Mathematica Pannonica 21/2 (2010), 265–273

ON NEARLY QUASI-EINSTEIN MANIFOLDS

D. G. Prakasha

Department of Mathematics, Karnatak University, Dharwad-580 003, Karnataka, India

C. S. Bagewadi

Department of Mathematics, Kuvempu University, Jnana Sahyadri, Shimoga-577 451, Karnataka, India

Received: February 2010

MSC 2000: 53 B 30, 53 B 50, 53 C 50, 53 C 80, 53 D 05

Keywords: Quasi-Einstein manifold, nearly quasi-Einstein manifold, quasiconstant curvature, nearly quasi-constant curvature tensor, conformally flat, Ricci tensor, Codazzi tensor, quasi-umbilical hypersurface, nearly quasiumbilical hypersurface.

Abstract: The notion of nearly quasi-Einstein manifold have been introduced by U. C. De and A. K. Gazi [7]. In the present paper we study some properties of a nearly quasi-Einstein manifold.

1. Introduction

In 2000 M. C. Chaki and R. K. Maity introduced the notion of quasi-Einstein manifold. A non-flat Riemannian manifold (M^n, g) (n > 2) is said to be quasi-Einstein manifold ([2, 5, 6, 9, 11]) if its Ricci tensor S of type (0, 2) is not identically zero and satisfies the following:

(1) S(X,Y) = ag(X,Y) + bA(X)A(Y)

E-mail addresses: prakashadg@gmail.com, prof_bagewadi@yahoo.co.in

where a and b are scalars such that $b \neq 0$ and A is a non-zero 1-form defined by g(X, U) = A(X) for all vector fields X; U being a unit vector field, called the generator of the manifold. An *n*-dimensional manifold of this kind is denoted by $(QE)_n$. If b = 0, the manifold reduces to an Einstein manifold.

Einstein manifolds play an important role in the Riemannian geometry, as well as in general theory of relativity. Also, Einstein manifolds form a natural subclass of various classes of Riemannian or semi-Riemannian manifolds due to a curvature condition imposed on their Ricci tensor ([1], pp. 432–433). For instance, every Einstein manifold belongs to the class of Riemannian manifolds (M^n, g) realizing relation (1).

Quasi-Einstein manifolds arose during the study of exact solutions of the Einstein field equations as well as during considerations of quasiumbilical hypersurfaces of semi-Euclidean spaces. For instance, the Robertson–Walker spacetime are quasi-Einstein manifolds [10]. Considering this aspect we are motivated to study such a manifold.

In the present paper we consider the nearly quasi-Einstein manifold, which is a weaker class of a quasi-Einstein manifold. A non-flat Riemannian manifold (M^n, g) (n > 2) whose Ricci tensor S of type (0, 2) is not identically zero and satisfies the condition

(2)
$$S(X,Y) = ag(X,Y) + bE(X,Y)$$

where a and b are non-zero scalars and E is a non-zero (0, 2) tensor. Such a manifold shall be called as nearly quasi-Einstein manifold. This notion has been introduced by U. C. De and A. K. Gazi [7].

It is noted ([8], p. 39) that the outer product of 2 covariant vectors is a covariant tensor of type (0, 2) but the converse is not true, in general. Hence the manifolds which are quasi-Einstein are also nearly quasi-Einstein, but the converse is not true, in general.

An *n*-dimensional nearly quasi-Einstein manifold will be denoted by $N(QE)_n$. We shall call E the associated tensor and a and b as associated scalars.

A concrete example of a nearly quasi-Einstein manifold was also given in [7] by the following example:

Example 1.1. Let (\mathbf{R}^4, g) be a Riemannian manifold endowed with the metric given by

 $ds^{2} = g_{ij}dx^{i}dx^{j} = (x^{4})^{\frac{4}{3}} \left[(dx^{1})^{2} + (dx^{2})^{2} + (dx^{3})^{2} \right] + (dx^{4})^{2},$

(i, j = 1, 2, 3, 4). Then (\mathbf{R}^4, g) is a $N(QE)_4$ with non-zero and non-constant scalar curvature which is not a quasi-Einstein manifold.

