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Abstract: This paper is an extension of [4] where the inversions in a pseudo-
Euclidean plane with an equiform conic as the fundamental conic and a pole
at its center or at an isotropic point have been studied. The type of circularity
for the curves has also been introduced.
We have shown that by using these transformations the rational cubics of all
types of circularity can be constructed as images of conics. Unfortunately, the
same does not hold for the quartics.

1. Motivation

The main purpose of this article is to continue solving of the con-
struction problem of one of the most interesting classes of curves in vari-
ous projective-metric planes, the circular curves. The idea is to compare
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the problem with the similar one in Euclidean and some other projective-
metric geometries, and to open the field for further investigation of the
circular curves and their properties in the projective-metric planes.

Unlike other new researches of the similar problems, the authors
offer different approach in the study of curves by treating the projective-
metric plane as an embedded plane of the projective plane based on the
famous Erlangen program of F. Klein. This projective approach allows
a treatment of a pseudo-Euclidean curve as a point set.

For further details of the method used in this article other similar
articles [2]–[4], [7]–[8] can be considered. This paper should be treated
as an extension of [4] where the basic equations of the transformation are
given together with the inverse image of the line.

2. Introduction

Pseudo-Euclidean plane. A pseudo-Euclidean (Minkowski) plane M2

can be defined as a projective plane where the metric is induced with an
absolute {f, F1, F2} in the sense of Cayley–Klein, consisting of a real line
f and two real points F1 and F2 incidental with it, [6], [9]. The line f is
called the absolute line and the points F1, F2 are the absolute points. All
lines through the absolute points are called isotropic lines and all points
on f are called isotropic (ideal, infinite) points.

If the absolute line f is determined by the equation x0 = 0, the
absolute points F1, F2 are determined by the coordinates (0, 1,±1).

Furthermore, an involution of points on the absolute line f having
the absolute points for the fixed points is called the absolute involution
and in the following text it will be denoted by ω.

Let us begin by summarizing some facts about curves from [4].

Curves in pseudo-Euclidean plane. An algebraic curve kn of order
n will be treated as the totality of points whose coordinates in some
assigned allowable coordinate simplex satisfy a homogeneous equation of
the n-th degree g(x0, x1, x2) = 0. If one of isotropic points of the given
curve kn coincides with one of absolute points, the curve is said to be
circular, [4]. Furthermore, if F1 is the intersection point of kn and f with
the intersection multiplicity t, and F2 is an intersection point of kn and
f with the intersection multiplicity r, than kn is said to be a curve of the
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type of circularity (t, r) and its degree of circularity is defined as r + t,
[4]. If r + t = n, the curve is said to be entirely circular.

Depending on their degree of circularity, the conics are classified in
[4] into three groups: non-circular conics (ellipses, three types of hyper-
bolas and parabolas), 1-circular conics (two types of special hyperbolas),
and entirely circular conics (circles and special parabolas).

Furthermore, in [4] a notion of an equiform conic in the pseudo-
Euclidean plane is introduced. A conic c is called an equiform conic, if
the equality holds φc ◦ ω = ω ◦ φc, where φc determines the involution
of the conjugate points on the absolute line induced by the conic c. It
is easy to see that either (a) φc ≡ ω and the given conic c is a circle,
or (b) ω and φc are involutions whose pairs of fixed points separate each
other harmonically. Depending on the reality of the fixed points of the
induced involution φc, we further distinguish an equiform hyperbola and
an equiform ellipse.

Classification of conics. By choosing a basic coordinate simplex in
the projective plane P

2 every conic c can be represented by the homoge-
neous equation of the form

a00x
2

0
+ a11x

2

1
+ a22x

2

2
+ 2a01x0x1 + 2a02x0x2 + 2a12x1x2 = 0

and in the affine coordinates by

(1) a00 + a11x
2 + a22y

2 + 2a01x + 2a02y + 2a12xy = 0.

