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Abstract: We extend G. Endimioni’s theory of polynomial automorphisms
of soluble and nilpotent groups (see [2] and [3]) to a slightly wider class of
automorphisms, which leads to proofs that are somewhat shorter and less com-
putational. We also sharpen some of the conclusions.

An automorphism φ of a group G is said to be polynomial if there exist
finitely many elements u1, u2, . . . , un of G and integers e(1), e(2), . . . , e(n)
such that

gφ =
(

u−1
1 ge(1)u1

)(

u−1
2 ge(2)u2

)

. . .
(

u−1
n ge(n)un

)

for all g in G. Following [2] let Po(G) denote the subset (actually sub-
monoid) of the automorphism group AutG of G of all polynomial auto-
morphisms of G and set P (G) = 〈Po(G)〉 ≤ Aut(G).

In [2] Endimioni proves the following. If G is nilpotent of class
c ≥ 2, then P (G) is nilpotent of class c − 1. If G is metabelian, then
P (G) is metabelian. If G is metabelian and 2-generator, then IA(G) =
= CAut(G)(G/G

′) lies in P (G) and hence (C. K. Gupta [4]) is metabelian.
In [3] he proves that if G is soluble of derived length d > 1, then P (G)
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is soluble of derived length at most 2(d − 1). Improving his metabelian
results above, he also shows in [3] that if G is (nilpotent of class c ≥ 1)-
by-abelian, then P (G) is (nilpotent of class at most c−1)-by-metabelian.
His proofs are based on a series of calculations.

Our aim here is, by employing weaker versions of the notion of poly-
nomial automorphism more suited to certain types of inductive proof,
to produce shorter proofs of these theorems with little or no calcula-
tion. Our methods also give minor generalizations of the above, over and
above the obvious one of applying to more automorphisms than just the
polynomial ones. For example, we prove that if G is (nilpotent of class
c)-by-abelian, then P (G) is (nilpotent of class at most c)-by-abelian.
We also weaken his conditions on a nilpotent group G to ensure that
P (G) = Po(G).

The remainder of this paper is divided into three relatively separate
sections. The first one is devoted to nilpotent groups, the second to
nilpotent-by-abelian groups and the third to soluble groups in general.

1. Nilpotent groups

Let φ be a polynomial automorphism of the group G and suppose
the ui and e(i) are as in the above definition of polynomial map. Set
m = Σie(i) ∈ Z, the ring of integers. If H/K is any central section of G,
then hφ ∈ hmK for all h in H . In particular if G is abelian Po(G) is just
the set of (universal) power automorphisms of G.

Let 〈1〉 = Z0 ≤ Z1 ≤ · · · ≤ Zd = G be a central series of the
nilpotent group G of class c ≤ d. Let ∆o denote the set of automorphisms
φ of G such that Ziφ = Zi for all i and for which there exists an integer
m (to be called an associated integer of φ) satisfying gφ ∈ gmZi−1 for
all g ∈ Zi and all i ≥ 1. Set ∆ = 〈∆o〉 ≤ AutG. If {Zi} is either the
lower or the upper central series of G, then ∆o ⊇ Po(G) and ∆ ≥ P (G).
Further let Γo denote the set of automorphisms φ of G such that Ziφ = Zi

for all i and for which there exist integers m(i) satisfying gφ ∈ gm(i)Zi−1

for all g ∈ Zi and all i ≥ 1 and set Γ = 〈Γo〉 ≤ AutG. In this section
Γ plays only a minor role, but in Sections 2 and 3 below it plays very
much the dominant role. Example 1 in Section 2 shows that we can have
Γ 6= ∆ (and hence Γo 6= ∆o). Finally set S = ∩iCAut G(Zi/Zi−1). Clearly
S is a subgroup of AutG with ∆o ⊇ S, each element of S having 1 as an
associated integer.
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Theorem 1. Assume the notation above.
a) ∆ is nilpotent of class at most max{1, d− 1} and at least c− 1.
b) If G has finite exponent, then so does Γ and Γ = Γo, ∆ = ∆o

and P (G) = Po(G).
c) S ∩ Po(G) is a subgroup of AutG.
d) (Endimioni [2], Th. 1.1) If c > 1, then P (G) is nilpotent of class

exactly c− 1.
Suppose in addition to the above that the series {Zi} is the lower

central series of G 6= 〈1〉 (so now c = d ≥ 1 and Zi = γc+1−iG for each i).
Let e denote the greatest common divisor of the m− 1, where m ranges
over all the associated integers m 6= 1 of all the elements of ∆o, meaning
e = 0 if no such m exists. Then:

e) (γiG)e ≤ γi+1G for all i ≥ 2 and G′ has exponent dividing ec−1.
f) [γiG,∆] ≤ γi+1G for all i ≥ 2.
g) If c ≥ 2 then ∆/C∆(G′) is nilpotent of class at most c − 2 and

has exponent dividing ec−2.
h) If c > 1 and if γcG does not have finite exponent, then ∆o =

