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Abstract: The notion of nearly quasi-Einstein manifold have been introduced
by U. C. De and A. K. Gazi [7]. In the present paper we study some properties
of a nearly quasi-Einstein manifold.

1. Introduction

In 2000 M. C. Chaki and R. K. Maity introduced the notion of
quasi-Einstein manifold. A non-flat Riemannian manifold (M™, g) (n>2)
is said to be quasi-Einstein manifold ([2, 5, 6, 9, 11]) if its Ricci tensor S
of type (0, 2) is not identically zero and satisfies the following:

(1) S(X,)Y)=ag(X,Y)+ bA(X)A(Y)
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where a and b are scalars such that b # 0 and A is a non-zero 1-form
defined by ¢(X,U) = A(X) for all vector fields X; U being a unit vector
field, called the generator of the manifold. An n-dimensional manifold
of this kind is denoted by (QF),. If b = 0, the manifold reduces to an
Einstein manifold.

Einstein manifolds play an important role in the Riemannian ge-
ometry, as well as in general theory of relativity. Also, Einstein mani-
folds form a natural subclass of various classes of Riemannian or semi-
Riemannian manifolds due to a curvature condition imposed on their
Ricci tensor ([1], pp. 432-433). For instance, every Einstein manifold be-
longs to the class of Riemannian manifolds (M™, g) realizing relation (1).

Quasi-FEinstein manifolds arose during the study of exact solutions
of the Einstein field equations as well as during considerations of quasi-
umbilical hypersurfaces of semi-Euclidean spaces. For instance, the Ro-
bertson—Walker spacetime are quasi-Einstein manifolds [10]. Considering
this aspect we are motivated to study such a manifold.

In the present paper we consider the nearly quasi-Einstein manifold,
which is a weaker class of a quasi-Einstein manifold. A non-flat Rieman-
nian manifold (M™, g) (n > 2) whose Ricci tensor S of type (0, 2) is not
identically zero and satisfies the condition

2) S(X,Y) = ag(X,Y) + bE(X,Y)

where a and b are non-zero scalars and F is a non-zero (0, 2) tensor.
Such a manifold shall be called as nearly quasi-Einstein manifold. This
notion has been introduced by U. C. De and A. K. Gazi [7].

It is noted ([8], p. 39) that the outer product of 2 covariant vec-
tors is a covariant tensor of type (0, 2) but the converse is not true, in
general. Hence the manifolds which are quasi-Einstein are also nearly
quasi-Einstein, but the converse is not true, in general.

An n-dimensional nearly quasi-Einstein manifold will be denoted by
N(QE),. We shall call E the associated tensor and a and b as associated
scalars.

A concrete example of a nearly quasi-Einstein manifold was also
given in [7] by the following example:

Example 1.1. Let (R*, g) be a Riemannian manifold endowed with the
metric given by

d82 _ gijdl’idl’j — ($4) [(dm1)2 + (dx2>2 4 (dx?’)ﬂ + (dl’4)2,

SV
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(i,j = 1,2,3,4). Then (R%, g) is a N(QFE),; with non-zero and non-
constant scalar curvature which is not a quasi-Einstein manifold.

The paper is organized as follows: In Sect. 2, we give preliminaries
and known results for a nearly quasi-Einstein manifold. Sect. 3 is devoted
to the study of conformally flat N(QFE), and introduced the notion of
nearly quasi-constant curvature. In Sect. 4 we study N(QF), with cyclic
associated tensor. The last section gives the example of a manifold of
nearly quasi-constant curvature.

2. Preliminaries and known results

Let @ and L be two symmetric endomorphisms of the tangent space
at each point of the manifold corresponding to the Ricci tensor S and to
the associated tensor F/, respectively. Then

(3) g(QX,Y)=S5(X,Y), g(LX,Y)=E(X,Y).

Also, let € be the scalar corresponding to E, that is, € = > " | E(e;, e;),
where {e;}, i = 1,2,...,n is an orthonormal basis of the tangent space
at each point of the manifold.

Now, putting X =Y = ¢; in (2) we get

(4) r =na + be

where r is the scalar curvature.

Further, let s? and e? denote the squares of the length of the
Ricci tensor S and the associated tensor E respectively. Then s? =
=37, 5(Qee;) and e* =31 | E(Le;, e;). Now from (2) we get

(5) ZS(QG@,Q) = na2 +nb€+ bZS(LeZ,eZ)
i=1 i=1
Also from (2) we obtain
(6) Z S(Lei, ei) = a€+ b€2.
i=1

Hence from (5) and (6) it follows that

(7) s> = na® + (n+ a)eb + b*e’.
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From (7) it follows that b > ° (respectively, <, =) according as
e

(na® + (n + a)eb) < 0 (resp., >, =). Hence, we can state the following:

Theorem 2.1. In an N(QE), (n > 2) the associated scalar b is
less than or equal to or greater than the ratio which the length of the
Ricci tensor S bears to the length of the associated tensor E according as
(na®+ (n+a)eb) < 0 or, =0, < 0 respectively.

