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Abstract: Revisiting and completing a work due to A. I. Baškirov, we con-
struct compact sequential spaces of any sequential order up to and including
ω1 as quotient spaces of βω under CH.

1. Introduction

Let X be a topological space and M ⊆ X; the sequential closure
of M is seqcl(M) = {x ∈ X : ∃(xn)n∈ω ⊆ M1, limn∈ω xn = x}. For every
ordinal α ≤ ω1, the α-sequential closure of M is inductively defined as
follows:

– seqcl0(M) = M and seqcl1(M) = seqcl(M);
– seqclα+1(M) = seqcl(seqclα(M));
– seqclα(M) =

⋃
β<α seqclβ(M) if α is a limit ordinal.

A topological space X is said to be sequential if

seqclω1
(M) = M, ∀M ⊆ X;
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1By the notation (xn)n∈ω ⊂ M we mean that (xn)n∈ω is a sequence and that

xn ∈ M for every n ∈ ω.
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this definition is equivalent to that according to which a space X is said
to be sequential if every sequentially closed subset of X is closed.

The sequential order of a sequential space X is an ordinal invariant
of the space defined as

σ(X) = min{α ≤ ω1 : ∀M ⊆ X, seqclα(M) = M}.

While the problem naturally posed in the sixties concerning the possi-
bility to produce examples of sequential spaces of any sequential order
up to and including ω1 in ZFC was completely solved in the affirmative
by Arhangel’skĭı and Franklin (cf. [1]), it turns out difficult to construct
compact sequential spaces without additional assumptions of the Theory
of the Sets, even of sequential order 3; indeed, up to now, 2 is the max-
imum order of sequentiality of a compact space in ZFC. In this context
the work due to Baškirov and concisely presented in a Doklady article
(see [3]) gathers a certain prominence: in this paper the author suggests
a scheme of construction to produce compact sequential spaces of any
order as quotient spaces of βω under the assumption of the Continuum
Hypothesis. Our aim is to reexamine completely his article completing
and modifying in several point his construction in order to make clear all
details and point out where CH is essentially used.

Other constructions were proposed by Kannan (cf. [6]) under CH
and by Dow under MA (see [4] and [5]). In the last construction an
example is given of a compact sequential space of order 4. While Baškirov
suggests a construction from top to down, Kannan and Dow present
a construction from down to top. Indeed Baškirov works in βω and
by assuming to have constructed all the spaces of sequential order a
successor ordinal less than a fixed successor ordinal α + 1 he gives a
starting decomposition on βω; the Continuum Hypothesis guarantees
him that in ω1 steps he can purify the starting decomposition in such a
way that in the space associated to the last decomposition there is a new
point fit to produce a space of sequential order α + 1. Instead Kannan
and Dow start from the natural numbers with the discrete topology. If
we want to summarize the idea of Kannan, we can say that he generalizes
the construction of the one-point compactification of the Mrówka–Isbell
space. On the other hand, Dow constructs by transfinite induction on c

three suitable families of subsets of ω in such a way that the Stone space
associated to the Boolean algebra generated by the elements of these
subsets admits a point of sequential order 4.

There is a remarkable reason to determine the maximum possible
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sequential order in the presence of the PFA which implies Martin’s axiom
and c = ω2; indeed in 1989 Balogh solved the Moore–Mrówka problem
proving that each compact space of countable tightness is sequential un-
der PFA (see [2]). If there is some finite bound on the sequential order of
compact sequential spaces in models of PFA, it would mean that compact
spaces of countable tightness are a few steps away from being Fréchet–
Urysohn. In [5, Prop. 3.1], Dow points out that there are obstructions
to extend his type of construction to produce compact sequential spaces
of order greater than 4. The problem if there exists a bound on the
sequential order of compact sequential spaces in models of PFA is still
open. However Dow in an unpublished paper (Sequential Order under
PFA) showed that no compact supersequential space has sequential order
greater than ω. Here a space is called supersequential if it is compact
scattered and points in Xα have sequential order α with respect to X0.

2. Preliminary facts

We start with the construction of spaces of order 1 and 2 in ZFC
as quotients of βω, in order to illustrate the scheme of the main general
construction that will be presented later on in the following sections.

Let us consider the space K1 = βω/ω∗ = βω/ ≈1 where x ≈1

y ⇔ (x = y ∨ (x ∈ ω∗ ∧ y ∈ ω∗)) and let us denote by j1 the natural
quotient mapping from βω to K1. Trivially the one-point elements of the
quotient under the relation of equivalence ≈1 are images of the points of
ω, while the natural quotient mapping collapses all the free ultrafilters
to a single point P . The topology of the space K1 = βω/ω∗ = ω ∪ {P}
with P /∈ ω is a topology τ such that the points of ω are isolated while P
has a fundamental system of (open) neighborhoods formed by {UP,F} =
=

{
{P} ∪ j1(ω\F ) : F ∈ [ω]<ω

}
as we state in the following lemma.

Lemma 2.1. Let P = j1(ω
∗) ∈ K1; a fundamental system of neighbor-

hoods of P is given by the collection {j1(βω\F ) : F ∈ [ω]<ω}.

Notice that the fundamental neighborhoods {UP,F} of P are clopen
subsets; we refer to these neighborhoods as elementary. It is easy to see
that the space K1 has the same topology as a convergent sequence and
hence it is trivially a T2 compact space.

Now we want to find a suitable relation of equivalence in βω in
such a way that the corresponding quotient space is a T2 compact space
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of sequential order 2. Let M be an infinite MAD family on ω; to every
element M ∈ M we can associate the unique element M∗ ⊆ ω∗ in the
following way:

M 7→ M∗ = {U ∈ ω∗ : M ∈ U}.

It turns out that if M1, M2 ∈ M with M1 6= M2 then M∗
1 ∩ M∗

2 = ∅.
Remark that the subset ω∗\

⋃
M∈M M∗ is not empty: if it was empty,

then {M∗∪ω : M ∈ M} would be an infinite and open cover of βω from
which it would be impossible to extract a finite subcover.

Let us take into account the space K2 = βω/ ≈2 where

x ≈2 y ⇐⇒
[
x = y ∨ (x ∈ M∗ ∧ y ∈ M∗ for some M ∈ M)∨

∨
((

x ∈ ω∗\
⋃

M∈M

M∗
)
∧

(
y ∈ ω∗\

⋃

M∈M

M∗
))]

.