= S = ∆ and Po(G) = P (G).
i) (Endimioni [3], Th. 1.5) If either G has finite exponent or G is

non-abelian and torsion-free, then Po(G) = P (G).

It is easy to see that in Th. 1 the group ∆ can be strictly larger
than P (G). For example, if G = 〈x〉×〈y〉, where |x| = |y| > 1 and if φ is
the automorphism of G determined by x 7→ xy and y 7→ y, then φ ∈ ∆
if we take d = 2 and Z1 = 〈y〉 and yet φ is not a power automorphism
of G, so φ /∈ Po(G). If G has finite order then P (G) = Po(G). If not
then here x and y have infinite order and Po(G) = {±1} = P (G). Thus
φ ∈ ∆\P (G).

Lemma 1. Let G be a group with Z a central subgroup of G. Suppose φ
and ψ are automorphisms of G such that for some integers m and n we
have gφ ∈ gmZ, zφ = zm, gψ ∈ gnZ and zψ = zn for some g ∈ G and
all z ∈ Z. Then gφψ = gψφ.

Proof. Now gφ = gma and gψ = gnb for some a and b in Z. Then
gφψ = (gma)ψ = (gψ)m(aψ) = gmnbman = gψφ. ♦

Proof of Theorem 1. a) Clearly the inner automorphism group InnG
of G lies in ∆, so if ∆ is nilpotent its class must be at least c − 1. If
d = 1, since power automorphisms commute, so ∆ is abelian. If d = 2,
then ∆ is abelian by Lemma 1. From now on assume that d ≥ 3.
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We induct on d. Set Σ = C∆(Zd−1) ∩ C∆(G/Z1). By induction
∆/Σ is nilpotent of class at most d−2. Let φ ∈ ∆o with m an associated
integer and consider σ ∈ Σ. If g ∈ G, then gφ = gma for some a ∈ Zd−1

and gσ = gb for some b ∈ Z1. Also bφ = bm, aσ = a and b is central
in G. Consequently

gφσ = (gma)σ = (gb)ma = gmabm = gφbφ = (gb)φ = gσφ.

Thus Σ lies in the centre of ∆ and so ∆ is nilpotent of class at most d−1.
b) Suppose G has finite exponent r and let s be the order of the

automorphism group of the cyclic group of order r. Then any power
automorphism of any Zi/Zi−1 has order dividing s. Also S has finite
exponent dividing rd−1 (e.g. [6] 1.21). Thus any φ ∈ Γo has finite order
dividing t = rd−1s. Consequently φ−1 = φt−1 ∈ Γo and so Γ = Γo.
Similarly ∆ = ∆o. If we choose the series {Zi} to be the lower central
series of G, then Po(G) ≤ Γo and hence Po(G) = P (G) in the same way.

c) If G has finite exponent the claim follows from Part b). If not
there exists i with Zi/Zi−1 not of finite exponent. Let φ ∈ S ∩ Po(G),
say gφ =

∏

j (u−1
j ge(j)uj) for all g in G, where the uj and the e(j) are

as in our introduction. Set m = Σje(j). Then modulo Zi−1 we have
g ≡ gφ ≡ gm for all g ∈ Zi. Since Zi/Zi−1 does not have finite exponent,
this yields that m = 1. By [1], Th. 1 we have φ−1 ∈ Po(G) and Part c)
follows.

For the remainder of the proof of Th. 1 assume {Zi} is the lower
central series {γc+1−i} of G.

d) Then InnG ≤ P (G) ≤ ∆, c = d, InnG has class c − 1 and ∆
has class at most max{1, d− 1} = c− 1. That P (G) is nilpotent of class
c− 1 follows.

e) Let φ ∈ ∆o with m an associated integer relative to the series
{γc+1−i}. If x, y ∈ G, then

[x, y]m ∈ [x, y]φγ3G ≤ [xmγ2G, ymγ2G]γ3G = [x, y]mmγ3G.

