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Abstract: In this paper, a mathematical model will be developed that de-
scribes the spread of information in a human population. This model, consist-
ing of a two dimensional system of differential equations, has been motivated
by attempts to explain the behaviour of individuals (students) who may choose
between two alternatives with little, respectively more risk.

We shall show that by an additional assumption, namely, the growth
rate of the population in the option with more risk does not depend only on
the present density of the other population in the option with little risk but
also on past densities, how the increase of this delay influences the behaviour
of the system: as the delay is increased the originally asymptotic stable interior
equilibrium loses its stability and at a certain critical value a Hopf bifurcation
takes place: small amplitude periodic solutions arise. The stability condition
for bifurcating periodic solutions is derived by using the method of Poore. A
numerical simulation for supporting the theoretical analysis is also given.
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1. Introduction

In [9] the first author of this paper has considered the following
system (proposed by Scheurle and Seydel (cf. [13])) that describes the
spread of information among individuals

(1)

{

Ṡ1 = λ − aS1S2 + βS2 − δ1S1,

Ṡ2 = aS1S2 − βS2 − δ2S2

where the dot means differentiation with respect to time t; S1 (t) ≥
≥ 0 and S2 (t) ≥ 0 are the numbers or densities of individuals. By
these individuals students at universities were meant, who, during their
studies, face the necessity to choose between a popular option with little
risk (a subject having reputation of comparably easy examinations with
favourable grades) on the one side, and a demanding and more risky
option on the other (a subject having reputation of being more difficult).
λ > 0, a > 0, β > 0 and δi > 0 (i ∈ {1, 2}) are the input of new
participants, the contact rate (the measure of the effectiveness of the
communication between the two groups), the backflow rate of individuals
who are disappointed in the second option and the rates of successful
final examinations (which correspond to mortalities in biological models),
respectively. It was also shown that the following condition is of more
interest

(2) aλ > δ1 (β + δ2) .

(2) is needed to have a boundary and an interior equilibrium point in the
plane [S1, S2]: E1 := (λ/δ1, 0) which is unstable and one with positive co-
ordinates: E2 := (1/a) · (β + δ2, (aλ − δ1 (β + δ2)) /δ2) which is globally
asymptotically stable. Starting from the point of view that in the course
of interaction among individuals immediate change does not always oc-
cur, it was reasonable to assume that the migration of the individuals
from the option with little risk into the one with more risk is subject to
delay because of the scaring effect of the second one. This delay was a
constant and it was assumed that the delaying effect for each individual
is the same, i.e. (1) was replaced by

(3)

{

Ṡ1(t) = λ − aS1(t − τ)S2(t) + βS2(t) − δ1S1(t)

Ṡ2(t) = aS1(t − τ)S2(t) − βS2(t) − δ2S2(t)
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equipped by the initial conditions S1(θ)=ϕ(θ) (θ∈ [−τ, 0]), S2(0) = S0
2 >

> 0, where ϕ : [−τ, 0] → R is a non-negative continuous function with
ϕ(0) > 0. It was shown that the originally asymptotically stable interior
equilibrium loses its stability and at a certain critical value of delay τ a
Hopf bifurcation takes place: a small amplitude periodic solution arises
(cf. Fig. 1). Surprisingly enough it explains the unusual phenomenon,
that repetitively one of the options prevails over the other one and vice
versa.

Figure 1: Limit cycle of system (3) with x = S1 and y = S2 (DifEqur)

Now, we can have a more realistic model assuming that the re-
sponse lag for the given individual is always different. In treating this
problem the method applied in [7], [8] (c.f. [5], [6]) and in [10] is followed.
Therefore a continuous density function ρ will be introduced whose role
is to weight moments of the past and an infinitely distributed delay into
the second equation of the system (1) for the S1 density, i.e. we replace
S1 in the second equation by

(4) R(t) :=

∫ t

−∞

S1(τ)ρ(t − τ)dτ (t ∈ [0, +∞))

where the density function satisfies the requirements

(5) ρ ∈ C1[0, +∞), ρ ≥ 0,

∫ +∞

0

ρ(s)ds = 1.
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Thus, system (1) will be replaced by the integro-differential equation

(6)

{

Ṡ1 = λ − aS1S2 + βS2 − δ1S1

Ṡ2 = aRS2 − βS2 − δ2S2

where R is given by (4).
Similarly to [2], [11], [17], [5], [6] and [1] we assume ρ(t) ≡

≡ α · exp(−αt) (α ∈ (0, +∞)) and

α

∫ t

−∞

exp(−α(t − τ)) dτ = α

∫ +∞

0

exp(−αs)ds = 1

holds. The smaller the α the longer is the time interval in the past in
which the values of S1 are taken into account, i.e. 1/α is the “measure
of the influence of the past”.