Then, if we denote by j2 the natural quotient mapping from βω to K2, it
holds that j2 leaves the points of ω unaltered, while it collapses every M∗

with M ∈ M to a single point and the non-empty subset ω∗\
⋃

M∈M M∗

to another single point too.
Let us set

L0 = j2(ω), L1 = {j2(M
∗) : M ∈ M} and x∞ = j2

(
ω∗\

⋃

M∈M

M∗
)
.

We say that the points in the set L0 have level 0 while the points of L1

have level 1 and the point x∞ has level 2; it is easy to prove that the
levels of the points coincide with their sequential order with respect to
the set L0.

Points in L0 are isolated in K2, while the following Lemma describes
neighborhoods of points of level 1.

Lemma 2.2. Let y ∈ L1 with y = j2(M
∗) and M ∈ M; then the

collection {Uy,F} = {{y} ∪ j2(M\F ) : F ∈ [M ]<ω} is a fundamental
system of neighborhoods for y.

We want to remark that the fundamental neighborhoods Uy,F of
a general point y of level 1 are clopen in K2: indeed M∗ ∪ (M\F ) is a
saturated closed subset of βω for each F ∈ [M ]<ω; let us call elementary
these neighborhoods.

The following remark is needed.

Remark 2.3. For every D ∈ [ω]ω the subfamily MD = {M ∈ M :
: |M ∩D| = ω} is such that

⋃
MD ⊇∗ D; suppose by contradiction that⋃

MD +∗ D, i.e. suppose that there exists a subset E ⊂ D such that
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|E| = ω and (
⋃

MD) ∩ E =∗ ∅. Since the family M is maximal, there
exists a subset A ∈ M\MD such that |A ∩ E| = ω but A ∩ E ⊂ D and
hence |A ∩ D| = ω; therefore A is an element of MD. A contradiction.

Let us fix an arbitrary D ∈ [ω]ω; if for every finite union
⋃

M∈F M
with F ∈ [M]<ω it turns out that

⋃
M∈F M +∗ D, then |MD| ≥ ω.

Indeed if |MD| < ω, by taking F = MD, it holds that
⋃

F ⊇∗ D
because of the above note.

Lemma 2.4. The collection of the clopen subsets K2\
⋃

x∈G Ux (where G
is a finite set and for every x ∈ G the clopen subset Ux is an elementary
neighborhood of the point x in K2 that can have level 0 or 1) is a base at
the point x∞.

Let us call elementary these clopen neighborhoods of the point x∞.
Now it is finally easy to prove the following lemma.

Lemma 2.5. K2 is a compact sequential T2 space of sequential order 2.

We want to remark that the space K2 we have just constructed is
trivially homeomorphic to the one-point compactification of the Mrówka–
Isbell space Ψ(M).

By referring to the type of construction of the space K2, we could
think that a good idea to construct a space with a larger order of se-
quentiality could be to associate a new infinite MAD family HM to every
M ∈ M; we will prove that in this way we do not construct a space of
higher sequential order.

Then let M be an infinite MAD family on ω and let us suppose
to associate a new infinite MAD family HM to every M ∈ M; let us
consider the partition P =

{
{n} : n ∈ ω

}
∪

{
H∗ : H ∈

⋃
M∈MHM

}
∪

∪
{
M∗\

⋃
H∈HM

H∗ :M ∈ M
}
∪

{
ω∗\

⋃
M∈MM∗

}
. Let us set KIII = βω/≈

where ≈ is the relation of equivalence associated to P and let jIII be the
natural quotient mapping from βω to KIII. The space KIII consists of
the following elements.

1st) The isolated points of the form jIII(n) for every n ∈ ω.
2nd) The points of the form xH = jIII(H

∗) for every H ∈ HM and
every M ∈ M; a fundamental system of neighborhoods for xH is given
by {

{xH} ∪ jIII(H\F )
}

F∈[H]<ω .

We refer to these neighborhoods with the symbols UxH ,F .
3rd) The points of the form yM = jIII(M

∗\
⋃

H∈HM
H∗) for every

M ∈ M; a fundamental system of neighborhoods for yM is given by
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{
({yM} ∪ jIII(M)) \

⋃

xH∈G

UxH ,F

}

G

where G is a finite set; we refer to these neighborhoods with the symbols
WyM

.
4th) The point p∞ = jIII

(
ω∗\

⋃
M∈M M∗

)
which has a fundamental

system of neighborhoods given by
{
jIII(βω)\

⋃
yM∈K WyM

}
K

where K is
a finite set.

We could think that the points of the sets{
jIII(H

∗) : H ∈
⋃

M∈M

HM

}
,

{
jIII

(
M∗\

⋃

H∈HM

H∗
)

: M ∈ M

}
,

{
jIII

(
ω∗\

⋃

M∈M

M∗
)}

have sequential orders respectively 1, 2 and 3 with respect to the set
jIII(ω). We want to show that the point jIII(ω

∗\
⋃

M∈M M∗) does not
have sequential order 3 with respect to the set jIII(ω). In an obvious way
we point out that x∞ ∈ jIII(ω): indeed there are always infinitely many
points of ω out of the union of any finite number of neighborhoods of
points of the third type; otherwise there would not be space enough for
the other elements of the MAD family M. Now let us fix a countably
infinite set {Mn : n ∈ ω} ⊆ M and, for every n ∈ ω, let us fix an
infinite subset Hn ∈ HMn; moreover, for every n ∈ ω, let us call zn

the unique point in KIII such that j−1
III (zn) = H∗

n. We assert that for
every n ∈ ω it is possible to extract a subsequence {mni

}i∈ω from jIII(ω)
with {mni

}i∈ω → zn: indeed for every n ∈ ω it is enough to put into
the subsequence the image under jIII of a countably infinite number of
points belonging to Hn. Therefore for every n ∈ ω it turns out that
zn ∈ seqcl1(jIII(ω)). We claim that (zn)n∈ω → p∞: consider an open
subset Ω ⊆ βω such that ω∗\

