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Abstract: The notion of nearly quasi-Einstein manifold have been introduced
by U. C. De and A. K. Gazi [7]. In the present paper we study some properties
of a nearly quasi-Einstein manifold.

1. Introduction

In 2000 M. C. Chaki and R. K. Maity introduced the notion of
quasi-Einstein manifold. A non-flat Riemannian manifold (Mn, g) (n>2)
is said to be quasi-Einstein manifold ([2, 5, 6, 9, 11]) if its Ricci tensor S

of type (0, 2) is not identically zero and satisfies the following:

(1) S(X, Y ) = ag(X, Y ) + bA(X)A(Y )
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where a and b are scalars such that b 6= 0 and A is a non-zero 1-form
defined by g(X, U) = A(X) for all vector fields X; U being a unit vector
field, called the generator of the manifold. An n-dimensional manifold
of this kind is denoted by (QE)n. If b = 0, the manifold reduces to an
Einstein manifold.

Einstein manifolds play an important role in the Riemannian ge-
ometry, as well as in general theory of relativity. Also, Einstein mani-
folds form a natural subclass of various classes of Riemannian or semi-
Riemannian manifolds due to a curvature condition imposed on their
Ricci tensor ([1], pp. 432–433). For instance, every Einstein manifold be-
longs to the class of Riemannian manifolds (Mn, g) realizing relation (1).

Quasi-Einstein manifolds arose during the study of exact solutions
of the Einstein field equations as well as during considerations of quasi-
umbilical hypersurfaces of semi-Euclidean spaces. For instance, the Ro-
bertson–Walker spacetime are quasi-Einstein manifolds [10]. Considering
this aspect we are motivated to study such a manifold.

In the present paper we consider the nearly quasi-Einstein manifold,
which is a weaker class of a quasi-Einstein manifold. A non-flat Rieman-
nian manifold (Mn, g) (n > 2) whose Ricci tensor S of type (0, 2) is not
identically zero and satisfies the condition

(2) S(X, Y ) = ag(X, Y ) + bE(X, Y )

where a and b are non-zero scalars and E is a non-zero (0, 2) tensor.
Such a manifold shall be called as nearly quasi-Einstein manifold. This
notion has been introduced by U. C. De and A. K. Gazi [7].

It is noted ([8], p. 39) that the outer product of 2 covariant vec-
tors is a covariant tensor of type (0, 2) but the converse is not true, in
general. Hence the manifolds which are quasi-Einstein are also nearly
quasi-Einstein, but the converse is not true, in general.

An n-dimensional nearly quasi-Einstein manifold will be denoted by
N(QE)n. We shall call E the associated tensor and a and b as associated
scalars.

A concrete example of a nearly quasi-Einstein manifold was also
given in [7] by the following example:

Example 1.1. Let (R4, g) be a Riemannian manifold endowed with the
metric given by

ds2 = gijdxidxj = (x4)
4

3

[
(dx1)2 + (dx2)2 + (dx3)2

]
+ (dx4)2,
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(i, j = 1, 2, 3, 4). Then (R4, g) is a N(QE)4 with non-zero and non-
constant scalar curvature which is not a quasi-Einstein manifold.

The paper is organized as follows: In Sect. 2, we give preliminaries
and known results for a nearly quasi-Einstein manifold. Sect. 3 is devoted
to the study of conformally flat N(QE)n and introduced the notion of
nearly quasi-constant curvature. In Sect. 4 we study N(QE)n with cyclic
associated tensor. The last section gives the example of a manifold of
nearly quasi-constant curvature.

2. Preliminaries and known results

Let Q and L be two symmetric endomorphisms of the tangent space
at each point of the manifold corresponding to the Ricci tensor S and to
the associated tensor E, respectively. Then

(3) g(QX, Y ) = S(X, Y ), g(LX, Y ) = E(X, Y ).