Now we have
Ṙ(t) = α(S1(t) − R(t)) (t ∈ [0, +∞)),

therefore (6) is equivalent in its qualitative dynamical behaviour to the
three-dimensional system of ordinary differential equations

(7)

Ṡ1 = F1(S1, S2, R; α) := λ − aS1S2 + βS2 − δ1S1

Ṡ2 = F2(S1, S2, R; α) := aRS2 − βS2 − δ2S2

Ṙ = F3(S1, S2, R; α) := α(S1 − R)

on [0,∞) in the following sense (cf. [4]). If (S1, S2) : [0, +∞) → R2

is the solution of (6) corresponding to the continuous and bounded ini-
tial function S̃1 : (−∞, 0] → R and the initial value S0

2 := S2(0) (i.e.
S1(t) := S̃1(t) (t < 0)), then (S1, S2, R) : [0, +∞) → R3 is the solution
of (7) satisfying the initial values S1(0) = S̃1(0), S2(0) = S0

2 and R(0) =

= R0 := α
∫ 0

−∞
S̃1(τ) exp(ατ)dτ and vice versa. (Clearly, if the initial

values S1(0), S0
2 and R0 related to system (7) are prescribed then the

function S̃1 is not uniquely determined.)

2. Local stability analysis and Hopf bifurcation

If (2) holds then the system (7) has the following equilibria: the
boundary equilibrium Ed

1 := (λ/δ1, 0, λ/δ1) and the interior equilibrium

Ed
2 :=

(

β + δ2

a
,
aλ − δ1(β + δ2)

aδ2
,
β + δ2

a

)

.
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In order to check the stability of the last two equilibria we linearize
the system (7) at these points. The coefficient matrix is

J(S1, S2, R) :=





−aS2 − δ1 −aS1 + β 0
0 aR − β − δ2 aS2

α 0 −α



 ,

specially

J
(

Ed
1

)

=











−δ1 β −
aλ

δ1
0

0
aλ − δ1(β + δ2)

δ1
0

α 0 −α











and

J
(

Ed
2

)

=











δ1β − aλ

δ2
−δ2 0

0 0
aλ − δ1(β + δ2)

δ2

α 0 −α











.

The characteristic polynomials of these matrices assume the form

(8) p1(x) :≡ (δ1 + x) ·

(

aλ − δ1(β + δ2)

δ1
− x

)

· (α + x)

and
(9)

p2(x) :≡ x3+
αδ2+aλ−δ1β

δ2
·x2+

α

δ2
(aλ−δ1β)·x+α (aλ−δ1 (β+δ2)) .

Clearly, p1 is an unstable polynomial because of (2), and when introduc-
ing a delay the instability of the boundary equilibrium does not change.
Condition (2) implies that all coefficients of p2 are positive for α > 0.
Thus, applying the Routh–Hurwitz criterion p2 is a stable polynomial if
and only if the following inequality holds:
(10)

P (α) :≡ α

(

(aλ − δ1β) (αδ2 + aλ − δ1β)

δ2
2

− [aλ − δ1 (β + δ2)]

)

> 0

i.e.

(11) P ∗(α) :≡ δ2(aλ − δ1β)α + (aλ − δ1β)2 − δ2
2 [aλ − δ1(β + δ2)] > 0
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If

(12) (aλ − δ1β)2 − δ2
2 [aλ − δ1(β + δ2)] ≥ 0

holds then (11) follows from (2) for all α > 0 and Ed
2 remains asymptot-

ically stable.
In order to have Hopf bifurcation, one has to show that there is a

smooth family of eigenvalues x±(α) = ρ(α)± ω(α) · ı of J(Ed
2) such that

the following conditions are fulfilled:

• ρ(αH) = 0, i.e. for the critical parameter value αH there is a pair
±ω(αH)ı of purely imaginary eigenvalues of the matrix J

(

Ed
2

)

;

• there are no other eigenvalues of J
(

Ed
2

)

on the imaginary axis for
α = αH ;

• the transversality condition ρ′(αH) 6= 0 holds.