The conic c intersects the absolute line f in the points whose coordinates
satisfy the equality

a11x
2

1
+ a22x

2

2
+ 2a12x1x2 = 0.

Some short calculations lead us to the conclusions:

• c is a hyperbola iff a2

12
− a11a22 > 0.

• c is a parabola iff a2

12
− a11a22 = 0.

• c is an ellipse iff a2

12
− a11a22 < 0.

• c is a special hyperbola iff a11+a22+2a12 = 0 or a11+a22−2a12 = 0.

• c is a special parabola iff a11 = a22 = −a12 or a11 = a22 = a12.

• c is a circle iff a12 = 0 and a11 = −a22.

The hyperbolas and ellipses are equiform iff a11 = a22.
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3. Inversion

An inversion σ(P, q) with respect to the pole P and the fundamental
conic q is an involutive quadratic mapping where corresponding points
are conjugate points with respect to q and lie on lines of the pencil (P ).
These lines are called rays. The fixed points P1, P2 of the involution deter-
mined on the polar line p of the pole P with respect to q together with P
define fundamental triangle of the given birational mapping. Obviously,
the quadratic inversion is an one-to-one mapping with an exception of
the points lying on the fundamental triangle. The inversion maps the
curve kn of order n, if kn contains no fundamental point, onto the curve
k2n

q of order 2n. Since kn intersects every fundamental line in n points,
each mapped onto the corresponding fundamental point, k2n

q has three
n-fold points in the fundamental points. If kn contains one fundamental
point as r-fold point, then k2n

q splits into the corresponding polar line
with multiplicity r and a curve of order 2n − r, [1]–[5], [8].

It seems natural to consider an extension of the well-known inver-
sion in the Euclidean plane with circle as the fundamental conic. There-
fore, in [4] three main types of inversion in pseudo-Euclidean plane were
defined, by choosing one of three types of equiform conics for the fun-
damental conic of transformation. Furthermore, depending on the type
of the pole P , whether it is the center of the fundamental conic or an
isotropic point, we distinguish two general subtypes of each type. Spe-
cial cases occur when one of the absolute points coincide with one of the
fundamental points.

As the equations of all types and subtypes of the inversion have
been presented and the inverse image of any line has been discussed in
[4], this article continues with the construction of the circular cubics
and quartics as the inverse images of conic. Since conics are rational
curves and the inversion preserves the genus of curves, only the rational
cubics and quartics can be obtained. For every type of the inversion
the conditions that the conic has to fulfill in order to obtain the cubic
or quartic of the certain type of circularity will be determined. Also
a construction of the isotropic tangents of the obtained curves will be
given in some cases. Similar observations have been done for the circular
quartics in an isotropic plane in [2].
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3.1. Circle as fundamental conic of inversion

Let an inversion σ(C, P ) be given in the pseudo-Euclidean plane,
where C is a unit circle given by the equation

(2) C . . . x2 − y2 = 1.

Depending on the position of the pole P we further distinguish two types
of the circle inversion.

Type (1) – The pole P is the center of the circle. The homo-
geneous coordinates of P are (1, 0, 0). Obviously, the equality ω ≡ φC

holds, and the absolute points coincide with the two fundamental points
P1,2. The sides of the fundamental triangle are given by the equations
x0 = 0, x ± y = 0.

Furthermore, the point X(x, y) is mapped onto the point X(x, y)
whose coordinates are according to (3.5) in [4] given by

x =
x

x2 − y2
, y =

y

x2 − y2
.

Obviously it is an analogue of the Euclidean ordinary inversion1, and
the non-circular conic k2 given by (1) is, generally (when a00 6= 0, i.e.
P /∈ C), mapped onto the entirely circular quartic k4

C
of type (2, 2) given

by the affine equation

(3) a00(x
2−y2)2 +2(a01x+a02y)(x2−y2)+(a11x

2 +2a12xy+a22y
2) = 0

with three double points at the fundamental points, tangents at which
are the lines:

(tP1
)1,2 . . . y = x +

a01 + a02 ±
√

(a01 + a02)2 − a00(a11 + 2a12 + a22)

2a00

,

(tP2
)1,2 . . . y = −x +

−a01+a02±
√

(a01−a02)2 − a00(a11−2a12 + a22)

2a00

,

(tP )1,2 . . . y =
−a12 ±

√

a2

12
− a11a22

a22

x.