The paper is organized as follows: In Sect. 2, we give preliminaries and known results for a nearly quasi-Einstein manifold. Sect. 3 is devoted to the study of conformally flat $N(QE)_n$ and introduced the notion of nearly quasi-constant curvature. In Sect. 4 we study $N(QE)_n$ with cyclic associated tensor. The last section gives the example of a manifold of nearly quasi-constant curvature.

2. Preliminaries and known results

Let Q and L be two symmetric endomorphisms of the tangent space at each point of the manifold corresponding to the Ricci tensor S and to the associated tensor E, respectively. Then

(3)
$$g(QX,Y) = S(X,Y), \qquad g(LX,Y) = E(X,Y).$$

Also, let \tilde{e} be the scalar corresponding to E, that is, $\tilde{e} = \sum_{i=1}^{n} E(e_i, e_i)$, where $\{e_i\}, i = 1, 2, \ldots, n$ is an orthonormal basis of the tangent space at each point of the manifold.

Now, putting $X = Y = e_i$ in (2) we get

(4)
$$r = na + b\tilde{e}$$

where r is the scalar curvature.

Further, let s^2 and e^2 denote the squares of the length of the Ricci tensor S and the associated tensor E respectively. Then $s^2 = \sum_{i=1}^{n} S(Qe_i, e_i)$ and $e^2 = \sum_{i=1}^{n} E(Le_i, e_i)$. Now from (2) we get

(5)
$$\sum_{i=1}^{n} S(Qe_i, e_i) = na^2 + nb\widetilde{e} + b\sum_{i=1}^{n} S(Le_i, e_i).$$

Also from (2) we obtain

(6)
$$\sum_{i=1}^{n} S(Le_i, e_i) = a\tilde{e} + be^2.$$

Hence from (5) and (6) it follows that

(7)
$$s^2 = na^2 + (n+a)\tilde{e}b + b^2e^2.$$

D. G. Prakasha and C. S. Bagewadi

From (7) it follows that $b > \frac{s}{e}$ (respectively, <, =) according as $(na^2 + (n+a)\tilde{e}b) < 0$ (resp., >, =). Hence, we can state the following: **Theorem 2.1.** In an $N(QE)_n$ (n > 2) the associated scalar b is less than or equal to or greater than the ratio which the length of the Ricci tensor S bears to the length of the associated tensor E according as $(na^2 + (n+a)\tilde{e}b) < 0$ or, = 0, < 0 respectively.

3. Conformally flat $N(QE)_n$ (n > 3)

The Weyl conformal curvature tensor C of type (1,3) of an ndimensional Riemannian manifold (M^n, g) (n > 3) is defined by [3]

(8)
$$C(X,Y)Z = R(X,Y)Z - \frac{1}{n-2} [g(Y,Z)X - g(X,Z)Y] + g(X,W)Y - g(Y,W)X] + \frac{r}{(n-1)(n-2)} [g(Y,Z)X - g(X,Z)Y],$$

where r is the scalar curvature of the manifold.

Let R be the curvature tensor of type (0, 4) of a conformally flat $N(QE)_n$. From (8) we have

(9)
$$R(X, Y, Z, W) = \frac{1}{n-2} \left[g(Y, Z)S(X, W) - g(X, Z)S(Y, W) + g(X, W)S(Y, Z) - g(Y, W)S(X, Z) \right] - \frac{r}{(n-1)(n-2)} \left[g(Y, Z)g(X, W) - g(X, Z)g(Y, W) \right].$$

Using (4) and (3) in (9), we obtain

(10)
$$R(X, Y, Z, W) = \left[\frac{-a - b\tilde{e}}{(n-1)(n-2)}\right] \left[g(Y, Z)g(X, W) - g(X, Z)g(Y, W)\right] + \frac{b}{n-2} \left[E(X, W)g(Y, Z) - E(X, Z)g(Y, W) + E(Y, Z)g(X, W) - E(Y, W)g(X, Z)\right].$$

According to Chen and Yano [3], a Riemannian manifold (M^n, g) (n > 3) is said to be of quasi-constant curvature if it is conformally flat and its