Thus ([x, y]φ)m−1 ∈ [x, y]m(m−1)γ3G = γ3G. Now there is an inverse
automorphism of φ, so [x, y]m−1 ∈ γ3G for all x and y in G and hence
(γ2G)m−1 ≤ γ3G. Hence it follows that (γiG)m−1 ≤ γi+1G for all i ≥ 2,
for the exponent of the (j + 1)th lower central factor of a group divides
that of its jth lower central factor, e.g. see [6] (b) on p. 10. Thus
(γiG)e ≤ γi+1G for all i ≥ 2 and therefore G′ has exponent dividing ec−1.

f) Suppose i ≥ 2 and g ∈ γiG. Then with φ ∈ ∆o and associated
integer m we have gφ ∈ ggm−1γi+1G = gγi+1G. Thus [γiG, φ] ≤ γi+1G
and it follows that [γiG,∆] ≤ γi+1G.
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g) This follows from Parts e) and f) and stability theory (e.g. [6],
1.19 and 1.21). (Alternatively the first part of g) also follows from Part
a) applied to G′.)

h) Let φ ∈ ∆o with m as an associated integer. Now γcG is non-
trivial but of infinite exponent and c ≥ 2. Thus (γcG)m−1 = 〈1〉 by
Part e) and m = 1. That is, φ ∈ S, so ∆o = S = ∆. Finally, in view
of the choice of the series {Zi} we have S = ∆o ⊇ Po(G). Therefore
Po(G) = P (G) by Part c).

i) This is immediate from Parts b) and h). The proof of Th. 1 is
complete. ♦

To illustrate what is happening in Parts e) and f) of Th. 1 and
to see that there are no obvious improvements possible to these parts,
consider the following example. Let P = Pc+1 be a Sylow p-subgroup
of the symmetric group Sym(pc+1) for some prime p and c ≥ 1. Then
P is nilpotent of class pc and exponent pc+1 (e.g. [5], III.15.3). Also
P = 〈x〉D, where x has order p and D is a direct product of p copies
of Pc permuted cyclicly by x. Thus P ′ is contained in D, has a section
isomorphic to Pc, has class pc−1 and has exponent pc.

Set m = p + 1 and let Q be a multiplicative copy of the additive
group of Z[m−1] with y ∈ Q corresponding to 1 ∈ Z. Then Q maps
onto 〈x〉 via y 7→ x. In this way Q acts on P ; let G = QP , the split
extension of P by Q. Then G′ = P ′ and Q centralizes the lower central
factors of P , so G is nilpotent of class pc and γiG = γiP for all i ≥ 2. In
particular γiG/γi+1G has exponent exactly p = m− 1 for 2 ≤ i ≤ c.

If a ∈ Q and u ∈ P , define φ : G 7→ G by (au)φ = amux. If also
b ∈ Q and v ∈ P , then

(aubv)φ = (abubv)φ = ambmubxvx =

= ambpbuxbvx = amuxb1+pvx = (au)φ(bv)φ,

where we have used that the actions of Q and 〈x〉 on P commute and
that bp is central in G. Also φ is bijective on P and Q and normalizes
both and P ∩ Q = 〈1〉, so φ ∈ AutG. Further gφ ∈ gmγi+1G for all
g ∈ γiG and all i since m = p + 1 and each γiP/γi+1P has exponent p
and is centralized by x. Therefore φ ∈ ∆, where ∆ is computed relative
to the lower central series of G. Also [γiG, φ] ≤ γi+1G for all i ≥ 2, but
not for i = 1, since φ acts as x on γiG = γiP if i ≥ 2. This is exactly
the situation in Parts e) and f) of Th. 1.

Although the map φ above lies in ∆ it might not lie in P (G). If we
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now set n = pc+1 + 1 and define ψ : G → G by (au)ψ = anux, then we
can repeat the above analysis with n and ψ in place of m and φ. Define
σ : P → P by

uσ =
∏

p−1≥i≥0
x−iuxi = (x1−puxp−1) . . . (x−1ux)u.

Then uσ ∈ D and if q = pc+1, then uσq/p = 1. Hence (au)q = aquσq/p =
= aq, (au)x = aux and (au)ψ = (au)q(au)x. Consequently here we have
ψ ∈ Po(G).