⋃
M∈M M∗ ⊆ Ω; we want to prove that

the set N = {n ∈ ω : H∗
n * Ω} is finite. Towards a contradiction,

suppose that N is infinite; then, in particular, it turns out that the set
M′ = {M ∈ M : ∃H ∈ HM , H∗ * Ω} is infinite and hence that the set
M′′ = {M ∈ M : M∗ * Ω} is infinite. Now consider the infinite open
cover A = {Ω} ∪ {M∗ ∪ ω : M ∈ M′′} of βω; from this open cover it
is not possible to extract a finite subcover since the set M′′ is infinite.
A contradiction. We can conclude that p∞ ∈ seqcl2(jIII(ω)) and hence
that it does not have sequential order 3 with respect to the set jIII(ω); it
follows that KIII does not have sequential order 3.
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3. Baškirov’s idea

In this section we want to explain the general scheme of the con-
struction suggested by Baškirov in [3]; it works in a different way for
successor and for limit ordinals. If we can construct compact T2 spaces
Kα+1 of sequential order α + 1 < ω1 for every successor ordinal less than
ω1, then we easily get a compact sequential space of order β for any limit
β ≤ ω1. It is enough to consider the disjoint sum

Zβ =
⊕

α+1<β

Kα+1 .

Trivially the sequential order of this space is β. It is easy to prove
that also its one-point compactification Kβ = Z∗

β has sequential order β:
indeed the added point ∞ has order 1 with respect to any subset A ⊆ Kβ

such that ∞ ∈ A.
Therefore the problem reduces to construct compact spaces whose

sequential order is a successor ordinal number. We will construct a com-
pact space Kα+1 of sequential order α + 1 for every successor ordinal
number α + 1 < ω1; each Kα+1 will be a quotient space of βω, i.e.
Kα+1 = βω/ ≈α+1 where the relation ≈α+1 is such that only natural
numbers are one-point elements of the quotient. For every α + 1 < ω1

we will denote by jα+1 the natural quotient mapping jα+1 : βω → Kα+1.
We will prove by transfinite induction that for each α+1 < ω1 the space
Kα+1 satisfies the following conditions.

S.1 The space Kα+1 can be uniquely represented in the form of

Kα+1 = L0

⊔(⊔

γ≤α

Lγ+1

)
.

The points of level γ + 1 with γ ∈ [0, α], i.e. the points belonging to the
set Lγ+1, have sequential order equal to γ + 1 with respect to L0, the
subset consisting of the images of the points of ω under jα+1.

S.2 The set Lα+1 consists of only one point.

S.3 Every point in Kα+1 of nonzero level has a basis formed by
clopen subsets called elementary; moreover if U is an elementary neigh-
borhood of a point of level γ + 1, then the relation ≈α+1 restricted to
Ũ = j−1

α+1(U) produces a compact space homeomorphic to Kγ+1.
S.4 For every γ ≤ α, if a nonconstant sequence (xn)n∈ω of points

xn ∈ Lγn+1, with nondecreasing levels, converges to a point x ∈ Lγ+1,
then the sequence (γn + 1)n∈ω is such that sup{γn + 1} = γ.
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S.5 For every γ ≤ α, from every injective sequence (xn)n∈ω of points
xn ∈ Lγn+1 with nondecreasing levels such that supn∈ω{γn +1} = γ, it is
possible to extract a subsequence converging to a point of level γ + 1.

S.6 If {Ni}i∈ω is a countable family of pairwise disjoint infinite
subsets Ni of ω and for every i ∈ ω a relation of type βi + 1 is given on
Ni in such a way that the sequence of ordinals (βi+1)i∈ω is not decreasing
and sup {βi + 1} = α, then it is possible to extend the relation obtained
on

⋃∞

i=1 Ni to a relation of βω of type α + 1.
From the first three conditions we trivially deduce other two prop-

erties.

S.7 If U is an elementary neighborhood of a point x of level γ + 1
in Kα+1, then its level in U = Ũ/(≈α+1 |

Ũ
) is equal to γ + 1.

S.8 If U is an elementary neighborhood of a point x of level γ + 1
in Kα+1, then U\ {x} ⊆

⋃
γ′<γ Lγ′+1.

The compact sequential spaces K1 and K2 will be taken as bases of
the recursion. Properties S.1 to S.6 are easy fot K1. Let us check for K2.

S.1 The space K2 can be uniquely represented in the form of

K2 = L0

⊔
L1

⊔
L2

where we denote by L0 the one-point elements of the quotient that are
images of the points of ω under j2; the quotient mapping j2 collapses
every M∗ with M ∈ M to a single point, while it collapses ω∗\

⋃
M∈M M∗

to another single point that gives L2.
The points of L1 have sequential order 1 with respect to L0, while

the unique point of L2 has sequential order 2 with respect to L0.

S.2 The set L2 consists of the unique point x∞=j2

(
ω∗\

⋃
M∈M M∗

)
.

S.3 Every point y ∈ L1 has a basis formed by the clopen elementary
neighborhoods Uy,F and the space obtained by restricting the relation ≈2

to Ũy,F = j−1
2 (Uy,F ) is homeomorphic to the compact sequential space K1.

The point x∞ ∈ L2 has a basis given by the clopen elementary neighbor-
hoods K2\

⋃
x∈G Ux; the space obtained by restricting the relation ≈2 to

j−1
2 (K2\

⋃
x∈G Ux) is a compact space homeomorphic to K2.

S.4 For K2 Property S.4 is obvious.

S.5 From every noncostant sequence (xn)n∈ω of points with non-
decreasing levels such that sup{l(xn)} = 0 it is possible to extract a
subsequence converging to a point of level 1: indeed, since the family M
is MAD, the sequence (xn)n∈ω has infinite intersection with at least one
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element M1 of the family M and hence we can extract a subsequence con-
verging to the point j2(M

∗
1 ) of level 1. From every noncostant sequence

(xn)n∈ω of points with nondecreasing levels such that sup{l(xn)} = 1 it
is possible to extract a subsequence converging to x∞: indeed the points
of the sequence are eventually in every neighborhood of x∞.