The left-hand side of the inequality (12) can be written as a polynomial
of β:

(aλ−δ1β)2−δ2
2 [aλ − δ1(β + δ2)]=δ2

1β
2−δ1(2aλ−δ2

2)β+a2λ2+δ2
2(δ1δ2−aλ)

whose discriminant is
δ2
1

(

2aλ − δ2
2

)2
− 4δ2

1δ
2
2 (δ1δ2 − aλ)2 − 4δ2

1a
2λ2 =

= δ2
1

[

4a2λ2 − 4aλδ2
2 + δ4

2 − 4δ3
2δ1 + 4δ2

2aλ − 4a2λ2
]

=

= δ2
1δ

3
2(δ2 − 4δ1).

The leading coefficient of this quadratic polynomial is positive, therefore
if

(13) δ2 ≤ 4δ1

then (12) holds for all β and Ed
2 is asymptotically stable. Thus, instability

can occur only if (13) does not hold i.e.

(14) δ2 > 4δ1 .

If (12) does not hold then, since the linear term in (11) is positive, P (α)
has a unique positive root:

(15) αH :=
δ2
2 [aλ − δ1(β + δ2)] − (aλ − δ1β)2

δ2(aλ − δ1β)
.

In this case the equilibrium Ed
2 is asymptotically stable for large values

of α, i.e. for small delays.
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Using α as a bifurcation parameter, we show that this equilibrium
is losing its stability by a Hopf bifurcation when α is decreased below αH

(the delay is increased), i.e. we prove the following

Theorem 2.1. Suppose that (2) and (14) holds then as the bifurcation
parameter α is decreased at αH the equilibrium Ed

2 undergoes a Poincaré–
Andronov–Hopf bifurcation, i.e. system (7) has a branch of periodic so-
lutions bifurcating from Ed

2 near α = αH .

Proof. Introducing the notation K := aλ − δ1β > 0 the value (15) is
expressed by

αH =
δ2
2(K − δ1δ2) − K2

Kδ2
.

At αH the characteristic polynomial p2 has the form

p2(x) ≡ x3 +
1

δ2

(

δ2
2(K−δ1δ2)−K2

K
+ K

)

·x2+
δ2
2(K−δ1δ2)−K2

δ2
2

·x+

+
δ2
2(K − δ1δ2) − K2

Kδ2
(K − δ1δ2) ≡

≡

[

x2 +
δ2
2(K − δ1δ2) − K2

δ2
2

]

×

[

x +
δ2(K − δ1δ2)

K

]

,

whose roots are

xH(αH) =
δ2(δ1δ2 − K)

K
=

δ2(δ1δ2 − aλ + δ1β)

K
=

δ2 [δ1 (δ2 + β) − aλ]

K
which is negative and x±(αH) = ±ıω, where

(16) ω :=

√

δ2
2(K − δ1δ2) − K2

δ2

> 0 .

Thus, we have to determine the derivative with respect to “α” of
the real part of the smooth extension of the root x+(αH). Let us denote
by x+(α) the root of p2 that assumes the value ıω at αH and by

F(x, α) :≡ x3 +
αδ2 + K

δ2
· x2 +

αK

δ2
· x + α (K − δ1δ2)

the characteristic polynomial in (9) as a function of the parameter “α”.
Since

F (x+(αH), αH) = F (ıω, αH) = 0

and ıω is a simple root of the polynomial F (x, αH), the smooth function
x+ is uniquely determined by F (x+(α), α) ≡ 0, x+(αH) = ıω. We are
going to determine the derivative of the implicit function x+ at αH :
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x′

+(αH) = −
∂αF (ıω, αH)

∂xF (ıω, αH)
= −

δ2x
2 + Kx + δ2(K − δ1δ2)

3δ2x2 + 2(αδ2 + K)x + αK

∣

∣

∣

∣ x=ıω
α=αH

=

=
δ2ω

2 − δ2(K − δ1δ2) − Kıω

αHK − 3δ2ω2 + 2(αHδ2 + K)ıω
.