The reality of the tangents and the type of a double point (a node, a
cusp or an isolated double point) depends on the reality of intersections
of the conic k2 with the corresponding fundamental line.

1Some examples of this type of inversion can be found in [9] (p. 216).
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Fig. 1 displays an entirely circular quartic k4

C
obtained as an inverse

image of a hyperbola of type 3. Since the isotropic points G1,2 of k2 are
mapped onto the pole P , their rays are the tangents of k4

C
at the double

point P . Furthermore, since the inverse image of the pencil (P1) is the
pencil of the lines (P2), the isotropic tangents at the double point F1 are
determined as the inverse images of the lines connecting the point F2 and
the intersections of p1 and k2 (these images also contain the line p1).

Figure 1

Naturally, for obtaining circular cubics one has to distinguish two
cases. First one occurs when a00 = 0, i.e. k2 passes through the pole P ,
and it follows from (3) that the obtained quartic k4

C
splits into f and an at

least 2-circular cubic k3

C
. Besides the absolute points, simple calculation

leads to the homogeneous coordinates of the third isotropic point of k3

C

which are of the form (0, a02,−a01). Obviously, k3

C
is entirely circular iff

|a01| = |a02|, i.e. k2 touches one of the fundamental lines pi, i = 1, 2, at
the pole P , Fig. 2.

In the second case k2 passes through one of the other two funda-
mental points (e.g. P1), therefore, it is a special hyperbola. For example,
substituting 2a12 = −(a11 + a22) in (3), an entirely circular cubic k3

C
of

type (1, 2) with equation

a00(x
2 − y2)(x + y) + 2(x + y)(a01x + a02y) + a11x − a22y = 0

is obtained.
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Figure 2

This type of inversion provides a construction of circular cubics of
type (r, t) where r, t 6= 0, r + t ≥ 2.

To summarize:

Theorem 1. Let C be a circle and P its center in M2.

• The inversion σ(P, C) maps a conic k2 onto the entirely circular
quartic k4

C
of type (2, 2), if none of the fundamental points lies on

k2.

• The inversion σ(P, C) maps a conic k2 passing through one of the
fundamental points onto the circular cubic k3

C
.

k3

C
is an entirely circular cubic of type (1, 2) if k2 is a circular conic

or non-circular conic touching pi, i = 1, 2, at P . Otherwise, the
obtained cubic is 2-circular of type (1, 1).

Type (2) – The pole P is an isotropic point. Whether or not the
pole P coincides with one of the absolute points, two subcases occur.

In a general case, when P 6= Fi, i = 1, 2, let the coordinates of
P be (0, 0, 1). The other two fundamental points P1,2(1,±1, 0) and the
fundamental lines are y = 0, x ± 1 = 0. The transformation is described
by
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x = x, y =
x2 − 1

y
.

Note that the type of circularity is invariant in this subcase of inversion
since the absolute points remain fixed, [4].

The inverse image of a conic k2 determined by (1) is the quartic k4

C

a22(x
2−1)2 +(a00 +2a01x+a11x

2)y2+2a02(x
2−1)y+2a12xy(x2−1) = 0.

Its isotropic points, besides P , are given by (0,−a12±
√

a2

12
− a11a22, a22).

Furthermore, if a11 = 0, then P is a common point of f and k4

C

with the intersection multiplicity 3. This is the case when one of the
isotropic points of k2 coincides with Q(0, 1, 0) = f ∩ p, Fig. 3. If both of
the isotropic points of k2 coincide with Q, a12 = 0, the pole P is a double
point of k4

C
at which quartic osculates and intersects the absolute line.