268

curvature tensor R of type (0, 4) has the form

(11)
$$\begin{aligned} R(X,Y,Z,W) &= a_1 \big[g(Y,Z)g(X,W) - g(X,Z)g(Y,W) \big] + \\ &+ a_2 \big[g(Y,Z)A(X)A(W) - g(X,Z)A(Y)A(W) + \\ &+ g(X,W)A(Y)A(Z) - g(Y,W)A(X)A(Z) \big], \end{aligned}$$

where A is a 1-form and a_1 , a_2 are scalars of which $a_2 \neq 0$. Generalizing this notion we introduce the following definition.

A Riemannian manifold (M^n, g) (n > 3) is said to be of nearly quasi-constant curvature if it is conformally flat and its curvature tensor R of type (0, 4) satisfies the condition

(12)
$$R(X, Y, Z, W) = \alpha_1 [g(Y, Z)g(X, W) - g(X, Z)g(Y, W)] + \alpha_2 [g(Y, Z)E(X, W) - g(X, Z)E(Y, W) + g(X, W)E(Y, Z) - g(Y, W)E(X, Z)]$$

where α_1 and α_2 are non-zero scalars and E is a symmetric tensor of type (0, 2). Now the relation (10) can be written as

(13)
$$R(X, Y, Z, W) = \beta_1 [g(Y, Z)g(X, W) - g(X, Z)g(Y, W)] + \beta_2 [g(Y, Z)E(X, W) - g(X, Z)E(Y, W) + g(X, W)E(Y, Z) - g(Y, W)E(X, Z)],$$

where $\beta_1 = \frac{-a-b\tilde{e}}{(n-1)(n-2)}$ and $\beta_2 = \frac{b}{n-2}$ are non-zero scalars. Comparing (12) and (13), it follows that the manifold is of nearly quasi-constant curvature. This leads to the following:

Theorem 3.1. A conformally flat $N(QE)_n$ (n > 3) is a manifold of nearly quasi-constant curvature.

Let us consider a manifold of nearly quasi-constant curvature. Then from (12) it follows that

(14)
$$S(Y,Z) = \widetilde{\alpha}g(Y,Z) + \beta E(Y,Z),$$

where $\tilde{\alpha} = (n-1)\alpha_1 + \alpha_2 \tilde{e}$ and $\tilde{\beta} = (n-2)\alpha_2$ are non-zero scalars. Thus we have the following:

Theorem 3.2. A manifold (M^n, g) (n > 2) of nearly quasi-constant curvature is $N(QE)_n$.

Now $N(QE)_n$ is not a manifold of nearly quasi-constant curvature in general. However, since a 3-dimensional Riemannian manifold is conformally flat, it follows by virtue of Th. 3.1 that $N(QE)_3$ is a manifold of nearly quasi-constant curvature. This leads to the following:

Corollary 3.3. A $N(QE)_3$ is a manifold of nearly quasi-constant curvature.

4. $N(QE)_n$ with cyclic associated tensor

In this section we assume that the associated scalars of an $N(QE)_n$ are constants, that is, *a* and *b* are constants. Now, if an $N(QE)_n$ satisfies cyclic Ricci tensor, then we have

(15)
$$(\nabla_X S)(Y,Z) + (\nabla_Y S)(Z,X) + (\nabla_Z S)(X,Y) = 0.$$

Taking covariant differentiation to both sides of (2), we get

(16)
$$(\nabla_X S)(Y,Z) = b(\nabla_X E)(Y,Z)$$

Since $b \neq 0$, equations (15) and (16) together imply that the associated tensor E is of cyclic associated type. That is,

(17)
$$(\nabla_X E)(Y,Z) + (\nabla_Y E)(Z,X) + (\nabla_Z E)(X,Y) = 0.$$

This leads to the following:

Theorem 4.1. An $N(QE)_n$ with associated scalars as constants satisfies the cyclic Ricci tensor if and only if its associated tensor is of cyclic type.