Hence, we have

ρ′(αH) =
dℜ(x+(α))

dα

∣

∣

∣

∣

α=αH

= ℜ

(

dx+(α)

dα

∣

∣

∣

∣

α=αH

)

=

=
{

αHδ2 [δ1(δ2 + β) − aλ] − 3δ2
2ω

4 −

−
[

3δ1δ
3
2 + K ((αH − 3δ2) δ2 + 2K)

]

ω2
}

×

×
{

9ω4δ2
2+2ω2δ2αHK+α2

HK2+4ω2α2
Hδ2

2+4K2ω2
}−1

<0

and this completes the proof of the theorem. ♦

3. Stability of the bifurcating periodic solution

In this section, we shall deduce the condition for the supercriticality
resp. subcriticality of the bifurcation. Under supercritical bifurcation
we mean the case when the equilibrium Ed

2 has lost its stability with
occurrence of periodic solutions which are orbitally asymptotically stable
(i.e. for values of the bifurcation parameter α less than αH), while in the
subcritical case the periodic solutions are unstable and exist for such αs
when the equilibrium Ed

2 is still asymptotically stable (i.e. for values of
the α greater than αH).

To examine the supercriticality resp. subcriticality of the bifurcat-
ing solution, we have to compute the sign of the first Lyapunov coefficient
l1 which can be calculated by

l1 =
1

2ω
· ℜ
[

〈p,C(q,q,q)〉 − 2
〈

p,B
(

q, A−1B(q,q)
)〉

+(17)

+
〈

p,B
(

q, (2ıωI3 − A)−1
B(q,q)

)〉

]

where I3 denotes the 3×3 identity matrix, the bilinear function B : R3×
× R3 → R3 is given by

Bi(x,y) :=
3
∑

j,k=1

∂2Fi(ξ, αH)

∂ξj∂ξk

∣

∣

∣

∣

∣

ξ=Ed

2

xjyk (i ∈ {1, 2, 3})

while the function C : R3 × R3 × R3 → R3 is defined by
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Ci(x,y, z) :=
3
∑

j,k,l=1

∂3Fi(ξ, αH)

∂ξj∂ξk∂ξl

∣

∣

∣

∣

∣

ξ=Ed

2

xjykzl (i ∈ {1, 2, 3}),

furthermore p,q ∈ C3 are left and right eigenvectors of

A := ∂(S1,S2,R)F(Ed
2 ; αH)

corresponding to the eigenvalues ıω and −ıω, respectively, i.e. satisfying

(18)

{

Aq = ıωq

A
T p=−ıωp

and are normalized by setting

(19) 〈p,q〉 = 1

where 〈·, ·〉 is the standard scalar product in C
3, antilinear in the first

argument (c.f. [12], resp. [10]). In case of l1 < 0 (resp. l1 > 0) we have
supercritical (resp. subcritical) bifurcation.

Introducing ζ := K/δ2 it is easy to calculate that

A =





−ζ −K/ζ 0
0 0 ζ − δ1

ω2/ζ 0 −ω2/ζ





and the vectors

q ∼





1 + ıζ/ω
ı(δ1 − ζ)/ω

1



 , p ∼





ıω2δ2

ωδ2
2

K (ω + ıζ)





are eigenvectors of A, resp. AT corresponding to the eigenvalues ıω, resp.
−ıω and in order to achieve the normalization (19), we should scale these
vectors:

q =





1 + ıζ/ω
ı(δ1 − ζ)/ω

1



 , p =
1

2 {ω + ıK(δ1/ζ − 1)/ζ}





ıω2/ζ
ωK/ζ2

ω + ıζ



 .

The linear part of the analysis is now complete.
There are only two nonlinear terms in (7). Therefore, the bilinear

function B can be expressed as

B(x,y) = a





−x1y2 − x2y1

x2y3 + x3y2

0





(

(x,y) ∈ R
3 × R

3
)

while C(x,y, z) ≡ 0. Thus, we have
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B(q,q) = 2aq2





−q1

q3

0



 =
2aı(δ1 − ζ)

ω





−1 − ıζ/ω
1
0





and

B(q,q) = a





−q1q2 − q2q1

q2q3 + q3q2

0



 = a





2ζ(ζ − δ1)/ω
2

0
0



 ,

B(q, r) = a





−q1r2 − q2r1

q2r3 + q3r2

0



 .