S.6 If {Ni}i∈ω is a countable family of pairwise disjoint infinite
subsets Ni ⊂ ω and if it holds that for every i ∈ ω a relation of type
βi +1 is given on Ni in such a way that the sequence of ordinals βi +1 is
nondecreasing and that sup {βi + 1} = 1 (and hence in such a way that
βi + 1 = 1 for every i ∈ ω), then we can extend the so obtained relation
on

⋃∞

i=1 Ni to a relation on βω of type 2: indeed it is enough to complete
the almost disjoint family {Ni}i∈ω to a MAD family and then put into
relation the elements of βω in the way we have already seen when we
constructed K2.

Now we are sure we can take the compact sequential spaces K1

and K2 as bases of the induction. Moreover we will assume that for all
β + 1 < α + 1 the compact sequential spaces Kβ+1 (in which properties
S.1 to S.6 hold) have been constructed; then we will able to construct
the compact space Kα+1 with sequential order α+1 satisfying conditions
S.1 to S.6.

4. Some propaedeutic lemmas

Before giving the construction in full details, we recall some tech-
nical lemmas, which are possibly known. Anyway we prove them for the
sake of completeness.

Lemma 4.1. The intersection of any countable family of open subsets
of ω∗ is either empty or contains a non-empty open subset.

Proof. Let {Ai}i∈ω be a countable family of open subsets of ω∗ whose
intersection contains a point U . For every i ∈ ω there exists a subset
Ni ⊂ ω such that U ∈ N∗

i ⊂ Ai. The intersection of any finite collection
of the sets N∗

i is not empty and open and hence the intersection of any
finite collection of the sets Ni is infinite. Then there exists an increasing
sequence of integers ni such that ni ∈ N1 ∩ N2 ∩ . . . ∩ Ni. Let us set
N = {ni : i ∈ ω}; since N\Ni is finite for each i ∈ ω, it holds that
N∗ ⊂ N∗

i for each i ∈ ω and then we can conclude that N∗ ⊂
⋂

i Ai

where N∗ 6= ∅ as |N | = ω. ♦
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Lemma 4.2. Let {N∗
i }i∈ω be a countably infinite family of clopen subsets

of ω∗; let us suppose that ω∗\
⋃

i≤ı̄ N
∗
i 6= ∅ for every ı̄ ∈ ω. Then there

exists ∆ ⊂ ω such that |∆| = ω and ∆∗ ∩
⋃

i∈ω N∗
i = ∅.

Proof. Let us set ∆1 = N∗
1 , ∆2 = N∗

1 ∪N∗
2 , . . . , ∆ı̄ = N∗

1 ∪N∗
2 ∪ . . .∪N∗

ı̄

and so on; it is clear that for every ı̄ ∈ ω, ∆ı̄ is a clopen subset of ω∗.
Notice that ω∗\∆1 ⊇ ω∗\∆2 ⊇ . . . ⊇ ω∗\∆ı̄ ⊇ ω∗\∆ı̄+1 ⊇ . . .; for every
i ∈ ω, let Ci = ω∗\∆i and E = {Ci : i ∈ ω}. The family E satisfies the
finite intersection property and, since ω∗ is compact,

⋂
E 6= ∅. Then we

have

∅ 6=
⋂

i∈ω

Ci =
⋂

i∈ω

∆C
i =

[⋃

i∈ω

(
∪j≤iN

∗
j

)]C

=
(⋃

i∈ω

N∗
i

)C

= ω∗\
⋃

i∈ω

N∗
i .

We can conclude that the family {∆C
i }i∈ω consisting of open subsets of ω∗

has non-empty intersection and hence, by Lemma 4.1, this intersection
contains an open subset A ⊆ ω∗\

⋃
i∈ω N∗

i . Then there exists ∆ ⊂ ω with
|∆| = ω such that ∆∗ ⊆ ω∗\

⋃
i∈ω N∗

i whence ∆∗ ∩
⋃

i∈ω N∗
i = ∅. ♦

Lemma 4.3. Let P = Q ∪ R be a family of infinite subsets of ω such
that

– Q is an almost disjoint family;
– |Q| ≤ ω and |R| ≤ ω;
– for every element Qi ∈ Q and every element Rn ∈ R it turns out

that |Qi ∩ Rn| < ω.
Then there exists L ∈ [ω]ω such that L∗ ⊇

⋃
Qi∈Q

Q∗
i and L∗ ∩ R∗

n = ∅
for every Rn ∈ R.

Proof. Let us set Q = {Qi : i ∈ ω} with |Qi ∩ Qj | < ω for i 6= j.
Obviously we can suppose R 6= ∅ and then we can write R = {Rn :
: n ∈ ω} with n 7→ Rn not necessarily injective. If |Q| < ω, then we set
L =

⋃
Qi. If instead |Q| = ω, we set L =

⋃
n∈ω(Qn\ ∪n′<n Rn′). For

every n ∈ ω, Rn intersects L only in those points in which Rn, in case,
intersects the subsets Qn with n = 0, . . . , n; these points are in a finite
number. Furthermore for every n ∈ ω, Qn\L consists of a finite number
of points and exactly of those in which Qn intersects Rn with n < n (and
these again are certainly in a finite number); therefore Q∗

n ⊆ L∗ for every
n ∈ ω and hence

⋃
n Q∗

n ⊆ L∗. ♦

In the following lemma we will take into account a countable family
of infinite pairwise disjoint subsets of ω, {Ñi}i∈ω and a relation ≈ on
U =

⊔
Ñ∗

i ⊂ ω∗. Let us set H = U/ ≈ and let j be the quotient
mapping j : U → H . We assume that the subsets Ñ∗

i are distinguished



Sequential order under CH 187

relative to ≈, i.e. that j−1(j(Ñ∗
i )) = Ñ∗

i for every i ∈ ω. Now let us prove
the lemma.

Lemma 4.4. Let {Ñi}i∈ω be a countable family of infinite pairwise dis-
joint subsets Ñi ⊂ ω and let ≈ be a relation on U =

⊔
Ñ∗

i ⊂ ω∗ where
the subsets Ñ∗

i are distinguished relative to ≈ and the spaces Ñ∗
i / ≈

are zero-dimensional compact spaces. Let us suppose that the set B =
= {xn : n ∈ ω} has no accumulation point in H and that for every
xn there exists an index in and a clopen neighborhood U(xn) such that
U(xn) ⊆ Ñ∗

in
/ ≈. Moreover let us suppose that

⋃
n∈ω U(xn) 6= H. Then

i) there exist pairwise disjoint clopen subsets Un with n ∈ ω such that
xn ∈ Un for every n ∈ ω;

ii) there exists Ñ ′ ⊂ ω such that (Ñ ′)∗ ∩
⋃

i∈ωÑ∗
i = j−1

(⊔
n∈ω Un

)
=

=
⊔

n∈ω E∗
n.