In Part g) of Th. 1 it is not possible to bound the class of ∆/C∆(G′)
just in terms of the class of G′, even if we are working with the lower
central series of G. For consider P a finite p-group of nilpotency class 2;
for example let P be the lower unitriangular group Tr1(3, p), e.g. see [6],
p. 41. Denote by G the wreath product of P by the cyclic group 〈g〉 of
order p. Then G′ is nilpotent of class 2, CG(G′) is the centre of the base
group of the wreath product and G/CG(G′) is nilpotent of class at least
p (e.g. by [5], III.15.3e again). Now G/CG(G′) embeds into ∆/C∆(G′),
where ∆ is computed relative to the lower central series of G. Thus here
the class of G′ is 2, but by choosing p arbitrarily large we see that the
class of ∆/C∆(G′) is unboundable.

2. Nilpotent-by-abelian groups

Here we consider a slightly different generalization of the notion of
polynomial map. Let

〈1〉 = N0 ≤ N1 ≤ · · · ≤ Nd = N ≤ Nd+1 = G

be a normal series of finite length of the group G with G′ ≤ N and
[Ni, N ] ≤ Ni−1 for all i ≥ 1, so in particular G is nilpotent-by-abelian.
Let R denote the group ring of G/N over the integers Z; note that R
is a commutative ring. Also each Ni/Ni−1 is an R-module; specifically
if a ∈ Ni and u = Σje(j)ujN ∈ R, where the e(j) are integers and the
uj ∈ G, then

(aNi−1)
u =

∏

j
u−1

j ae(j)ujNi−1.

Notice that if i = d+ 1, then (aN)u = amN for m = Σje(j) ∈ Z.
Let Γo denote the set of all automorphisms φ of G such that for

each i ≥ 1 there exists u(i) ∈ R with Niφ = Ni and gφ ∈ (gNi−1)
u(i) for

all g ∈ Ni. Then set Γ = 〈Γo〉 ≤ AutG. (Notice that if our series {Ni}
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is a central series of G and not just of N , then Γo and Γ here are equal
to the Γo and Γ of Sec. 1.)

Theorem 2. Assume the notation above.
a) Γ is nilpotent-by-abelian and Γ′ is nilpotent of class at most d.
b) P (G) is nilpotent-by-abelian with P (G)′ nilpotent of class at most

the class of G′. In particular (Endimioni [2], Th. 1.2) if G is metabelian,
then P (G) is metabelian.

c) If N1 is cyclic as R-module, then CAut G(G/N1) ≤ Γo.
d) (C. K. Gupta [4]) If G is a 2-generator metabelian group, then

IA(G) = CAut G(G/G′) is metabelian.

Proof. a) If φ, ψ ∈ Γo, then φ and ψ act on Ni/Ni−1 as elements of the
commutative ring R, and this is for all i. Thus [φ, ψ] centralizes each
Ni/Ni−1, so [Ni,Γ

′] ≤ Ni−1 for each i and stability theory (specifically
[6] 1.19 again) yields that Γ′ is nilpotent of class at most d. This proves
Part a).

b) Suppose G′ is nilpotent of class c. Choose

〈1〉 = γc+1G′ ≤ γcG′ ≤ · · · ≤ γ2G′ ≤ G′ ≤ G

as our series {Ni}. Note that this is a characteristic series of G with
d = c. Then P (G) ≤ Γ and b) follows from Part a).

c) Suppose N1 =
〈

aR
〉

and consider φ ∈ CAut G(G/N1). Now aφ =
= au for some u ∈ R. Also if b ∈ N1, then b = aw for some w ∈ R. Then
for g ∈ G we have bgφ = (bφ)gφ = (bφ)g, since g−1(gφ) ∈ N1 ≤ CG(N1).
Thus

bφ = awφ = (aφ)w = auw = (aw)u = bu.

Thus φ ∈ Γo.
d) We use the characteristic series 〈1〉 ≤ G′ ≤ G of G, so d = 1.