Figure 3

The cubics are obtained if k2 passes through one of the fundamental
points. An example of a 2-circular cubic of type (2, 0) is shown in Fig. 4.

A special case occurs when P ∈ C. All three fundamental points
coincide with the pole and all three fundamental lines with its polar
line p. If C is given by (2) and e.g. P = F1(0, 1, 1), the equation of p
is x − y = 0. Furthermore, the inversion σ(C, P ) is presented by the
equations

x =
−y2 + xy − 1

y − x
, y =

x2 − xy − 1

y − x
.
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Figure 4

Generally, it maps a conic (1) onto an at least a 2-circular quartic k4

C :

(4) a00(x−y)2 +a11(y
2−xy +1)2 +a22(1+xy−x2)2+

+ 2a01(x − y)(y2 − xy + 1) + 2a02(x − y)(1 + xy − x2)+

+ 2a12(y
2 − xy + 1)(1 + xy − x2) = 0.

The homogeneous coordinates of the intersections of k4

C
and f are deter-

mined by substituting x0 = 0 into (4) and they satisfy the equation:

(x1 − x2)
2(a11x

2

2
+ 2a12x1x2 + a22x

2

1
) = 0.

Obviously, P = F1(0, 1, 1) is their common point with the intersection
multiplicity 2. For obtaining 3-circular quartics, one of the other two
intersection points must coincide with F2(0, 1,−1), i.e. a11−2a12+a22 =0,
so F2 ∈ k2 and k4

C
is of type (2, 1), Fig. 5. k4

C
is entirely circular of

type (2, 2) if both intersection points coincide with F2 which is the case
iff a11 = a22 = −a12. This corresponds to the fact that k2 is a special
parabola touching f at F2.

Every line through the pole P has the equation of the form y =
= x + m. It intersects k4

C
at the points coordinates of which satisfy

[

a11+2a12+a22−2(a01+a02)m+(a00+2a11+2a12)m
2−201m

3+a11m
4
]

+

+2
[

(a11 + 2a12 + a22)m − (a01 + a02)m
2 + (a11 + a12)m

3
]

x+

+ (a11 + 2a12 + a22) m2x2 = 0.
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Figure 5

Thus it is obvious that x0 is a double solution for each m and therefore
P is a double point of k4

C
. We need to determine m corresponding with

the tangent. x0 is a triple solution if (a11 + 2a12 + a22)m2 equals zero.
Hence, both tangents of k4

C
at P coincide with p.

For obtaining a circular cubic, the only condition is P ∈ k2, i.e.
a11 + a22 + 2a12 = 0. The term (4) turns into

(x − y)2[a00 + a11(y
2 − xy + 1) − a22(1 + xy − x2)]+

+2(x − y)[a01(y
2 − xy + 1) + a02(1 + xy − x2)] = 0.

From this it follows that k4

C
splits into the line p and an at least 2-

circular cubic k3

C
intersecting f at the point F1(0, 1, 1) counted twice

and an isotropic point coordinates of which satisfy a22x1 − a11x2 = 0.
An entirely circular cubic k3

C
of type (3, 0) is obtained when that point

coincides with F1 which is the case iff k2 is a special parabola touching
f at F1. k3

C
is of type (2, 1) iff k2 is a circle. Some calculations similar

to those made for the quartic k4

C
deliver the equations of the isotropic

tangents at the pole F1: y = x and y = x +
2(a01 + a02)

a11 − a22

. Note that the

first one coincides with the polar line p and the second one is identical
to the tangent of k2 at the same point.

We conclude the discussion of this type of inversion by stating the
following theorems:

Theorem 2. Let σ(P, C) be an inversion given in M2 where C is a circle
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and P an isotropic point. An inverse image of a conic k2 of type (t, r)
not passing through the fundamental points of σ is:

• (t + r)-circular quartic of type (t, r), if P 6= Fi, i = 1, 2.
• (r + 2)-circular quartic of type (2, r), if e.g. P = F1.

