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Abstract: The concept of the Steiner’s ellipse of the triangle in an isotropic
plane is introduced. The connections of the introduced concept with some
other elements of the triangle in an isotropic plane are also studied.

The isotropic (or Galilean) plane is a projective–metric plane, where
the absolute consists of one line, absolute line ω and one point on that
line, the absolute point Ω. The lines through the point Ω are isotropic
lines, and the points on the line ω are isotropic points (the points at
infinity). Two lines through the same isotropic point are parallel, and
two points on the same isotropic line are parallel points. Therefore, an
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isotropic plane is in fact the affine plane with the pointed direction of
isotropic lines and where the principle of duality is valid.

Conics, which touch the absolute line ω at the absolute point Ω are
circles. However, singular circles (the circles of the second kind) are the
sets of points which are equidistant from the given point and they consist
of pairs of isotropic lines.

The triangle in an isotropic plane is allowable if any two of its
vertices are not parallel.

If G is the centroid of the allowable triangle ABC then the homoth-
ecies (G,−1

2
) and (G,−2) map any point or line to its complementary

or anticomplementary point or line, and the triangle ABC to its comple-
mentary or anticomplementary triangle.

Each allowable triangle in an isotropic plane can be set, by a suit-
able choice of coordinates, in the so called standard position, i.e. that its
circumscribed circle has the equation y = x2, and its vertices are of the
form A = (a, a2), B = (b, b2), C = (c, c2) where a + b + c = 0. With
the labels p = abc, q = bc + ca + ab it can be shown that the equali-
ties q = bc − a2, (c − a)(a − b) = 2q − 3bc, (a − b)(b − c) = 2q − 3ca,
(b − c)(c − a) = 2q − 3ab, (b − c)2 = −(q + 3bc) are valid (see [7]).

Now, we will introduce the concept of Steiner’s ellipse in an isotropic
plane. Firstly, we will prove the following theorem.

Theorem 1. The conic S with the equation

(1) q2x2
− 9pxy − 3qy2

− 6pqx − 4q2y + 9p2 = 0

is an ellipse which passes through the vertices A = (a, a2), B = (b, b2),
C = (c, c2) of the triangle ABC and the center of this ellipse is the
centroid G of the triangle ABC.

Proof. The triangle ABC has the centroid G = (0,−2

3
q) (see [7]).

Symmetry with respect to the point G is the mapping

x → −x, y → −

(

y +
4

3
q

)

.

If we apply this mapping equation (1) transforms to the equation

q2x2
− 9px

(

y +
4

3
q

)

− 3q

(

y +
4

3
q

)2

+ 6pqx + 4q2

(

y +
4

3
q

)

+ 9p2 = 0,

which coincides with (1). Therefore the conic S has the center G. If
we eliminate variable y from (1) and from the equation y = x2 of the
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circumscribed circle of the triangle ABC, after dividing by −3 we get
the following equation in x

qx4 + 3px3 + q2x2 + 2pqx − 3p2 = 0,

which can be also written in the form (qx + 3p)(x3 + qx − p) = 0, i.e.
in the form (qx + 3p)(x − a)(x − b)(x − c) = 0, which has the solutions
x = a, x = b, x = c, x = −

3p

q
for the abscissas of the intersections of

the conic S with the circumscribed circle. It means that conic S passes
through the points A, B, C. The ratio x : y for the points at infinity of
the conic (1) satisfies the equation q2x2 − 9pxy − 3qy2 = 0. As

81p2 + 12q3 = 3(27p2 + 4q3) < 0,

these points at infinity are imaginary, i.e. conic S is ellipse. ♦

By the analogy to the Euclidean case the ellipse S from Th. 1 will be
called circumscribed Steiner’s ellipse of the triangle ABC, and the fourth
intersection (except A, B, C) of that ellipse with the circumscribed circle
of that triangle will be called Steiner’s point of the triangle ABC.

Corollary 1. The triangle ABC from Th. 1 has the Steiner’s point

(2) S =

(

−
3p

q
,
9p2

q2

)

.