Proof. Since the subsets {Ñ∗
i }i are disjoint and distinguished relative

to ≈ it holds that (Ñ∗
i / ≈) ∩ (Ñ∗

j / ≈) = ∅ for every i, j ∈ ω with

i 6= j. Moreover Ñ∗
i / ≈ is open and closed in H for every i ∈ ω,

since j−1(Ñ∗
i / ≈) = Ñ∗

i is open and closed in U . We need to remark
that, for every i ∈ ω, Ñ∗

i / ≈ intersects only a finite number of the
neighborhoods {U(xn)}n because of the hypothesis that the subset B
has no accumulation point in H .

By transfinite induction we are going to construct the subsets Un

with n ∈ ω such that xn ∈ Un for every n ∈ ω.
Let us consider the point x1 and the clopen subset U(x1) ⊆ Ñ∗

i1
/ ≈;

since B has no accumulation point in H , there exists an open neighbor-
hood A1 ⊆H of x1 such that A1∩B = {x1}. Now x1 ∈

[
(A1 ∩ Ñ∗

i1
/≈)∩

∩U(x1)
]

= D1: this subset is open in Ñ∗
i1
/ ≈ and hence, since Ñ∗

i1
/ ≈ is

zero-dimensional, there exists a clopen subset U1 ⊆ D1 of Ñ∗
i1
/ ≈ with

x1 ∈ U1; trivially U1 is clopen also in H . Now H\U1 is an open sub-
set of H and it contains B\{x1} which has no accumulation point in
H\U1; thus there exists an open neighborhood A2 ⊆ H of x2 such that
A2 ∩B = {x2}. Hence x2 ∈ [(H\U1)∩A2 ∩ (Ñ∗

i2
/ ≈)∩U(x2)] = D2: this

is an open subset of Ñ∗
i2
/ ≈ and then, since Ñ∗

i2
/ ≈ is zero-dimensional,

there exists a clopen subset U2 ⊆ D2 of Ñ∗
i2
/ ≈ with x2 ∈ U2; triv-

ially U2 is clopen also in H and moreover it results that U1 ∩ U2 = ∅.
Notice that H\(U1 ⊔ U2) is a non-empty clopen subset of H and that
B\{x1, x2} ⊆ H\(U1 ⊔ U2).
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Let us suppose that for every n ≤ n there exists a clopen subset
Un ⊆ H with xn ∈ Un and Un ⊆ U(xn) and that Un ∩ Un′ = ∅ for
every n′, n ≤ n; moreover suppose that for every n ≤ n it holds that
Bn = B\{x1, . . . , xn} ⊆ H\

⊔
j≤n Uj . Let us prove that these properties

hold also for n + 1. By inductive hypothesis xn+1 ∈ (H\
⊔

j≤n Uj) where
H\

⊔
j≤n Uj is open, since the finite union

⊔
j≤n Uj is clopen; moreover

there exists an open neighborhood An+1 ⊆ H of xn+1 such that An+1∩
∩B={xn+1}. It turns out that xn+1∈

[(
H\

⊔
j≤nUj

)
∩An+1∩Ñ∗

in+1/≈
]
∩

∩U(xn+1) = Dn+1 and that Dn+1 is open in Ñ∗
in+1/ ≈. Now, since

Ñ∗
in+1/ ≈ is zero-dimensional, there exists a clopen subset Un+1 ⊆ Dn+1 of

Ñ∗
in+1/ ≈ with xn+1 ∈ Un+1: we trivially remark that Un+1 is also clopen

in H , that Un+1 ∩Un′ = ∅ for every n′ < n + 1 and that H\
⊔

j≤n+1 Uj ⊇
⊇ B\{x1, . . . , xn+1}.

Therefore Un ⊆ Ñ∗
in

/ ≈ is a clopen neighborhood of xn in H for

every n ∈ ω and j−1(Un) is a clopen subset of Ñ∗
in

; then for every n ∈ ω
it holds that j−1(Un) = E∗

n where En is an infinite subset of ω. Moreover
we can assert that

⊔
n∈ω Un 6= H since

⊔
n∈ω Un ⊆

⋃
n∈ω U(xn). Now

we want to prove that
⊔

n∈ω Un is clopen in U/ ≈; trivially
⊔

n∈ω Un

is open and now we show that it is also closed. If we take a point
z ∈ H\

⊔
n∈ω Un there exists an index iz such that z ∈ (Ñ∗

iz
/ ≈)\

⊔
n∈ω Un.

Since Ñ∗
iz
/ ≈ intersects only a finite number of the clopen subsets we have

just constructed (we denote these clopen subsets by Uj1 , . . . , Ujn
), then⊔n

i=1 Uji
∩ (Ñ∗

iz
/ ≈) is closed in Ñ∗

iz
/ ≈ since

⊔n

i=1 Uji
is closed in H ;

the subset Ñ∗
iz
/ ≈ \(

⊔n
i=1 Uji

) is an open subset to which z belongs and

hence there exists an open neighborhood of z in Ñ∗
iz
/ ≈ (and then in H)

disjoint from
⊔

Un.
Finally we can conclude that j−1(

⊔
Un) =

⊔
j−1(Un) is clopen in

U and then there exists a clopen subset (Ñ ′)∗ of ω∗ with Ñ ′ ⊆ ω and
|Ñ ′| = ω such that (Ñ ′)∗ ∩

⋃
Ñ∗

i =
⊔

j−1(Un) =
⊔

E∗
n. ♦

Remark 4.5. We remark that Lemma 4.4 still holds when we consider
a family

{
Ñγ : γ ∈ ω1

}
of infinite subsets Ñγ ⊂ ω keeping all the other

hypotheses.
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5. Construction of a Baškirov’s space of order an ar-
bitrary successor ordinal

Finally we will show how to construct the space Kα+1 by assuming
that all compact sequential spaces Kβ+1 (of sequential order β + 1) with
β+1 < α+1 have been constructed and that properties S.1 to S.6 hold in
each of these space; moreover we will check that properties S.1 to S.6 hold
in Kα+1 too. We will carry out the construction when α is a successor
ordinal, but we will remark from time to time what it is necessary to
change if we have to work in the case in which α is a limit ordinal).