Inverting the matrix A yields

s := A−1B(q,q) =















0
1

ζ − δ1

ζ

ω2

−ζ

K

−ζ

δ2(ζ − δ1)

−ζ3

ω2K

0
1

ζ − δ1
0















·B(q,q)=







0
2aζ2(δ1 − ζ)

ω2K
0







resp.

B
(

q, A−1B(q,q)
)

=
2a2ζ2(δ1 − ζ)

ω2K







−1 −
ıζ

ω
1
0






.

Hence the second term in l1 has the form

〈p,B (q, A−1B(q,q))〉=
2a2ζ2(δ1 − ζ)

ω2K
·

1

2 {ω − K(δ1/ζ − 1)ı/ζ}
·

·

[

−
ıω2

ζ
·

(

−1 −
ıζ

ω

)

+
ωK

ζ2

]

=

=
a2(δ1 − ζ)ζ2

Kω
·
−ωζ + ı(K − ζ2)

K(δ1 − ζ) + ıωζ2

with real part

ℜ (〈p,B (q, A−1B(q,q))〉) =
a2(δ1−ζ)ζ2

K
·
−ζK(δ1−ζ) + (K−ζ2)ζ2

K2(δ1 − ζ)2 + ω2ζ4
=

=−
a2ζ3(δ1 − ζ) [K(δ1 − 2ζ) + ζ3]

K3(δ1 − ζ)2 + Kω2ζ4
.

Denoting

r := (2ıωI3 − A)−1
B(q,q)
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and bringing the matrix 2ıωI3 − A into upper Hessenberg form by in-
terchanging the first and second rows and columns, we get the following
system for the coordinates of r:

(20)





2ıω 0 δ1 − ζ
K/ζ 2ıω + ζ 0

0 −ω2/ζ 2ıω + ω2/ζ



 ·





r2

r1

r3



 = 2aq2





1
−q1

0



 .

Thus, one can compute them recursively:

r3 =

aq2

(

ı

ω
− 2

ζq1

K

)

ζ

K
(2ıω + ζ)

(

1 +
2ζı

ω

)

+
q2

2

,

r2 =−
q2a

ω
ı +

q2r3

2
=

q2

2ω
(ωr3 − 2aı) ,

r1 =

−Kr2

ζ
− 2aq1q2

2ıω + ζ
,

resp. explicitly:

r1 =
2aq2 (ω + 2ζı) (K + 2ωq1ζı)

ω [d1K + ζ (4(ω2 + ζ2) − K + 6ıωζ)]
,

r2 =
2aq2ζ [ω (ζ(3 + q1) − δ1q1) − 2(ω2 + ζ2)ı]

ω [d1K + ζ (4(ω2 + ζ2) − K + 6ıωζ)]
,

r3 =
2aq2 (K + 2ıωq1ζ)

d1K + ζ (4(ω2 + ζ2) − K + 6ıωζ)
.

The first row of the system (20) can be rearranged to discover the
second component of B(q, r) as follows

2ıωr2 − (ζ − δ1)r3 = 2aq2, i.e. 2ıωr2 − ıωq2r3 = 2aq2.

After dividing by ıω we have
2aq2

ıω
= 2r2 − q2r3 = r2 + q3r2 + q2r3 = r2 +

B(q, r)2

a
from which the second component is expressible as

B(q, r)2 =
2a2q2

ıω
− ar2 = a

[

−r2 −
2aq2ı

ω

]

.

For the whole vector B(q, r) we have the form
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B(q, r) =
2a2(δ1 − ζ)

ω3 {K(δ1 − ζ) + 4ζ(ω2 + ζ2) + 6ıωζ2}





A + Bı
C + Dı

0





where
A := −ω

[

ζ
(

11ζ2 − K + 2ω2
)

+ δ1(K − 6ζ2)
]

and
B := −ζ

[

3ζ3 − 2Kζ + δ1

(

2K + ω2 − 5ζ2
)]

resp.

C := ω
[

ζ
(

3ζ2 − K + 2ω2
)

+ δ1(K − ζ2)
]

and D := ω2ζ(δ1 + 2ζ).