Homothecy (G,−1

2
) maps the ellipse S to the ellipse S ′, which

passes through the midpoints of the sides BC, CA, AB, and whose
center is G. Its inverse homothecy is the homothecy

x → −2x, y → −2(y + q),

whose application will transform equation (1) to the equation

4q2x2
− 36px(y + q) − 12q(y + q)2 + 12pqx + 8q2(y + q) + 9p2 = 0,

i.e. the equation

(3) 4q2x2
− 36pxy − 12qy2

− 24pqx − 16q2y + 9p2
− 4q3 = 0

of the ellipse S ′. By the elimination of the variable y from equation (3)
and from the equation y = −ax−bc of the line BC we get for the abscissa
x of their intersection the equation

4q2x2 + 36px(ax + bc) − 12q(ax + bc)2
−

− 24pqx + 16q2(ax + bc) + 9p2
− 4q3 = 0,

which can be written in the form 4ux2 + 4uax + ua2 = 0 where u =
= 4q2

− 3bcq + 9ap. This equation has the the double solution x = −
a

2
.
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It means that the ellipse S
′ touches the side BC at its midpoint, and

analogously it is also valid for the sides CA and AB, i.e. the ellipse S ′

is inscribed in the triangle ABC. This ellipse will be called inscribed
Steiner’s ellipse of the triangle ABC. We have just proved the following
theorem.

Theorem 2. Inscribed Steiner’s ellipse of the triangle ABC from Th. 1
has equation (3).

Corollary 2. The circumscribed Steiner’s ellipse of the triangle ABC

touches the lines parallel respectively to the lines BC, CA, AB at the
vertices A, B, C.

As the centroid is an affine property of a triangle, the affine proper-
ties of the circumscribed Steiner ellipse are the same as in the Euclidean
case. In this sense Cor. 2 is obvious.

The tangents of the circumscribed circle of the allowable triangle
ABC form the so called tangential triangle AtBtCt of the triangle ABC.
The triangles ABC and AtBtCt are homologic. The center of its homol-
ogy is the so called symmedian center K of the triangle ABC, and the
axis of its homology is the Lemoine line L of that triangle. The lines
AK, BK, CK are symmedians of the triangle ABC.

Theorem 3. The symmedian center of the triangle lies on its inscribed
Steiner’s ellipse (Tőlke [10]).

Proof. According to [6] the symmedian center of the triangle ABC is
the point

K =

(

3p

2q
,−

q

3

)

.

For this point the left side of (3) gets the value

9p2 + 18p2
−

4

3
q3

− 36p2 +
16

3
q3 + 9p2

− 4q3 = 0. ♦

If the inscribed circle of the allowable triangle ABC touches its
sides at the points Ai, Bi, Ci, then the triangles ABC and AiBiCi are
homologic, and the center of this homology is the so called Gergonne’s
point of the triangle ABC.

Owing to [3] Gergonne’s point of the triangle is anticomplementary
to its symmedian center, and according to the proof of Th. 2 the circum-
scribed Steiner’s ellipse is anticomplementary to its inscribed ellipse.

Therefore we have the following
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Corollary 3. The Gergonne’s point of the triangle lies on its circum-
scribed Steiner’s ellipse.

Owing to [3] for the triangle ABC in a standard position the Ger-
gonne’s point has the coordinates

(4) Γ =

(

−
3p

q
,−

4

3
q

)

.

Owing to (2) and (4) it follows straightforward.

Corollary 4. Steiner’s point S of the triangle is parallel to its Ger-
gonne’s point.

With y = −
4

3
q we get from (1) the equation q2x2 + 6pqx + 9p2 = 0

with the double solution x = −
3p

q
, i.e. according to [11] the line with

the equation y = −
4

3
q is the Longchamps line of the triangle ABC. It

is tangent to the ellipse (1) at the point Γ . In [1] that line is defined
as the line anticomplementary to the orthic line of the triangle ABC,
where that orthic line is the axis of homology of the triangle ABC and
its orthic triangle AhBhCh, and the points Ah, Bh, Ch are the points on
the lines BC, CA, AB successively parallel to the points A, B, C. Owing
to this it follows

Theorem 4. The Longchamps line of the triangle touches its circum-
scribed Steiner’s ellipse at its Gergonne’s point.

This theorem generalizes the Euclidean result (see Cesaro [5]).
The circumscribed circle of the orthic triangle and the complemen-

tary triangle of the allowable triangle ABC is Euler circle of the triangle
ABC. It touches the inscribed circle of that triangle at its Feuerbach
point, and the tangent of these two circles at that point is the Feuerbach
line of the triangle ABC.

With y = 0 from (1) we get equation q2x2 − 6pqx + 9p2 = 0 with
the double solution x = 3p

q
. Therefore the line with the equation y = 0

touches the ellipse (1) at the point
(

3p

q
, 0

)

. This is the analogy to the

Feuerbach line (see [2]) of the tangential and anticomplementary triangle
of the triangle ABC, it touches the ellipse (1) at the point

(

3p

q
, 0

)

. The

midpoint of this point and the point Γ from (4) is the centroid G =
=

(

0,−2

3
q
)

of the triangle ABC. So, we get the following.