It will be very important to take the set Γ into account: it is the
set of all the families Cξ whose elements are countable pairwise disjoint
clopen subsets of ω∗; under the Continuum Hypothesis, we can write Γ
as

(1) Γ = {Cξ : ω ≤ ξ < ω1} .

Roughly speaking, our type of construction ensures that, by a number of
steps of cardinality equal to the cardinality of Γ, we are able to exhaust
the whole Γ; moreover at each stage α < ω1 of the inductive construction,
it will be essential the fact that α is a countable ordinal in order to
guarantee that we can continue the process and hence it is crucial that
we can enumerate Γ as in (1).

Let us begin the construction. Let {Ni}i∈ω be a family of pairwise
disjoint infinite subsets Ni ⊂ ω. For every i ∈ ω the closures of Ni in
βω, namely Ni, is a clopen subset of βω which is homeomorphic to it; for
every i ∈ ω let us set a decomposition of type βi + 1 on Ni taking care
that the sequence of ordinals S = (βi + 1)i∈ω is nondecreasing and such
that sup{βi + 1} = α. Notice that it is possible to extract a subsequence
S ′ = (βin + 1)n∈ω ⊆ S in such a way that the sequence S ′ converges
upwards to α; since α is a successor ordinal, this mean that there are
infinite n ∈ ω such that the decomposition set on Nin is a relation of
type α.2

For every i ∈ ω, let jβi+1 : Ni → Kβi+1 be the quotient mapping.
The following properties T.1, T.2 and T.3 are obvious for every i < ı̄ < ω,

2If α is a limit ordinal we will have to set decompositions of type βi + 1 on Ni in
such a way that the sequence (βi + 1)i∈ω is nondecreasing and sup{βi + 1} = α. Also
in this case it is possible to extract a subsequence S′ = (βin

+ 1)n∈ω ⊆ S in such a
way that the sequence S′ converges upwards to α.
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while a property T.4 does not apply for ξ < ω.

T.1 N∗
ı̄ \

⋃
i′< ı̄ N

∗
i′ 6= ∅.

T.2
⋃

i′≤ ı̄ N
∗
i′ 6= ω∗.

T.3 For every i′ < ı̄ it holds that Ni′ ∩ Nı̄ = ∅.
In view of T.3 and the relations set on each Ni with i ∈ ω, we

have defined a relation Qω on Uω =
⋃

i∈ω N∗
i . Let jω

α+1 be the quotient
mapping jω

α+1 : Uω → Uω/Qω.
We say that Cξ ∈ Γ is an ω-family if Cξ consists of elements that can

be decomposed into two subfamilies L0 and L1 satisfying the following
conditions.

U.1
⋃

L0 ∩ Uω = ∅.

U.2 For every c ∈ L1 there exists i < ω, a point xc ∈ Ni/ ≈βi+1 of
level γc + 1 and an elementary neighborhood Uc of xc such that
c = Ũc ∩ ω∗ where Ũc = j−1

βi+1(Uc).

U.3 The set {xc : c ∈ L1} has no accumulation points in Uω/Qω.

U.4 It holds that sup {γc + 1 : c ∈ L1} < α.

Let us rewrite these properties in order to make clear the new notion.
i) L0 consists of elements C∗

n where the subsets Cn ⊂ ω are transver-
sal to the subsets Ni, i.e. every Cn ⊂ ω intersects every Ni in a finite
number of points (in this way we are respecting U.1);

ii) L1 consists of elements C∗
m where for every m there exist i ∈ ω,

a point xm ∈ Ni/ ≈βi+1 of level l(xm) < α and an elementary neigh-
borhood U(xm) such that C∗

m = j−1
βi+1U(xm) ∩ ω∗. A further necessary

requirement is that the set {xm} has no accumulation point in Uω/Qω

and that sup{l(xm)} < α. We want to point out that by l(xj) we mean
a successor ordinal. (In this way we are respecting U.2–U.3–U.4.)

Notice that it is possible to find an ω-family: for example, we can
use Lemma 4.2 since the subsets N∗

i comply with the hypotheses; in this
way we find an infinite subset ∆ω ⊂ ω such that ∆ω intersects every Ni

in a finite number of points. We can decompose this infinite set in an
infinite number of infinite subsets Tn ⊂ ω that again intersect every Ni

in a finite number of points; we set L0 = {T ∗
n : n ∈ ω}. It is clear that

L = L0 is an ω-family.
Among all the ω-families let us take the one with the minimum

index ω; we write it as Cω = L0 ⊔ L1 with L0 = {N∗
ω,n : n ∈ J0},

L1 = {N∗
ω,n : n ∈ J1} and J0 ∩ J1 = ∅. Of course, by construction, the

ω-family Cω complies with the following properties.
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U.1
⋃

L0 ∩ Uω = ∅.

U.2 For every N∗
ω,n with n ∈ J1 there exist in ∈ ω, a point xn ∈

∈ Nin/ ≈βin+1 of level l(xn) < α and an elementary neighborhood
U(xn) such that N∗

ω,n = j−1
βin+1(U(xn)) ∩ ω∗.

U.3 The set {xn : n ∈ J1} has no accumulation point in Uω/Qω.

U.4 It holds that sup{l(xn) : n ∈ J1} = βω < α with βω that can take
up value from 1 to α not included. Without loss of generality we
can always assume that the levels of the points are ordered in a
nondecreasing way.

For every n ∈ J1 it turns out that Û(xn) = U(xn)\ω is a clopen neigh-
borhood of xn in N∗

in
/ ≈βin+1. We can apply Lemma 4.4 since the

family {Ni : i ∈ ω}, the points xn with n ∈ J1 and the relation
Qω defined on Uω =

⊔
N∗

i satisfy the hypotheses. We remark that⋃
Û(xn) 6= Uω/Qω since in Uω/Qω there are points of level α which⋃
Û(xn) does not cover.3 Therefore it is possible to find pairwise ele-

mentary neighborhoods Un with xn ∈ Un and a subset N ′
ω ⊂ ω such

that (N ′
ω)∗ ∩ Uω =

⊔
n∈J1

(jω
α+1)

−1(Un) =
⊔

n∈J1
E∗

n. Let us define C′ =
= L0 ∪ {(jω

α+1)
−1(Un) : n ∈ J1}.