Now we consider a $N(QE)_n$ with an cyclic associated tensor. Putting $Y = Z = e_i$ in (17) and taking summation over $i, 1 \le i \le n$ we have

(18)
$$(\nabla_X E)(e_i, e_i) + 2(\nabla_{e_i} E)(e_i, X) = 0.$$

Now

(19)
$$(\nabla_X E)(e_i, e_i) = \nabla_X E(e_i, e_i) - 2E(\nabla_X e_i, e_i).$$

In local coordinates $\nabla_X e_i = X^j \Gamma_{ji}^h e_h$, where Γ_{ji}^h are the Christoffel symbols. Since $\{e_i\}$ is an orthonormal basis, the metric tensor $g_{ij} = \delta_{ij}$, where δ_{ij} is the Kronecker delta and hence the Christoffel symbols are zero. Therefore, $\nabla_X e_i = 0$. Hence from (19) it follows that

(20)
$$(\nabla_X E)(e_i, e_i) = \nabla_X E(e_i, e_i) = d\tilde{e}(X).$$

270

We know that the associated operator L defined by g(LX, Y) = E(X, Y) is the (1, 1) associated tensor. Then

(21)
$$(\nabla_Z E)(X,Y) = g((\nabla_Z L)(X),Y).$$

Taking $Y = Z = \{e_i\}$ in (21) and taking summation over $i, 1 \le i \le n$, we have $(\nabla_{e_i} E)(X, e_i) = g((\nabla_{e_i} L)(X), e_i)$. But it is known that $(\operatorname{div} L)(X) = tr(Z \to (\nabla_Z L)(X)) = \sum_i g((\nabla_{e_i} L)(X), e_i), g((\nabla_{e_i} Q)(X), e_i) = bg((\nabla_{e_i} L)(X), e_i)$ ([12]), and $(\operatorname{div} Q)(X) = \frac{1}{2}dr(X)$. This implies

(22)
$$(\nabla_{e_i} E)(X, e_i) = \frac{1}{2} d\tilde{e}(X).$$

Now using (20) and (22) in (18) we obtain

(23)
$$d\tilde{e}(X) = 0$$
 for all X ,

which implies that \tilde{e} is constant.

Thus we state the following:

Theorem 4.2. If a $N(QE)_n$ with associated constant scalars satisfies the cyclic associated tensor condition (17), then the scalar curvature \tilde{e} corresponding to E is zero.

From Th. 4.1 and Th. 4.2 we conclude that

Corollary 4.3. If a $N(QE)_n$ with associated constant scalars satisfies the cyclic Ricci tensor condition (15), then the scalar curvature r corresponding to S is zero.

5. Example of a $N(QE)_n$

Let (M^{n-1}, \tilde{g}) be a hypersurface of the Euclidean space (M^n, g) . If A is the (1, 1) tensor corresponding to the normal valued second fundamental tensor H, then we have [4]

(24)
$$\widetilde{g}(A_{\xi}(X), Y) = g(H(X, Y), \xi)$$

where ξ is the unit normal vector field and X, Y are tangent vector fields.

Let H_{ξ} be the symmetric (0, 2) tensor associated with A_{ξ} defined by

(25)
$$\widetilde{g}(A_{\xi}(X), Y) = H_{\xi}(X, Y).$$

A hypersurface of a Riemannian manifold (M^n, g) is called quasi-umbilical [6] if its second fundamental tensor has the form

(26)
$$H_{\xi}(X,Y) = \alpha g(X,Y) + \beta \omega(X) \omega(Y)$$

where ω is a 1-form. The vector field corresponding to the 1-form ω is a unit vector field, and α , β are scalars. If $\alpha = 0$ (resp. $\beta = 0$ or $\alpha = \beta = 0$) holds, then M^n is called cylindrical (resp. umbilical or geodesic).

In this section, we define nearly quasi-umbilical hypersurface of a Riemannian manifold.

Definition 5.1. A hypersurface of a Riemannian manifold (M^n, g) is called nearly quasi-umbilical if its second fundamental tensor has the form

(27)
$$H_{\xi}(X,Y) = \alpha g(X,Y) + D(X,Y)$$

where D is a symmetric (0, 2) tensor and α is a scalar. If $\alpha = 0$ (resp. D = 0 or $\alpha = D = 0$) holds, then M^n is called nearly cylindrical (resp. umbilical or geodesic).

