we need only show that β(−r + (1 − α) + r)
and (−r + (1 − α) + r)β lie in ∆(S) for all α, β ∈ S and all r ∈ R to
obtain this. Moreover, these will follow if β(1 − α) and (1 − α)β lie in
∆(S). To get the former, observe that β(1 − α) = −(1 − β) + (1 − βα);
corresponding work yields the latter. ♦

The ideal ∆(S) of Prop. 2.1 is similar to a very important ideal
in group rings called the augmentation ideal (see [11], for example), and
consequently we shall refer to it as the augmentation ideal of R with

respect to S. The next result contains a variant of this for normal
subgroups when the set of distributive generators is a group which again
corresponds to a similar type ideal in group rings.
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Proposition 2.2. Suppose that R is a nearring distributively generated

by a multiplicative group A of R. If B is a normal subgroup of A, then

the normal subgroup ∆(B) of the additive group of R generated by the

elements of R of the form (1 − β)α, β ∈ B, α ∈ A, is an ideal of R.

Proof. Noting that for α ∈ A and β ∈ B, α(1 − β) = (1 − αβα−1)α, it
follows that ∆(B) is an ideal of R using work similar to that in the proof
of Prop. 2.1. ♦

We will call the ideal ∆(B) of Prop. 2.2 the augmentation ideal

of B in R with respect to A. These augmentation ideals have a
connection with J2(R) when G is a finite p-group and B is a p-group.
The beginnings of this occur in [4], [8], and [9] in the development of the
theory of local endomorphism nearrings which we shall now expand upon.
In the next result we follow the usual convention of denoting the largest
normal p-subgroup of a finite group G by Op(G) for a prime number p.
Also, to save writing we will write p for the element 1 · p of R and pR for
the R-subgroup (1 · p)R.

Proposition 2.3. If R is an automorphism nearring of a finite p-group
G generated by a group of automorphisms A of G, then pR+∆(Op(A)) ⊆
⊆ J2(R).

Proof. Suppose that H/K is a minimal factor of R-ideals of G (which is,
in fact, a type 2 R-module by [8, Lemma 1.9]). We are going to consider
the commutator [H/K, Op(A)] in the semidirect product of H/K and
Op(A). Upon adapting the typical multiplicative-conjugate description
of a commutator [a, b] = a−1ab used in group theory to our additive-
multiplicative setting, the commutator [H/K, Op(A)] is generated by el-
ements of the form
[h+K, β] = (−h+K)+(h+K)β = (h+K)(−1+β), h ∈ H, β ∈ Op(A).

Since the semidirect product of H/K and Op(A) is a finite p-group and
hence nilpotent, [H/K, Op(A)] is properly contained H/K. Moreover,
since [h+K, β]α = [(h+K)α, βα] for any α ∈ A, we get that [H/K, Op(A)]
is an R-module and hence [H/K, Op(A)] = 0 by the minimality of H/K.
Since 1 − β = 1 − (−1 + β) − 1, it follows that ∆(Op(A)) annihilates
the factors of the socle series of G. Now using the socle series of G
for the S-socle series in [8, Lemma 1.4], we obtain ∆(Op(A)) ⊆ J2(R).
Finally since H/K is an elementary abelian p-group, it also follows that
pR ⊆ J2(R) completing the proof. ♦

A natural question to ask is when the containment is an equality
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in Prop. 2.3. As we shall next see, one place this occurs is when the
automorphism nearring R of Prop. 2.3 is local. In this setting we know
that Op(A) is the Sylow p-subgroup P of A in [8, Th. 3.2] or [9, Th. 1.4]
and that P has a cyclic complement K in A.

Proposition 2.4. Suppose that R is an automorphism nearring of a

finite p-group G generated by a group of automorphisms A of G. If R is

local and P is the Sylow p-subgroup of A, then J2(R) = pR + ∆(P ).