Also, let ẽ be the scalar corresponding to E, that is, ẽ =
∑n

i=1 E(ei, ei),
where {ei}, i = 1, 2, . . . , n is an orthonormal basis of the tangent space
at each point of the manifold.

Now, putting X = Y = ei in (2) we get

(4) r = na + bẽ

where r is the scalar curvature.
Further, let s2 and e2 denote the squares of the length of the

Ricci tensor S and the associated tensor E respectively. Then s2 =
=

∑n

i=1 S(Qei, ei) and e2 =
∑n

i=1 E(Lei, ei). Now from (2) we get

(5)

n∑

i=1

S(Qei, ei) = na2 + nbẽ + b

n∑

i=1

S(Lei, ei).

Also from (2) we obtain

(6)
n∑

i=1

S(Lei, ei) = aẽ + be2.

Hence from (5) and (6) it follows that

(7) s2 = na2 + (n + a)ẽb + b2e2.
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From (7) it follows that b >
s

e
(respectively, <, =) according as

(na2 + (n + a)ẽb) < 0 (resp., >, =). Hence, we can state the following:

Theorem 2.1. In an N(QE)n (n > 2) the associated scalar b is

less than or equal to or greater than the ratio which the length of the

Ricci tensor S bears to the length of the associated tensor E according as

(na2 + (n + a)ẽb) < 0 or, = 0, < 0 respectively.

3. Conformally flat N(QE)n (n > 3)

The Weyl conformal curvature tensor C of type (1,3) of an n-
dimensional Riemannian manifold (Mn, g) (n > 3) is defined by [3]

C(X, Y )Z = R(X, Y )Z −
1

n − 2

[
g(Y, Z)X − g(X, Z)Y

]
+(8)

+ g(X, W )Y − g(Y, W )X]+

+
r

(n − 1)(n − 2)

[
g(Y, Z)X − g(X, Z)Y

]
,

where r is the scalar curvature of the manifold.
Let R be the curvature tensor of type (0, 4) of a conformally flat

N(QE)n. From (8) we have

R(X, Y, Z, W ) =
1

n−2

[
g(Y, Z)S(X, W ) − g(X, Z)S(Y, W )+(9)

+ g(X, W )S(Y, Z)−g(Y, W )S(X, Z)
]
−

−
r

(n−1)(n−2)

[
g(Y, Z)g(X, W )−g(X, Z)g(Y, W )

]
.

Using (4) and (3) in (9), we obtain

R(X, Y, Z, W ) =(10)

=

[
−a − bẽ

(n − 1)(n − 2)

] [
g(Y, Z)g(X, W )− g(X, Z)g(Y, W )

]
+

+
b

n − 2

[
E(X, W )g(Y, Z) − E(X, Z)g(Y, W )+

+ E(Y, Z)g(X, W ) − E(Y, W )g(X, Z)
]
.

According to Chen and Yano [3], a Riemannian manifold (Mn, g) (n > 3)
is said to be of quasi-constant curvature if it is conformally flat and its
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curvature tensor R of type (0, 4) has the form

R(X, Y, Z, W ) = a1

[
g(Y, Z)g(X, W )−g(X, Z)g(Y, W )

]
+(11)

+ a2

[
g(Y, Z)A(X)A(W ) − g(X, Z)A(Y )A(W )+

+ g(X, W )A(Y )A(Z) − g(Y, W )A(X)A(Z)
]
,

where A is a 1-form and a1, a2 are scalars of which a2 6= 0. Generalizing
this notion we introduce the following definition.