Now from (24), (25) and (27) we obtain

(28)
$$g(H(X,Y),\xi) = \alpha g(X,Y)g(\xi,\xi) + D(X,Y)g(\xi,\xi)$$

which implies that

~ .

(29)
$$H(X,Y) = \alpha g(X,Y)\xi + D(X,Y)\xi,$$

since ξ is the only unit normal vector field.

The Gauss equation on M^n in E^{n+1} can be written as

(30)
$$\widetilde{g}(\widetilde{R}(X,Y)Z,W) = \widetilde{g}(H(X,W),H(Y,Z)) - \widetilde{g}(H(Y,W),H(X,Z))$$

where \widetilde{R} is the curvature tensor of M^n .

Let us assume that the hypersurface is nearly quasi-umbilical, then from (29) and (30) it follows that

$$\widetilde{g}(\widetilde{R}(X,Y,Z,W)) = \alpha^2 [g(Y,Z)g(X,W) - g(Y,W)g(X,Z)] + \alpha [D(Y,Z)g(X,W) - D(X,Z)g(Y,W) + D(X,W)g(Y,Z) - D(Y,W)g(X,Z)]$$

where $\tilde{g}(\tilde{R}(X,Y)Z,W) = \tilde{R}(X,Y,Z,W)$. Contracting the above equation with $X = W = e_i$ and taking summation over $i, 1 \leq i \leq n$, we obtain

$$\widetilde{S} = ag(Y, Z) + bD(Y, Z)$$

where $\widetilde{d} = \sum_{i=1}^{n} D(e_i, e_i)$, $a = [(n-1)\alpha^2 + \alpha \widetilde{d}]$, $b = (n-2)\alpha$. Hence (M^n, \widetilde{g}) is a nearly quasi-Einstein manifold.

Acknowledgement. The authors are thankful to the referee for his valuable suggestions in the improvement of the paper.

References

- BESSE, A. L.: *Einstein manifolds*, Ergeb. Math. Grenzgeb., 3. Folge, Bd. 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987.
- [2] CHAKI, M. C. and MAITY, R. K.: On Quasi-Einstein manifolds, Publ. Math. Debreen 57 (2000), 297–306.
- [3] CHEN, B. Y. and YANO, K.: Hypersurfaces of a conformally flat space, *Tensor*, N.S. 26 (1972), 318–322.
- [4] CHEN, B. Y.: Geometry of Submanifolds, Marcel Dekker, Inc., New York, 1973.
- [5] DE, U. C. and GHOSH, G. C.: On Quasi-Einstein manifolds, Period. Math. Hungar. 48 (1-2) (2001), 223–231.
- [6] DE, U. C. and DE, B. K.: On Quasi-Einstein manifolds, *Commun. Korean Math. Soc.* 23 (3) (2008), 413–420.
- [7] DE, U. C. and GAZI, A. K.: On nearly Quasi-Einstein manifolds, Novi Sad J. Math. 38 (2) (2008), 115–121.
- [8] DE, U. C., SHAIKH, A. A. and SENGUPTA, J.: Tensor Calculus, 2nd ed., Narosa Publishing House Pvt. Ltd., New Delhi, 2008.
- [9] DESZCZ, R., DILLEN, F. VERSTRAELEN, L. and VRANCKEN, L.: Quasi-Einstein totally real submanifolds of S⁶(1), Tohoku Math. J. 51 (1999), 461–478.
- [10] DESZCZ, R., HOTLOS, M. and SENTURK, Z.: On curvature properties of quasi-Einstein hypersurfaces in semi-Euclidean spaces, *Soochow J. Math.* 27 (2001), 375–389.
- [11] OZGUR, C.: N(k)-quasi-Einstein manifolds satisfying certain conditions, Chaos, Solitons & Fractals 38 (2008), 1373–1377.
- [12] PETERSEN, P.: Riemannian geometry, Grad. Texts in Math. 171, Springer, New York, 1998.