Proof. As ρ ≡ 1 mod ∆(P ) for all ρ ∈ P , R/∆(P ) is distributively
generated by the images of the elements of K in this quotient and hence
R/∆(P ) is a commutative ring. Thus pR + ∆(P ) is an ideal of R. Next
observe that R/(pR+∆(P )) is a homomorphic image of the group algebra
Zp[K]. Since this group algebra is semisimple by Maschke’s Theorem,
R/(pR + ∆(P )) is also semisimple. By [5, Th. 4.2] we know that R
has only trivial idempotents and hence R/(pR + ∆(P )) has only trivial
idempotents by [7, Thm. 3]. Thus by the Wedderburn Theorem we have
that R/(pR + ∆(P )) is a field and hence pR + ∆(P ) is a maximal ideal
of R. As J2(R) is the unique maximal ideal of R by [5, Thms. 2.2 and
2.10], J2(R) = pR + ∆(P ). ♦

One case in which we are always assured of having a local auto-
morphism nearring is for an automorphism nearring of a finite p-group
G generated by a p-group of automorphisms of G [8, Th. 3.5]. In this
case, Prop. 2.4 takes on the following form:

Proposition 2.5. If R is an automorphism nearring of a finite p-group
G generated by a p-group of automorphisms A of G, then J2(R) = 〈p〉+
+∆(A) where 〈p〉 denotes the additive subgroup of R generated by p.

Proof. As J2(R) = pR+∆(A) by Prop. 2.4, the result now follows since
α ≡ 1 mod ∆(A) for all α ∈ A. ♦

3. Determination of units

From [5, Lemma 2.4 and Th. 2.10] we know that the set of units
of a local nearring R, let us denote this as U(R), is the complement of
J2(R) in R. We are now going to use this in conjunction with Prop. 2.4 to
describe the units of a local automorphism nearring R of a finite p-group
G generated by a group of automorphisms A of G. As we have already
partially done in preparation for Prop. 2.4, we will use the notation of [9]
where P denotes the normal Sylow p-subgroup of A, K is a complement
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of P in A, |K| = k, and α ∈ A is a generator for the cyclic group K.
By [8, Th. 3.2] or [9, Th. 1.4] and Prop. 2.4, it follows that R/J2(R) =
= R/(pR+∆(P )) is the field extension Zp[α] of Zp where α=α+J2(R).
Letting d denote the dimension of Zp[α] over Zp and 1 < k2 < . . . < kd

denote positive integers between 1 and k so that α, αk2, . . . , αkd form a
basis for Zp[α] over Zp, the elements αn1 + αk2n2 + · · · + αkdnd where
0 ≤ ni < p for each i become a set of coset representatives of J2(R) in
R. Since the elements of the nonzero cosets of J2(R) will be the units of
R, we then have the following description of U(R):

Proposition 3.1. Suppose that R is a local automorphism nearring of a

finite p-group G generated by a group of automorphisms A of G. Using

the previously introduced notation, U(R) is the disjoint unit of the cosets

αn1 + αk2n2 + · · ·+ αkdnd + J2(R) where ni 6= 0 for at least one i.

Combining Prop. 2.5 together with Prop. 3.1, we get the following
result:

Proposition 3.2. If R is an automorphism nearring of a finite p-group
generated by a p-group of automorphisms A of G, then the group of units

of R is the disjoint union

U(R) =

p−1⋃

n=1

(n + 〈p〉 + ∆(A)).