A Riemannian manifold (Mn, g) (n > 3) is said to be of nearly
quasi-constant curvature if it is conformally flat and its curvature tensor
R of type (0, 4) satisfies the condition

R(X, Y, Z, W ) = α1

[
g(Y, Z)g(X, W )− g(X, Z)g(Y, W )

]
+(12)

+ α2

[
g(Y, Z)E(X, W ) − g(X, Z)E(Y, W )+

+ g(X, W )E(Y, Z) − g(Y, W )E(X, Z)
]

where α1 and α2 are non-zero scalars and E is a symmetric tensor of type
(0, 2). Now the relation (10) can be written as

R(X, Y, Z, W ) = β1

[
g(Y, Z)g(X, W )− g(X, Z)g(Y, W )

]
+(13)

+ β2

[
g(Y, Z)E(X, W )− g(X, Z)E(Y, W )+

+ g(X, W )E(Y, Z)− g(Y, W )E(X, Z)
]
,

where β1 = −a−bẽ
(n−1)(n−2)

and β2 = b
n−2

are non-zero scalars. Comparing

(12) and (13), it follows that the manifold is of nearly quasi-constant
curvature. This leads to the following:

Theorem 3.1. A conformally flat N(QE)n (n > 3) is a manifold of

nearly quasi-constant curvature.

Let us consider a manifold of nearly quasi-constant curvature. Then
from (12) it follows that

(14) S(Y, Z) = α̃g(Y, Z) + β̃E(Y, Z),

where α̃ = (n− 1)α1 +α2ẽ and β̃ = (n− 2)α2 are non-zero scalars. Thus
we have the following:

Theorem 3.2. A manifold (Mn, g) (n > 2) of nearly quasi-constant

curvature is N(QE)n.
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Now N(QE)n is not a manifold of nearly quasi-constant curvature
in general. However, since a 3-dimensional Riemannian manifold is con-
formally flat, it follows by virtue of Th. 3.1 that N(QE)3 is a manifold
of nearly quasi-constant curvature. This leads to the following:

Corollary 3.3. A N(QE)3 is a manifold of nearly quasi-constant cur-

vature.

4. N(QE)n with cyclic associated tensor

In this section we assume that the associated scalars of an N(QE)n

are constants, that is, a and b are constants. Now, if an N(QE)n satisfies
cyclic Ricci tensor, then we have

(15) (∇XS)(Y, Z) + (∇Y S)(Z, X) + (∇ZS)(X, Y ) = 0.

Taking covariant differentiation to both sides of (2), we get

(16) (∇XS)(Y, Z) = b(∇XE)(Y, Z).

Since b 6= 0, equations (15) and (16) together imply that the associated
tensor E is of cyclic associated type. That is,

(17) (∇XE)(Y, Z) + (∇Y E)(Z, X) + (∇ZE)(X, Y ) = 0.

This leads to the following:

Theorem 4.1. An N(QE)n with associated scalars as constants satisfies

the cyclic Ricci tensor if and only if its associated tensor is of cyclic type.

Now we consider a N(QE)n with an cyclic associated tensor. Putting
Y = Z = ei in (17) and taking summation over i, 1 ≤ i ≤ n we have

(18) (∇XE)(ei, ei) + 2(∇ei
E)(ei, X) = 0.

Now

(19) (∇XE)(ei, ei) = ∇XE(ei, ei) − 2E(∇Xei, ei).

In local coordinates ∇Xei = XjΓh
jieh, where Γh

ji are the Christoffel sym-
bols. Since {ei} is an orthonormal basis, the metric tensor gij = δij ,
where δij is the Kronecker delta and hence the Christoffel symbols are
zero. Therefore, ∇Xei = 0. Hence from (19) it follows that

(20) (∇XE)(ei, ei) = ∇XE(ei, ei) = dẽ(X).
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We know that the associated operator L defined by g(LX, Y ) = E(X, Y )
is the (1, 1) associated tensor. Then

(21) (∇ZE)(X, Y ) = g
(
(∇ZL)(X), Y

)
.

Taking Y = Z = {ei} in (21)and taking summation over i, 1≤ i≤ n, we
have (∇ei

E)(X, ei)=g
(
(∇ei

L)(X), ei

)
. But it is known that (divL)(X)=

= tr
(
Z → (∇ZL)(X)

)
=

∑
i g

(
(∇ei

L)(X), ei

)
, g

(
(∇ei

Q)(X), ei

)
=

= bg
(
(∇ei

L)(X), ei

)
([12]), and (divQ)(X) = 1

2
dr(X). This implies

(22) (∇ei
E)(X, ei) =

1

2
dẽ(X).