3. Conformally flat N(QFE), (n > 3)

The Weyl conformal curvature tensor C' of type (1,3) of an n-
dimensional Riemannian manifold (M", g) (n > 3) is defined by [3]

(8) CX,Y)Z=R(X,Y)Z - ﬁ [9(Y,2)X — g(X,2)Y]+

+g(X, W)Y — g(Y, W)X+

T
Y. )X —g(X,2)Y
g 02X o, 2)Y ),
where r is the scalar curvature of the manifold.

Let R be the curvature tensor of type (0, 4) of a conformally flat
N(QE),,. From (8) we have

(9) RX,Y,ZW)=—=[g(Y.2)S(X, W) — g(X, Z)S(Y, W)+
+g(X, W)S(Y, Z)—g(Y,W)S(X, Z)]-

Yv Z)Q(Xv W>_9(X7 Z)g(Y7 W)}

n—2

LA
Using (4) and (3) in (9), we obtain

(10)  R(X,Y,Z,W) =
—a — be

B [m ~1)(n—2)
+ =2 [BOX, W)g(Y, 2) ~ B(X, Z)g(Y, W)+

+E(Y, 2)g(X,W) = E(Y,W)g(X, Z)].

] [9(Y, 2)g(X. W) - g(X, Z)g(Y, W)]+

According to Chen and Yano [3], a Riemannian manifold (M", g) (n > 3)
is said to be of quasi-constant curvature if it is conformally flat and its
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curvature tensor R of type (0, 4) has the form

(11) R(X,Y,Z,W) =ai[g(Y, Z)g(X,W)—g(X, Z)g(Y, W)+
+az[g(Y, Z)A(X)AW) — g(X, Z)A(Y)A(W)+
+ g(X,W)A(Y)A(Z) — g(Y,W)A(X)A(Z)],

where A is a 1-form and a;, as are scalars of which as # 0. Generalizing
this notion we introduce the following definition.

A Riemannian manifold (M",g) (n > 3) is said to be of nearly
quasi-constant curvature if it is conformally flat and its curvature tensor
R of type (0, 4) satisfies the condition

(12)  R(X,Y,Z,W)=a1[g(Y,Z)g(X, W) = g(X, Z)g(Y,W)]+
+ax[g(Y,2)E(X, W) — g(X, Z)E(Y,W)+
+g(X7 W>E(Y7 Z) - g(Y, W)E(X7 Z)}

where a and ay are non-zero scalars and E' is a symmetric tensor of type
(0, 2). Now the relation (10) can be written as

(13) R(X> Y> Z, W) = ﬁl [g(Y, Z)g(X> W) - g(X> Z)g(}/, W)]_l_
+ﬁ2 [g(Y, Z)E(X> W) - g(X> Z)E(Y> W)_l_
+9(X7 W)E(Y> Z) - g(Y, W)E(X> Z)}a

_ —a—be o b _ .
where (3, = (o)) and [y = —5 are non-zero scalars. Comparing

(12) and (13), it follows that the manifold is of nearly quasi-constant
curvature. This leads to the following:
Theorem 3.1. A conformally flat N(QF), (n > 3) is a manifold of
nearly quasi-constant curvature.

Let us consider a manifold of nearly quasi-constant curvature. Then
from (12) it follows that

(14) S(Y,Z) = ag(Y, Z) + BE(Y, Z),

where & = (n— 1)a; + asé and 3 = (n — 2)as are non-zero scalars. Thus
we have the following:
Theorem 3.2. A manifold (M™,g) (n > 2) of nearly quasi-constant
curvature is N(QFE),.
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Now N(QE), is not a manifold of nearly quasi-constant curvature
in general. However, since a 3-dimensional Riemannian manifold is con-
formally flat, it follows by virtue of Th. 3.1 that N(QFE)3 is a manifold
of nearly quasi-constant curvature. This leads to the following:

Corollary 3.3. A N(QFE)s is a manifold of nearly quasi-constant cur-
vature.

4. N(QE), with cyclic associated tensor

In this section we assume that the associated scalars of an N(QFE),
are constants, that is, a and b are constants. Now, if an N(QFE),, satisfies
cyclic Ricci tensor, then we have

(15) (VxS)(Y, Z) + (Vy5)(Z, X) + (Vz5)(X,Y) = 0.
Taking covariant differentiation to both sides of (2), we get
(16) (VxS)(Y. 2) = H(VE)(Y. Z).

Since b # 0, equations (15) and (16) together imply that the associated
tensor F is of cyclic associated type. That is,

(17) (VxE)(Y, Z) + (Vy E)(Z, X) + (VZE)(X,Y) = 0.