If G is a finite nilpotent group and P1, . . . , Pm are the Sylow sub-
groups of G, we have either by [3, Ch. 5, Cor. 3.32] or as a consequence of
[10, Cor. 4.7] that the unit group of I(G) is the direct product of the unit
groups of the I(Pi). Hence we may restrict our attention to p-groups in
the determination of the unit group of I(G) when G is a finite nilpotent
group thereby putting ourselves into the setting of Prop. 3.2. In fact, if
G is a finite p-group and u =

∑n

i=1
αini where αi ∈ Inn(G) and ni ∈ Z

is an element of I(G), Prop. 3.2 tells us that u is a unit if and only if
the coefficient sum

∑n

i=1
ni is relatively prime to p, which is the result

when [3, Ch. 5, Th. 4.41] is applied to I(G). More generally, suppose
G is a finite nilpotent group, P1, . . . , Pm are the Sylow subgroups of G,
Gi = Pi in [10, Cor. 4.7], e1, . . . , em are the idempotents of this corol-
lary, and u =

∑n

i=1
αini where αi ∈ Inn(G) and ni ∈ Z is an element of

I(G). Noting that eju =
∑n

i=1
(ejαi)ni and ejαi ∈ Inn(Pj), our preceding

observation tells us that u is a unit if and only if
∑n

i=1
ni is relatively

prime to |Pj| for each j. Equivalently, u is a unit if and only if
∑n

i=1
ni
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is relatively prime to |G|, which is the result when [3, Ch. 5, Cor. 4.42]
is applied to I(G).

We conclude with some consequences of Prop. 3.2 for R = I(G)
when I(G) is a ring for a finite group G. Here too we may restrict to the
case of p-groups since we know from [2] that G is nilpotent of class at
most 3. If I(G) is a ring for a finite p-group G, Prop. 3.2 becomes the
following:

Corollary 3.3. If G is a finite p-group for which I(G) is a ring, then

the group of units of I(G) is the disjoint union

U(I(G)) =

p−1⋃

n=1

(n + 〈p, 1 − α|α ∈ Inn(G)〉)

where 〈p, 1 − α|α ∈ Inn(G)〉 denotes the additive subgroup of I(G) gen-

erated by p and 1 − α, α ∈ Inn(G).

Proof. Since I(G) is a ring, we get in Prop. 2.1 that ∆(Inn(G)) is
additively generated by the elements 1 − α, α ∈ Inn(G), so that 〈p〉+
+∆(Inn(G)) is additively generated by these elements and p. The result
now follows from Prop. 3.2. ♦

A special case where the result of Cor. 3.3 is especially easy to work
with is when the socle series of G relative to I(G) has length at most 2.
In this case G has nilpotency class at most 2 by [8, Lemma 1.9] and hence
I(G) is a commutative ring by [2]. Here we have:

Corollary 3.4. Suppose that G is a finite p-group for which the socle

series of G relative to I(G) has length at most 2. If g1, . . . , gk ∈ G form

a set of generators for G/Z(G) where Z(G) is the center of G, then the

group of units of I(G) is the disjoint union

U(I(G)) =

p−1⋃

n=1

(n + 〈p, 1 − τg1
, . . . , 1 − τgk

〉)

where τx denotes the inner automorphism of G induced by x ∈ G.

Proof. From the proof of [6, Cor. 10.38] we know that J2(R)2 = 0. Thus
for any α, β ∈ Inn(G),

(1) 1 − αβ = (1 − α) + (1 − β) − (1 − α)(1 − β) = (1 − α) + (1 − β)

as (1 − α)(1 − β) ∈ J2(R)2. Since the τgi
generate Inn(G), our corollary

now follows from Cor. 3.3 by eq. (1). ♦

As an illustration of the use of Cor. 3.4, consider the dihedral group
of order 8:
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D4 = 〈a, b|4a = 2b = 0, b + a + b = 3a〉.

This is a group whose socle series has length 2. Here a and b form a set
of generators for D4/Z(D4) and it is easily verified that 〈2, 1− τa, 1− τb〉
is a group of exponent 2 that is the direct sum of the additive subgroups
of I(D4) generated by each of 2, 1 − τa, and 1 − τb. Thus it follows that
the elements of U(I(D4)) are

1 + 2i1 + (1 − τa)i2 + (1 − τb)i3

where each ij is either 0 or 1. In particular, |U(I(D4))| = 8.
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