Now using (20) and (22) in (18) we obtain

(23) dẽ(X) = 0 for all X,

which implies that ẽ is constant.
Thus we state the following:

Theorem 4.2. If a N(QE)n with associated constant scalars satisfies

the cyclic associated tensor condition (17), then the scalar curvature ẽ

corresponding to E is zero.

From Th. 4.1 and Th. 4.2 we conclude that

Corollary 4.3. If a N(QE)n with associated constant scalars satisfies

the cyclic Ricci tensor condition (15), then the scalar curvature r corre-

sponding to S is zero.

5. Example of a N(QE)n

Let (Mn−1, g̃) be a hypersurface of the Euclidean space (Mn, g). If
A is the (1, 1) tensor corresponding to the normal valued second funda-
mental tensor H , then we have [4]

(24) g̃
(
Aξ(X), Y

)
= g

(
H(X, Y ), ξ

)

where ξ is the unit normal vector field and X, Y are tangent vector fields.
Let Hξ be the symmetric (0, 2) tensor associated with Aξ defined

by

(25) g̃
(
Aξ(X), Y

)
= Hξ(X, Y ).
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A hypersurface of a Riemannian manifold (Mn, g) is called quasi-umbilical
[6] if its second fundamental tensor has the form

(26) Hξ(X, Y ) = αg(X, Y ) + βω(X)ω(Y )

where ω is a 1-form. The vector field corresponding to the 1-form ω is a
unit vector field, and α, β are scalars. If α = 0 (resp.β = 0 or α = β = 0)
holds, then Mn is called cylindrical (resp. umbilical or geodesic).

In this section, we define nearly quasi-umbilical hypersurface of a
Riemannian manifold.

Definition 5.1. A hypersurface of a Riemannian manifold (Mn, g) is
called nearly quasi-umbilical if its second fundamental tensor has the
form

(27) Hξ(X, Y ) = αg(X, Y ) + D(X, Y )

where D is a symmetric (0, 2) tensor and α is a scalar. If α = 0 (resp.
D = 0 or α = D = 0) holds, then Mn is called nearly cylindrical (resp.
umbilical or geodesic).

Now from (24), (25) and (27) we obtain

(28) g
(
H(X, Y ), ξ

)
= αg(X, Y )g(ξ, ξ) + D(X, Y )g(ξ, ξ)

which implies that

(29) H(X, Y ) = αg(X, Y )ξ + D(X, Y )ξ,

since ξ is the only unit normal vector field.
The Gauss equation on Mn in En+1 can be written as

(30) g̃
(
R̃(X, Y )Z, W

)
= g̃

(
H(X, W ), H(Y, Z)

)
− g̃

(
H(Y, W ), H(X, Z)

)

where R̃ is the curvature tensor of Mn.
Let us assume that the hypersurface is nearly quasi-umbilical, then

from (29) and (30) it follows that

g̃(R̃(X, Y, Z, W )) = α2
[
g(Y, Z)g(X, W )− g(Y, W )g(X, Z)

]
+

+ α
[
D(Y, Z)g(X, W )− D(X, Z)g(Y, W )+

+ D(X, W )g(Y, Z)− D(Y, W )g(X, Z)
]
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where g̃
(
R̃(X, Y )Z, W

)
= R̃(X, Y, Z, W ). Contracting the above equa-

tion with X = W = ei and taking summation over i, 1 ≤ i ≤ n, we
obtain

S̃ = ag(Y, Z) + bD(Y, Z)

where d̃ =
∑n

i=1 D(ei, ei), a =
[
(n − 1)α2 + αd̃

]
, b = (n − 2)α.

Hence (Mn, g̃) is a nearly quasi-Einstein manifold.
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