A tedious calculation shows that the third term in l1 assumes the form
〈

p,B
(

q, (2ıωI3 − A)−1
B(q,q)

)〉

=

=a2(δ1−ζ)
{

δ1K
2+ζ [2ω(ω+δ1ı)−K]+

[

−δ1(3K+ω2)+ıω(K+2ω2)
]

ζ2+

+(5K − 6ıωδ1)ζ
3 + (5δ1 + 11ıω)ζ4 − 3ζ5

}

/

/
{

ω
[

ωζ2 + K(ζ − δ1)ı
] [

δ1K + ζ
(

4(ω2 + ζ2) − K + 6ıωζ
)]}

with real part (resubstituting the values of ω and ζ)

ℜ
(〈

p,B
(

q, (2ıωI3 − A)−1
B(q,q)

)〉)

=

= −a2δ2K(δ1δ2 − K)
{

δ2
1(5δ1 − 2δ2)δ

7
2 + 4δ1δ

6
2 · K(δ2 − 4δ1)+

+ δ4
2K

2(−18δ2
1 + 23δ1δ2 − 2δ2

2) + 3δ3
2K

3(13δ1 − 4δ2)−

− 3δ2K
4(4δ1 + 5δ2) + 18K5

}

/3
{

δ2
1δ

6
2 − 2δ1δ

3
2K(δ2

2 + 2K)+

+ K2
(

δ4
2 + 4δ2

2K − 4K2
)}{

δ2
1δ

6
2 − δ1δ

3
2K ·

(

2δ2
2 + K

)

+

+ K2
(

δ2
2(δ

2
2 + K) − K2

)}

.

Finally, formula (17) gives the first Lyapunov coefficient

l1 =
a2Kδ2 (δ1δ2 − K)

6
√

δ2
2(K − δ1δ2) − K2

·

·
{

δ2
1δ

9
2(δ1+2δ2)−4δ1δ

8
2K(2δ1+δ2)+δ7

2K
2(7δ1+2δ2)+21δ1δ

5
2K

3−

− 9δ3
2(4δ1+3δ2)K

4+54δ2
2K

5−24K6
}

/
{

δ2
1δ

6
2−2δ1δ

3
2K
(

δ2
2+2K

)

+

+ K2
(

δ4
2 + 4δ2

2K − 4K2
)}{

δ2
1δ

6
2 − δ1δ

3
2K
(

2δ2
2 + K

)

+

+ K2
(

δ4
2 + δ2

2K − K2
)}

.

Thus, we have proved the following

Theorem 3.1. If (2) and (14) hold then the bifurcation is supercritical
resp. subcritical according as the number

ρ :=
{

δ2
1δ

9
2(δ1 + 2δ2) − 4δ1δ

8
2K(2δ1 + δ2) + δ7

2K
2(7δ1 + 2δ2) + 21δ1δ

5
2K

3−

− 9δ3
2(4δ1 + 3δ2)K

4 + 54δ2
2K

5 − 24K6
}

/
{

δ2
1δ

6
2 − 2δ1δ

3
2K
(

δ2
2 + 2K

)

+

+ K2
(

δ4
2+4δ2

2K−4K2
)}{

δ2
1δ

6
2−δ1δ

3
2K
(

2δ2
2+K

)

+K2
(

δ4
2+δ2

2K−K2
)}

is positive, resp. negative.
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Figure 2: The limit cycle of system (7) (MATHEMATICAr)
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Figure 3: Time evolution of system (7) (MATHEMATICAr)

Example 3.1. Set a = 0.0020, λ = 100.0000, δ1 = 0.0100, δ2 = 5.0000,
β = 0.0100. These values satisfy the conditions of Th. 3.1. We have
Ed

2 = col (2505, 14.99, 2505), αH = 3.7039, ω = 0.3839 and ρ = 85.1701.
This means that a 0 < ε < αH exists such that for (αH − ε, αH) system
(7) has small amplitude orbitally asymptotically stable periodic solutions
with approximate period 2π/ω = 16.3167 (cf. Figs. 2–3).
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namiques, C. R. Acad. Sci. Paris Sér. B 277 (1973), 471–473.

[5] FARKAS, M.: Stable oscillations in a predator-prey model with time lag, J.

Math. Anal. Appl. 102 (1984), 175–188.
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