Theorem 5. The circumscribed Steiner’s ellipse of the allowable trian-
gle ABC is tangent to the Feuerbach line of its tangential triangle and



234 V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper

its anticomplementary triangle at the point which is symmetric to the
Gergonne’s point of the triangle ABC with respect to its centroid.

Th. 5 is also a consequence of Th. 4 and the fact that the centroid
of the triangle is the center of its circumscribed Steiner’s ellipse.

The lines with the equations y = −
q

3
and y = −q are complemen-

tary to the lines with the equations y = −
4

3
q , y = 0 since the centroid

G has the ordinate −
2

3
q. The obtained lines are the orthic axis and the

Feurbach line of the triangle ABC (see [7] and [2]). The points
(

3p

2q
,− q

3

)

and
(

−
3p

2q
,−q

)

, where the first point is the point K from the proof of
Th. 3 and the second point is symmetrical to this point with regard to
the point G, are complementary to the points

(

−
3p

q
,−4

3
q
)

and
(

3p

q
, 0

)

.
Therefore it follows

Theorem 6. The inscribed Steiner’s ellipse of the allowable triangle
ABC touches its orthic axis at its symmedian center K and the Feuerbach
line of that triangle at the point symmetric to the point K with respect
to the centroid G of the triangle ABC.

A short computation yields

Theorem 7. The tangent of the circumscribed Steiner’s ellipse of the
standard triangle ABC at its Steiner’s point has the equation

(5) y = −
3p

q
x.

Owing to [2] the tangential triangle of the triangle ABC and its
anticomplementary triangle have the same Feuerbach point (0, 0), which
obviously lies on the line (5), i.e. the following statement is valid.

Corollary 5. The tangent of the circumscribed ellipse of the allowable
triangle at its Steiner’s point passes through the Feuerbach point of its
tangential and its anticomplementary triangle.

A short computation gives the following statement.

Theorem 8. The set of points T = (x, y) on isotropic tangents of the
ellipse (3) has the equation

(6) x2 +
q

3
= 0.

The circle (of the second kind) with equation (6) is indeed the
orthoptic circle of the ellipse (3) i.e. it is the set of points from which the
tangents on that ellipse are mutually perpendicular, and in an isotropic
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plane the isotropic lines and nonisotropic lines are perpendicular. In
Euclidean geometry this circle belongs to the so called Griffiths’ pencil
of the circles, whose potential axis is the orthic axis of the considered
triangle. In [2] it is shown that in isotropic geometry there is an analogous
pencil of the circles, in which there are for example the circumscribed and
Euler circle of the triangle. In the case of the triangle ABC in a standard
position circumscribed circle and the orthic axis of that triangle have the
equations

(7) y = x2,

(8) y = −
q

3
.

However, from (6) and (7) it follows (8), so the circle (6) belongs to the
considered pencil of circles.

For the values x1 and x2 of the abscissa of x, which satisfy equation
(6) the corresponding ordinates y1 and y2 of the points of contact T1 and
T2 of the isotropic tangents of the ellipse (3) can be written in the form

yi = −
9pxi + 4q2

6q
= −

3p

2q
xi −

2

3
q (i = 1, 2).

Therefore the line T1T2, which is the polar line of the absolute point for
the ellipse (3) has the equation

(9) y = −
3p

2q
x −

2

3
q.

The center of conic as the pole of the absolute line is dual concept
to the concept of axis of the conic as polar line of absolute point for
that conic. The axis of the conic evidently passes through its center.
Because of that the line (9) is the axis of ellipse (3). We have the same
consideration for the ellipse (1), so the line (9) is its axis too. Therefore
we have

Theorem 9. The inscribed and the circumscribed Steiner’s ellipses of the
allowable triangle have the same axis, which passes through the centroid of
that triangle and which in the case of a standard triangle has equation (9).

The axis from Th. 9 will be called Steiner’s axis of the considered
triangle. In Euclidean geometry the triangle has two Steiner’s axes and
here it has only one Steiner’s axis. In fact, for the second Steiner’s axis



236 V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper

we could use the isotropic line through the centroid of the triangle, i.e.
its Euler line.

Corollary 6. The Steiner’s axis of the standard triangle ABC has equa-
tion (9).

The points T1 and T2 from the previous consideration are the foci
of the circumscribed Steiner ellipse.