Now if we set Q = {Nω,n : n ∈ J0} and R = {Ni : i ∈ ω}, then
P = Q∪R is a family of subsets with the following properties:

– Q is an almost disjoint family;

– |Q| ≤ ω and |R| ≤ ω;

– for every Nω,n ∈ Q and every Ni ∈ R it holds that |Nω,n∩Ni| < ω.
Therefore, by Lemma 4.3, there exists a subset N ′′

ω ∈ [ω]ω such that⋃
n∈J0

N∗
ω,n ⊆ (N ′′

ω)∗ and (N ′′
ω)∗∩N∗

i = ∅, ∀Ni ∈ R. Trivially it follows

that
⋃

n∈J0
N∗

ω,n ⊆ N ′′
ω and N ′′

ω ∩ Uω = ∅. Let us recapitulate:

1) N ′′
ω ⊇∗ Nω,n for every n ∈ J0;

2) |N ′′
ω ∩ Ni| < ω for every i ∈ ω.

Notice that (N ′′′
ω )∗ = (N ′

ω)∗∪(N ′′
ω)∗ is a clopen subset of ω∗. Now it turns

out that

(N ′′′
ω )∗ ∩ Uω =

[
(N ′

ω)∗ ∪ (N ′′
ω)∗

]
∩ Uω = (jω

α+1)
−1

( ⊔

n∈J1

Un

)
∪ ∅ =

⊔

n∈J1

E∗
n

3Notice that
⋃

Û(xn) 6= Uω/Qω also in the case in which α is a limit ordinal:
indeed at the beginning of the construction we put decompositions of type βi + 1 on
the subsets N i in such a way that sup{βi + 1} = α; hence in Uω/Qω there certainly
exists a point of level βω + 1 < α that

⋃
Û(xn) does not cover.
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and then we can conclude that N ′′′
ω ⊇∗ En for every n ∈ J1 and

N ′′′
ω ⊇∗ Nω,n for every n ∈ J0. Let us set

Mn =

{
N ′′′

ω ∩ En if n ∈ J1,

N ′′′
ω ∩ Nω,n if n ∈ J0.

Certainly M∗
n = E∗

n for every n ∈ J1 and M∗
n = N∗

ω,n for every n ∈ J0.

For every n ∈ ω let us fix a point ln ∈ Mn\
(⋃n−1

j=0 Mj ∪{l0, ..., ln−1}
)

– it is possible since the family {Mn} is almost disjoint – and let us set
L = {li : i ∈ ω}.

Let us define

Nω =
⊔

n∈ω

(
Mn\

n−1⋃

j=0

Mj

)
\{li : i ∈ ω} =

⊔

n∈ω

Hn

where Hn = (Mn\
⋃n−1

j=0 Mj)\{li : i ∈ ω}. Notice that N∗
ω ⊇

⋃
C′ (indeed

from every Mn we removed only a finite number of points) and that
(N ′′′

ω )∗\N∗
ω 6= ∅ (since N ′′′

ω \Nω = {li : i ∈ ω}) whence |ω\Nω| = ω.
Now let us take into account Nω =

⊔
n∈ω Hn where M∗

n = H∗
n for

every n ∈ ω; we want to remark that on each Hn with n ∈ J1 we have
already a decomposition of type l(xn) by construction.

Now if |J1| = ω, on every Hn with n ∈ J0 let us put a decomposition
of type 1; then let us order the subsets Hn in such a way that the types of
decomposition that we have put on them form a nondecreasing sequence
with the supremum equal to βω < α.

If |J1| < ω, it turns out that sup{l(xn) : n ∈ J1} = βω is a successor
ordinal; let us put a decomposition of type βω on every Hn with n ∈ J0

4

and then let us order the subsets Hn in such a way that the types of
decomposition that we have put on them form a nondecreasing sequence
whose supremum is equal to βω < α.

If J1 = ∅, we choose to put a decomposition of type a successor
ordinal βω < α on every Hn with n ∈ J0 and then we proceed as in the
latter case.

This time let us apply property S.6 to the subsets Hn and to Nω: it
turns out that {Hn}n∈ω is a countably infinite family of infinite pairwise
disjoint subsets of Nω and on every Hn is given a relation of some type in
such a way that the supremum of the nondecreasing sequence consisting
of the types of decomposition is βω with βω that can take up value from
1 to α not included. Then the relation on

⋃∞

n=1 Hn obtained in this way

4In this case |J0| = ω.
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can be extended to a relation ≈βω+1 on Nω of type βω + 1 where βω + 1
can have value a successor ordinal from 2 up to α.5

Remark 5.1. We want to remark that for the points constructed by the
decompositions on the Hn with n ∈ J0 it is always possible to find a fun-
damental system of elementary neighborhoods contained in Nω/ ≈βω+1

and such that their inverse images through jω
α+1 have empty intersec-

tion with Uω since H∗
n ∩ Uω = ∅; from now on, we consider only these

neighborhoods as elementary neighborhoods of those points.
Let us check the following properties:

T.1 N∗
ω\

⋃
i∈ω N∗

i 6= ∅: indeed it turns out that (Nω)∗ ⊇
⋃

L0 while⋃
L0 ∩

(⋃
i∈ω N∗

i

)
= ∅; hence, if L0 6= ∅, it follows that N∗

ω\
⋃

N∗
i ⊇

⊇
⋃

L0 6= ∅. On the other hand if L0 = ∅, then the family {Hn : n ∈ J1}
of pairwise disjoint subsets of ω is infinite; thus we can construct an
infinite subset T ⊂ Nω in this way: we choose a point tm ∈ Hm for every
m ∈ J1 and we set T = {tm : m ∈ J1}. The non-empty subset T ∗ is such
that T ∗ ⊆ N∗

ω, while T ∗ ∩ N∗
i = ∅ for every i ∈ ω. We want to check it:

certainly T ∗∩H∗
n = ∅ for every n ∈ J1 and hence T ∗∩

(⊔
H∗

n

)
= ∅; if there

is an index i ∈ ω such that |T∩Ni| = ω, then (T∩Ni)
∗ ⊂

(
N∗

ω∩
⋃

i∈ω N∗
i

)
,

while we know that
(
N∗

ω ∩
⋃

i∈ω N∗
i

)
=

⊔
H∗

n.