Theorem 3. Let σ(P, C) be an inversion given in M2 where C is a circle
and P an isotropic point. An inverse image of a conic k2 of type (t, r)
passing through one of the fundamental points of σ is:

• (t + r)-circular cubic of type (t, r), if P 6= Fi, i = 1, 2.
• (t + r + 1)-circular cubic of type (t + 1, r), if e.g. P = F1.

3.2. Hyperbola as fundamental conic of inversion

Let a hyperbola H be given by the equation

(5) H . . . 2xy = 1.

Depending whether the pole P of the inversion σ(P,H) is the center of
H or an isotropic point, two types are distinguished.

Type (1) – The pole P is the center of the hyperbola. By placing
the pole P at the center (1, 0, 0) of H we get the equations of the inversion

x =
1

2y
, y =

1

2x
.

The fundamental points are P (1, 0, 0), P1(0, 1, 0), P2(0, 0, 1) and the fun-
damental lines are x0 = 0, y = 0, x = 0, respectively.

The conic k2 given by (1) is mapped onto the quartic k4

H

(6) 4a00x
2y2 + 4a01x

2y + 4a02xy2 + a11x
2 + 2a12xy + a22y

2 = 0.

Since the fundamental points P1(0, 1, 0), P2(0, 0, 1) are intersections of k4

H

and f with multiplicity 2, it is not possible to obtain a circular quartic.

On the other hand it is possible to construct circular cubics. For
obtaining cubics, one of the fundamental points has to lie on k2.

If k2 passes through P , (a00 = 0), k4

H
splits onto the line p and a

cubic k3

H
intersecting f at P1(0, 1, 0), P2(0, 0, 1) and an isotropic point

coordinates of which satisfy the equation a01x1 + a02x2 = 0. This point
coincides with one of the fundamental points iff k2 touches the corre-
sponding fundamental line at P . k3

H
is 1-circular iff k2 touches one of

the rays PFi, i = 1, 2, at P , Fig. 6.
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Figure 6

If k2 passes through e.g. P1 (a11 = 0), k4

H
splits onto the line p1 and

a non-circular cubic.
We can conclude this study by stating

Theorem 4. Let H be a hyperbola in M2 and let P be its center. In
the general case, the inversion σ(P,H) maps a conic k2 onto a non-
circular cubic or quartic depending on whether or not k2 passes through
the fundamental points.

The cubic is 1-circular if k2 touches one of the rays PFi, i = 1, 2
at P .

Type (2) – The pole P is an isotropic point. If the fundamental
conic H is given by the eq. (5) and the pole P is an isotropic point
with the coordinates (0, 1, p), the inversion σ(P,H) is determined by the
equations

x =
px2 − xy + 1

px + y
, y =

y2 − pxy + p

px + y
.

Depending on the position of P we can distinguish three subcases; the
pole P not lying on H and differing from the absolute points (p 6= ±1, 0),
pole P coinciding with one of the absolute points (|p| = 1), and P lying
on H (p = 0).
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In the first two cases the coordinates of the fundamental points are

of the form P (0, 1, p), P1,2

(

1,±
√

− 1

2p
,∓
√

−p

2

)

and the fundamental

lines are y = −px, y = −px ∓
√

−2p, respectively.
In the general case (p 6= 0,±1), since f is the ray of the inversion

and F1, F2 are mapped onto each other, the inversion keeps the absolute
figure fixed. Therefore, the degree of the circularity of the curve is an
invariant of this transformation. More precisely, the curve kn of type
(t, r) is mapped onto the curve k2n of type (r, t).

σ(P,H) maps the conic (1) onto the quartic k4

H
:

(7) a00(px + y)2 + a11(px
2 − xy + 1)2 + a22(y

2 − pxy + p)2+

+ 2a01(px + y)(px2 − xy + 1) + 2a02(px + y)(y2 − pxy + p)+

+ 2a12(px
2 − xy + 1)(y2 − pxy + p) = 0.