In [3] (Th. 5 and Th. 8) it is proved that the triangle ABC and its
contact triangle AiBiCi are homologic with respect to Gergonne’s point
Γ of the triangle ABC, and the axis of this homology is the harmonic
polar of the point Γ for the triangle ABC and for that point, in the case
of a standard triangle ABC, equation (9) is obtained. Thus we have

Corollary 7. The Steiner’s axis of an allowable triangle is the harmon-
ical polar of its Gergonne’s point for that triangle.

In an isotropic plane the isogonality with respect to the allowable
triangle ABC is defined in the same manner as in Euclidean plane, i.e.
the points T and T ′ are isogonal if the pairs of lines AT , AT ′; BT , BT ′;
CT , CT ′ are symmetrical with respect to the angle bisectors of the angles
A, B, C of that triangle. The centroid and the symmedian center of the
triangle are mutually isogonal points with respect to this triangle.

According to [8] isogonality with respect to the triangle ABC in a
standard position maps the line with the equation y = kx + l into the
conic, circumscribed to the triangle ABC, whose equation is

(10) lx2
− kxy − y2 + (p − kq)x − (q + l)y + kp = 0.

If k = 3p

q
, l = q

3
, then owing to [6] we have the Lemoine line of the

triangle ABC, and equation (10) gets the form
q

3
x2

−
3p

q
xy − y2

− 2px −
4

3
qy +

3p2

q
= 0,

and indeed it is equation (1) divided by q

3
. Therefore we get

Theorem 10. The circumscribed Steiner’s ellipse of the triangle is the
isogonal image of its Lemoine line with respect to this triangle.

According to [8] isogonality maps the circumscribed circle of the
triangle to the line at infinity. Therefore Th. 10 implies

Corollary 8. Steiner’s point of the triangle is isogonal to the point at
infinity of its Lemoine line with respect to that triangle.

The polar line of the point (xo, yo) with respect to the ellipse (1)
has the equation
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2q2xox − 9p(xoy + yox) − 6qyoy − 6pq(x + xo) − 4q2(y + yo) + 18p2 = 0,

i.e. the equation y = kx + l, where

(11) k =
2q2xo − 9pyo − 6pq

9pxo + 6qyo + 4q2
, l = −

6pqxo + 4q2yo − 18p2

9pxo + 6qyo + 4q2
.

The equalities (11) can be solved for xo and yo. This yields

(12) xo =
4qk + 6p

3l + 2q
, yo = −

6pk + 2ql

3l + 2q
.

Therefore we have

Theorem 11. With respect to the circumscribed Steiner’s ellipse of the
standard triangle ABC the polar line of the point (xo, yo) has the equation
y = kx + l given by formulae (11), and conversely the line with the
equation y = kx + l has the pole (xo, yo) defined by formulae (12).

For the diameters of the ellipse (1), i.e the lines through the centroid
G = (0,−2

3
q), the equality l = −

2

3
q is valid, thus the point (xo, yo) from

(12) is a point at infinity. For this point we have

k′ =
yo

xo

= −
6pk + 2ql

4qk + 6p
= −

9pk + 3ql

6qk + 9p
= −

9pk − 2q2

6qk + 9p
,

This point is a point at infinity for all lines with the slope k′ i.e. the
equality

(13) 6qkk′ + 9p(k + k′) − 2q2 = 0

is valid. It means that we obtain the following theorem.

Theorem 12. Diameters of circumscribed (and inscribed) Steiner’s el-
lipse of the standard triangle ABC are its conjugate diameters if and
only if for their slopes k and k′ holds equality (13).

In [4, Th. 14] for the inscribed conic of the triangle the following
statement is proved: the joint lines of the focus of that conic with one
vertex of the triangle and with point of contact with the opposite side
are isogonal with respect to the joint lines of that focus with the two
remaining vertices of that triangle. In the case of the inscribed Steiner’s
ellipse the point of contact with the side BC is the midpoint Am of that
side. So if F is the focus of that ellipse, then the line FA is isogonal
to the median FAm of the triangle FBC with respect to F i.e. FA is
symmedian of that triangle. Foci of the inscribed Steiner’s ellipse of that
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triangle will be called Steiner’s foci of that triangle. We have just proved
the following theorem.

Theorem 13. If F is a Steiner’s focus of the allowable triangle ABC,
then the lines FA, FB, FC are symmedians from the vertex F in the
triangles FBC, FCA, FAB ([9] and [1, p. 140] have the Euclidean ana-
logue of this theorem).
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