Now G′ is cyclic as G-module; specifically if G = 〈x, y〉, then G′ is G-
generated by [x, y]. Thus IA(G) ≤ Γ by Part c) and hence IA(G) is
metabelian by Part a). ♦

Endimioni [3], Th. 1.2 follows at once from Th. 2b), namely that
if G′ is nilpotent of class c ≥ 1, then P (G)′′ is nilpotent of class at most
c − 1. Continuing with the notation above, suppose N is nilpotent of
class c ≥ 1 and set Ni = γc+1−iN for each i ≤ d, so here d = c. Let
Φo denote the set of all automorphisms φ of G such that Nφ = N (and
hence Niφ = Ni for all i) and for each i = c, c + 1 there exists u(i) ∈ R
with gφ ∈ (gNi−1)

u(i) for all g ∈ Ni and set Φ = 〈Φo〉 ≤ AutG. Clearly
Γo ≤ Φo and Γ ≤ Φ and by Th. 2a) the subgroup Γ′ is nilpotent of class
at most c.
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Proposition. Assume the notation above.
a) The subgroup Φ is (nilpotent of class at most c)-by-abelian.
b) If G/G′′ is 2-generator, then IA(G) is (nilpotent of class at most

c)-by-abelian.

This is an improvement on [3], Prop. 2.4, which states that IA(G) is
(nilpotent of class at most c−1)-by-metabelian whenever G is 2-generator
and (nilpotent of class c ≥ 1)-by-abelian.

Proof. a) Φ acts as an abelian group on G/N and N/N ′. Thus Φ′

centralizes G/N , γ1N/γ2N and hence γiN/γi+1N for each i ≥ 1, e.g.
by [6] (b) on p. 10 again. Thus Φ′ stabilizes the series {Ni} of length
c+ 1 and therefore is nilpotent of class at most c (e.g. [6], 1.19). Part a)
follows.

b) Choose N = G′. Suppose for the moment that G′′ = 〈1〉. Then
clearly Φ = Γ. If G = 〈x, y〉, then G′ =

〈

[x, y]G
〉

and Th. 2c) yields that
CAut G(G/G′) ≤ Γ. In the general case, note that by definition Φ is the
inverse image in AutG of the Γ subgroup of Aut(G/G′′) computed from
the series 〈1〉 ≤ G′/G′′ ≤ G/G′′. Thus the special case above applied to
the group G/G′′ yields that CAut G(G/G′) ≤ Φ. The claim now follows
from Part a) and the definition of IA(G). ♦

We now present some examples that limit any possible generaliza-
tions of Th. 2.

Example 1. Even if the series {Ni} is central in G, we cannot conclude
in general that Γ is nilpotent; that is, it is critical in Sec. 1 that the u(i)
for φ are all equal (to m there).

For consider the lower unitriangular group G = Tr1(c+1, F ), where
F is a field and c ≥ 2. Then G is nilpotent of class c. Set

t = diag(mc, mc−1, . . . , m, 1) ∈ GL(c + 1, F ),

where m is an integer with m 6= 0, 1 if charF = 0 and 1 < m < charF
otherwise. Then t acts on G via conjugation and for each i ≥ 1 it raises
each element of γiG/γi+1G to its mi-th power. Set Ni = γc+1−iG for
0 ≤ i ≤ c, with N = Nc+1 = G and d = c. Then with T = 〈t〉G, the
factor T/γcG embeds into Γ. Now T/G′ is easily seen not to be nilpotent,
indeed t acts fixed-point freely on G/G′, and c ≥ 2. Therefore Γ is not
nilpotent and in particular, in the notation of Sec. 1, ∆ < Γ. Clearly
with suitable choices of F we can arrange for G to be finite or torsion-free
and c is arbitrary subject only to c ≥ 2.



Weak polynomial automorphisms 81

Example 2. In Part a) of Th. 2 we cannot deduce that Γ′ has class less
than d (compare Th. 1, where ∆ is always nilpotent of class less than d).

Continue with the notation of Example 1, but now consider the
series

〈1〉 = γc+1G ≤ γcG ≤ · · · ≤ γ2G ≤ G ≤ T

for T , so again d = c ≥ 2. It is easily seen that T ′ = G, so T ′ is nilpotent
of class d. Also T has trivial centre, so T ∼= InnT ≤ Γ and T ′ embeds
into Γ′. The latter therefore has class exactly d (using Part a) of Th. 2.

Example 3. Part d) of Th. 2 does not extend to 3-generator metabelian
groups. Specifically there exists a 3-generator metabelian group G such
that IA(G) is not soluble and hence does not embed into Γ for any
allowable choice of the series {Ni} of G.