This leads to the following:
Theorem 4.1. An N(QFE), with associated scalars as constants satisfies
the cyclic Ricci tensor if and only if its associated tensor is of cyclic type.

Now we consider a N(QF),, with an cyclic associated tensor. Putting
Y =7 =e¢; in (17) and taking summation over i, 1 < i < n we have

(18) (VxE)(es e;) + 2(Vo E)(es, X) = 0.
Now
(19) (VXE)(eZ-, 62‘) = VXE(eZ-, 62‘) — QE(VX(?Z', ei).

In local coordinates Vxe; = XTI ep,, where I'; are the Christoffel sym-
bols. Since {e;} is an orthonormal basis, the metric tensor g;; = J;,
where 0;; is the Kronecker delta and hence the Christoffel symbols are
zero. Therefore, Vxe; = 0. Hence from (19) it follows that

(20) (VxE)(e;,e;) =VxE(e;,e)=de(X).
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We know that the associated operator L defined by g(LX,Y) = E(X,Y)
is the (1, 1) associated tensor. Then

(21) (VZE)(X,Y) =g((VzL)(X),Y).

Taking Y =27 = {e;} in (21)and taking summation over i, 1 <i<n, we
have (V. E)(X,e;)= ( Ve, L)(X),e;). But it is known that (div L)(X)=

(
= tT(Z - VZL ) Z g( velL><X) ) g((vezQ)(X>v 62) =
= bg((VeiL)(X) el) ([12]), and (div@)(X) = 3dr(X). This implies

(22) (Ve )X, e) = Lde(X).

Now using (20) and (22) in (18) we obtain

(23) de(X)=0 foral X

Y

which implies that e is constant.

Thus we state the following:
Theorem 4.2. If a N(QF), with associated constant scalars satisfies
the cyclic associated tensor condition (17), then the scalar curvature €
corresponding to E is zero.

From Th. 4.1 and Th. 4.2 we conclude that
Corollary 4.3. If a N(QFE), with associated constant scalars satisfies
the cyclic Ricci tensor condition (15), then the scalar curvature r corre-
sponding to S is zero.

5. Example of a N(QE),

Let (M™1,§) be a hypersurface of the Euclidean space (M™, g). If
A is the (1, 1) tensor corresponding to the normal valued second funda-
mental tensor H, then we have [4]

(24) 9(Ac(X).Y) = g(H(X,Y),§)

where £ is the unit normal vector field and X, Y are tangent vector fields.
Let H¢ be the symmetric (0, 2) tensor associated with A defined
by

(25) Ei(Ag(X),Y) = He(X,Y).
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A hypersurface of a Riemannian manifold (M", g) is called quasi-umbilical
[6] if its second fundamental tensor has the form

(26) He(X,Y)=0ag(X,Y) + fw(X)w(Y)

where w is a 1-form. The vector field corresponding to the 1-form w is a
unit vector field, and «, § are scalars. If « = 0 (resp. 3 =0 or « = 3 = 0)
holds, then M™ is called cylindrical (resp. umbilical or geodesic).

In this section, we define nearly quasi-umbilical hypersurface of a
Riemannian manifold.
Definition 5.1. A hypersurface of a Riemannian manifold (M", g) is
called nearly quasi-umbilical if its second fundamental tensor has the
form

(27) He(X,Y) = ag(X,Y) + D(X,Y)

where D is a symmetric (0, 2) tensor and « is a scalar. If o = 0 (resp.
D =0 or o =D = 0) holds, then M™ is called nearly cylindrical (resp.
umbilical or geodesic).

Now from (24), (25) and (27) we obtain

(28> Q(H(X,Y),g) :ag(va)g(£7£>+D(X7Y)g(§7£)

which implies that
(29) H(X,Y) = ag(X,Y){+ D(X,Y)E,

since £ is the only unit normal vector field.
The Gauss equation on M™ in E™*! can be written as

(30) G(R(X,Y)Z,W) = G(H(X, W), H(Y, Z)) —g(H(Y,W), H(X, Z))

where R is the curvature tensor of M™.
Let us assume that the hypersurface is nearly quasi-umbilical, then
from (29) and (30) it follows that

JR(X,Y. Z,W)) = a?[g(Y, Z)g(X, W) — g(Y,W)g(X, Z)]+
_'_a[D(K Z)g(X7 W) - D<X7 Z)g(}/, W)_'_
+D(X,W)g(Y, Z) — D(Y,W)g(X, Z)]
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where §(R(X, Y)Z, W) = R(X,Y,Z,W). Contracting the above equa-
tion with X = W = e¢; and taking summation over i, 1 < i < n, we
obtain

S =ag(Y,Z)+bD(Y, Z)

where d = S D(e;, ), a= [(n—1)a?+ acj], b=(n—2)a.

Hence (M™,g) is a nearly quasi-Einstein manifold.
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