The absolute line f meets k4

H
at P with intersection multiplicity

2 and two further points. P is a point of intersection multiplicity 3 iff
k2 passes through Q = f ∩ p. It has the intersection multiplicity 4 iff
k2 touches f at Q. One of the isotropic points of k4

H
is F1 iff k2 passes

through F2, Fig. 7.

Figure 7
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In the special case, when |p| = 1, the circularity of the curve is not
invariant as in the previous one, but the obtained curve is an at least 2-
circular quartic k4

H
. Let us suppose that P = F1(0, 1, 1). If k2 is of type

(0, 1), f touches k4

H
at the double point F1 and k4

H
is 3-circular quartic

of type (3, 0), Fig. 8. Furthermore, an entirely circular quartic of type
(4, 0) is obtained iff k2 touches f at F2, as then f osculates one branch
of k4

H
at F1.

Figure 8

A conic passing through P = F1 is generally mapped onto the 2-
circular cubic k3

H
having a double point at it. The cubic k3

H
is entirely

circular of type (3, 0) when k2 is a circle or of type (2, 1) when k2 is a
special parabola.

In the case of k2 passing through P1 (or P2) its image k3

H
meets f

at the regular point F1, so cubic is at least 1-circular of type (1, 0). f
touches a 2-circular cubic k3

H
at F1 if F2 ∈ k2. It osculates k3

H
at F1 if f

touches k2 at F2, therefore the obtained cubic is entirely circular of type
(3, 0), Fig. 9.

The last case belonging to this type of inversion shows up when
p = 0 and all the fundamental points coincide with P = (0, 1, 0) and all
the fundamental lines with the line y = 0. The inverse image of a conic
k2 given by (1) is a quartic k4

H
having a double point at P at which both

tangents coincide with p. It is easy to see that the degree of circularity
is also an invariant in this case, Fig. 10.
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Figure 9

Figure 10

Consequently, the following theorems hold:

Theorem 5. Let σ(P,H) be an inversion given in M2 where H is a
hyperbola and P an isotropic point. An inverse image of a conic k2 of
type (t, r) not passing through the fundamental points of σ is:

• (t + r)-circular quartic of type (r, t), if P 6= Fi, i = 1, 2.
• (r + 2)-circular quartic of type (r + 2, 0), if e.g. P = F1.

Theorem 6. Let σ(P,H) be an inversion given in M2 where H is a
hyperbola and P an isotropic point. An inverse image of a conic k2 of
type (t, r) passing through one of the fundamental points of σ is:
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• (t + r)-circular cubic k3

H
of type (r, t), if P 6= Fi, i = 1, 2.

• (t + r + 1)-circular cubic k3

H
, if P = Fi, i ∈ {1, 2}.

If P = F1, k3

H
is of type (t + r + 1, 0) for t < 2 and of type (2, 1)

for t = 2.

3.3. Ellipse as fundamental conic of inversion

Let the ellipse E be given by the equation

(8) E . . . x2 + y2 = 1.

As in the previous case, we can differ two main types depending on the
position of the pole P .

Type (1) – The pole P is the center of the ellipse. In this case
the observations are analogous to those made for the inversion with the
pole at the center of the fundamental hyperbola. The basic difference
lies in the fact that now the pole is an interior point of the fundamental
conic and, therefore, the fundamental points P1,2 form a pair of conjugate
imaginary points, Fig. 11. The pole is now P (1, 0, 0) and σ(P, E) is
determined by the equations

x =
x

x2 + y2
, y =

y

x2 + y2
.

It maps a conic k2 given by (1) onto a non-circular quartic k4

E
with the

equation

a00(x
2 + y2)2 + 2(x2 + y2)(a01x + a02y) + a11x

2 + a22y
2 + 2a12xy = 0.