For let A be an infinite cyclic group, J an image ring of Z, M a
free JA-module of rank 2 and G the split extension of M by A. Thus G
is metabelian and 3-generator. AutAM embeds into IA(G) ≤ AutG by
mapping φ ∈ AutAM to the map ax 7→ a(xφ) for all a ∈ A and x ∈ M .
(It is easy to check that this map is an automorphism of G.) Thus the
insoluble group GL(2, JA) embeds into IA(G).

3. Soluble groups

Consider the normal series
〈1〉 = N0 ≤ N1 ≤ · · · ≤ Ne = G

of finite length of the group G with all its factors abelian. Let Γo denote
the set of all automorphisms φ of G such that for each i ≥ 1 we have
Niφ = Ni and for some w(i) in the group ring over Z of G/Ni we have
gφ ∈ gw(i)Ni−1 for all g ∈ Ni. Set Γ = 〈Γo〉 ≤ AutG. (Note that if the
series {Ni} is as in Sec. 2, that is, if also d = e − 1 and [Ni, Nd] ≤ Ni−1

for i ≥ 1, then the Γo and Γ above are exactly the Γo and Γ of Sec. 2.)

Theorem 3. Assume the notation above.
a) If e = 1 then Γ is abelian; if e ≥ 2 then Γ is soluble of derived

length at most 2(e− 1) and at least that of InnG.
b) (Endimioni [3], Th. 1.3) If G is soluble of derived length d ≥ 2,

then P (G) is soluble of derived length at most 2(d−1) and at least d−1.

Proof. a) If e = 1 clearly Γ is abelian. Let e ≥ 2. Since InnG is
a subgroup of Γ, the lower bound is immediate. For the remainder we
induct on e. If e = 2 then G and Γ are metabelian by Th. 2a). Suppose
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e ≥ 3. By induction we may assume that Γ/CΓ(G/N1) is soluble of
derived length at most 2(e − 2). Set Σ = CΓ(G/N1) ∩ CΓ(N1). Then
Σ stabilizes the series 〈1〉 ≤ N1 ≤ G and therefore is abelian. Provided
CΓ(G/N1)/Σ is abelian, we have that Γ is soluble of derived length at
most 2(e− 2) + 2 = 2(e− 1), and the proof of a) will be complete.

Let φ ∈ Γo, so xφ = xw for all x in N1 for some fixed w =
= Σjn(j)g(j) in ZG, where the n(j) are integers and the g(j) lie in G.
If ψ ∈ CΓ(G/N1), then

xφψ =
∏

j

(

xn(j)g(j)ψ
)

=
∏

j
(xψ)n(j)g(j) = xψφ,

where we have used that g(j)ψ ∈ g(j)N1, that x ∈ N1 and that N1 is
abelian. Thus

[

CΓ(G/N1),Γ
]

≤ CΓ(N1), so CΓ(G/N1)/Σ is abelian (it is
even a central section of Γ), as required.

b) Choose {Ni} to be the derived series of G, so {Ni} is charac-
teristic in G. Then e = d and InnG ≤ P (G) ≤ Γ. Clearly InnG has
derived length at least d − 1 and Γ has derived length at most 2(d − 1)
by Part a). Thus b) follows. ♦

Remarks. As recorded in Endimioni [3], Th. 1.4, it follows from Th. 3b)
that if G is polycyclic, then so is P (G) since any soluble group of auto-
morphisms of a polycyclic group is polycyclic (e.g. [6], 5.2). A similar
remark applies to (torsion-free by finite) soluble minimax groups, for ex-
ample, since a soluble group of automorphisms of a (torsion-free by finite)
soluble minimax group is again a (torsion-free by finite) soluble minimax
group.

The proof above of Th. 3a) actually shows for e > 2 that Γ has a
normal series

Γ ≥ Γ1 ≥ Γ2 ≥ · · · ≥ Γ2(e−1) = 〈1〉

with abelian factors such that [Γ2i,Γ] ≤ Γ2i+1 for each i = 1, 2, . . . , e− 2.
In Th. 3 if G has trivial centre then clearly Γ and P (G) have derived

lengths at least d. This can also happen in the nilpotent case. If d ≥ 2
and F is any field, then G = Tr1(2

d, F ) and H = Tr1(2
d − 1, F ) both

have derived length d (e.g. [6], p. 42) and H is an image of the centre
factor group of G. Thus G is nilpotent and is of derived length d, and Γ
and P (G) have derived lengths at least d.
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