If k2 passes through P , its image splits into the fundamental line p = f
and, in general, a non-circular cubic k3

E
:

2(x2 + y2)(a01x + a02y) + a11x
2 + a22y

2 + 2a12xy = 0.

We can state

Theorem 7. Let E be an ellipse in M2 and let P be its center. The
inversion σ(P, E) in the general case maps a conic onto a non-circular
cubic or quartic depending on whether the conic passes through a funda-
mental point or not.

The cubic is (1, 0)-circular iff the conic touches the line PF1 at the
pole P .
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Figure 11

Type (2) – The pole P is an isotropic point. Only two subcases
will be distinguished: P coincides or not with one of the absolute points.

In the first, general case, by assuming P (0, 1, 0), the inversion is
given by

x =
1 − y2

x
, y = y

and it maps the conic (1) onto the quartic k4

E
:

x2(a00 + 2a02y + a22y
2) + a11(1 − y2)2 + 2x(1 − y2)(a01 + 2a12y) = 0.

The fundamental line p with the equation x = 0 meets E at the funda-
mental points P1,2(1, 0,±1). The other two fundamental lines are y = ±1.

Since the absolute points are corresponding points of this type of
inversion, the degree of circularity is an invariant of the transformation,
Fig. 12.

In the special case, by assuming P = F1(0, 1, 1), we get the following
equations of the mapping:

x =
1 + xy − y2

x + y
, y =

1 + xy − x2

x + y
.

The fundamental points P1,2 are given by

(

±
√

2

2
,∓

√
2

2

)

, while the fun-

damental lines are of the form y = −x, y = x ∓
√

2.



216 N. Kovačević and E. Jurkin

Figure 12

The inverse image of the conic k2 given by (1) is an at least 2-
circular quartic k4

E
:

a00(x + y)2 + a11(1 + xy − y2)2 + a22(1 + xy − x2)2+

+ 2(x + y)
[

a01(1 + xy − y2) + a02(1 + xy − x2)
]

+

+ 2a12(1 + xy − x2)(1 + xy − y2) = 0.

In Fig. 13 an entirely circular quartic of type (4,0) is shown.

Figure 13
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As in the analogous case of the inversion with a hyperbola as the
fundamental conic the following theorems holds:

Theorem 8. Let σ(P, E) be an inversion given in the pseudo-Euclidean
plane where E is an ellipse and P an isotropic point. An inverse image
of a conic k2 of type (t, r) not passing through the fundamental points of
σ is:

• (t + r)-circular quartic k4

E
of type (r, t), if P 6= Fi, i = 1, 2.

• (r + 2)-circular quartic k4

E
of type (r + 2, 0), if e.g. P = F1.

Theorem 9. Let σ(P, E) be an inversion given in the pseudo-Euclidean
plane where E is an ellipse and P an isotropic point. An inverse image
of a conic k2 of type (t, r) passing through one of the fundamental points
of σ is:

• (t + r)-circular cubic k3

E
of type (r, t), if P 6= Fi, i = 1, 2.

• (t + r + 1)-circular cubic k3

E
, if P = Fi, i ∈ {1, 2}.

If P = F1, k3

E
is of type (t+r+1, 0) for t < 2 and of type (2, 1) for t = 2.

4. Conclusions

In this paper we have presented the inversions in the pseudo-Euclid-
ean plane having an equiform conic for the fundamental conic and a pole
at its center or at an isotropic point.

It has been shown that by using these transformations the rational
cubics of all types of circularity can be constructed as images of conics.
Unfortunately, the same does not hold for the quartics. For example we
can not obtain any (3, 1)-circular quartic. Therefore we conclude this
paper with the following theorem while the construction of all types of
rational circular quartics is left for further investigation.

Theorem 10. The rational cubics of all types of circularity in the
pseudo-Euclidean plane can be constructed as images of conics by us-
ing the inversions having an equiform conic as fundamental conic and its
center or an isotropic point as pole.
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