T.2
⋃

i≤ω N∗
i 6= ω∗: notice that the set L is such that L∗ ∩ N∗

ω = ∅
and that L∗∩N∗

i = ∅ for every i < ω (indeed for every i < ω it holds that
|Ni ∩ L| < ω; if there exists an index i ∈ ω such that |L ∩ Ni| = ω, then
(L∩Ni)

∗ ⊂
(
(N ′′′

ω )∗∩
⋃

i∈ω N∗
i

)
, while we know that

(
(N ′′′

ω )∗∩
⋃

i∈ω N∗
i

)
=

=
⊔

H∗
n and L∗ ∩

(⊔
H∗

n

)
= ∅). Then we obtain that

⋃
i≤ω N∗

i ∩ L∗ = ∅
where L∗ is open in ω∗ whence ω∗\L∗ is a closed subset that contains⋃

i≤ω N∗
i ; so it contains its closure and it follows that

⋃
i≤ω N∗

i ∩ L∗ = ∅.

At the end, we can conclude that
⋃

i≤ω N∗
i 6= ω∗.

T.3 For every i ∈ ω, the relations ≈βi+1 and ≈βω+1 coincide on
Ni ∩ Nω: indeed N∗

ω ∩ N∗
i ⊆

⊔
H∗

n (with n ∈ J1), the relation on N∗
ω

extends the relations placed on the subsets H∗
n (with n ∈ J1) and these

last relations coincide with the relations we put on the subsets N∗
i . Then

a relation Qω+1 is defined on Uω+1 =
⋃ω

i=1 N∗
i .

T.4 A family Cξ ∈ Γ with index ξ ≤ ω is not an (ω + 1)-family.
Notice that the families Cξ with ξ < ω do not exist and hence we have
only to prove that the family Cω is not an (ω + 1)-family.

5In the case in which α is a limit ordinal, βω +1 can take up value on the successor
ordinals from 2 up to an ordinal strictly less than α.
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We say that Cξ ∈ Γ is an (ω + 1)-family if Cξ can be decomposed
into two subfamilies Lω+1

0 and Lω+1
1 satisfying the following conditions.

U.1
⋃

Lω+1
0 ∩ Uω+1 = ∅.

U.2 For every c ∈ L1
ω+1 there exists i ≤ ω, a point xc ∈ Ni/ ≈βi+1

of level γc + 1 and an elementary neighborhood Uc of xc such that
c = j−1

βi+1(Uc) ∩ ω∗.

U.3 The set
{
xc : c ∈ Lω+1

1

}
has no accumulation point in Uω+1/Qω+1.

U.4 It holds that sup
{
γc + 1 : c ∈ Lω+1

1

}
< α.

Remember that Cω is the ω-family with minimum index we have
just used in order to construct Nω/ ≈βω+1; moreover notice that if ω > ω
the family Cω is not an ω-family and then it neither is an (ω + 1)-family.
Towards a contradiction, suppose that it is an (ω +1)-families: in Lω

0 we
put the elements that lie in Lω+1

0 and all those elements c ∈ Lω+1
1 such

that ω is the only value of the index i for which U.2 is satisfied; these
c are such that c ∩ Uω = ∅ by Rem. 5.1. Instead in Lω

1 we put all the
other c ∈ Lω+1

1 which are left: they obviously satisfy U.4 since we are
estimating the supremum on a lesser number of elements; moreover they
satisfy U.3 since if the points xc had accumulation points in Uω/Qω then
they would have accumulation points in Uω+1/Qω+1 due to the fact that
the new relation respects the old ones.

If instead ω = ω, then Cω = L0 ∪ L1 is not an (ω + 1)-family
since the elements of Cω would have all to stay in Lω+1

1 but the corre-
sponding infinite points {xc : c ∈ Lω+1

1 }, which are all in the compact
space N∗

ω/ ≈βω+1, must have an accumulation point in Uω+1/Qω+1 ⊇
⊇ N∗

ω/ ≈βω+1.

Suppose to have constructed infinite subsets Nγ ⊂ ω (with γ <
< δ < ω1) and relations ≈βγ+1 of type βγ + 1 < α + 1 on Nγ satisfying
the following conditions.

T.1 N∗
γ\

⋃
γ′<γ N∗

γ′ 6= ∅.

T.2
⋃

γ′≤γ N∗
γ′ 6= ω∗.

T.3 For every γ′ < γ, the relations ≈βγ′+1 and ≈βγ+1 coincide on

Nγ′ ∩ Nγ.

T.4 A family Cξ with index ξ ≤ γ is not a (γ + 1)-family.

By T.3 and the decompositions set on the Nγ for every γ < δ, a
decomposition Qδ is defined on Uδ =

⋃
γ<δ N∗

γ . Let jδ
α+1 be the quotient

mapping jδ
α+1 : Uδ → Uδ/Qδ.
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We say that an element Cξ ∈ Γ is a δ-family if Cξ can be decomposed
into two subfamilies L0 and L1 satisfying the following conditions.

U.1
⋃

L0 ∩ Uδ = ∅.

U.2 For every c ∈ L1 there exists γ < δ, a point xc ∈ Nγ/ ≈βγ+1 of
level γc + 1 and an elementary neighborhood Uc of xc such that
c = j−1

βγ+1(Uc) ∩ ω∗.

U.3 The set {xc : c ∈ L1} has no accumulation point in Uδ/Qδ.

U.4 It holds that sup {γc + 1 : c ∈ L1} < α.

We can rewrite these properties in the following way:

i) L0 has to consist of elements C∗
n where the subsets Cn are transver-

sal to the subsets Nγ, i.e. every Cn ⊂ ω intersects every Nγ in a finite
number of points (in this way we are respecting U.1);

ii) L1 has to consist of elements C∗
m where for every m there exists

γ ∈ δ, a point xm ∈ Nγ/ ≈βγ+1 of level l(xm) < α and an elementary
neighborhood U(xm) such that C∗

m = j−1
βγ+1(U(xm)) ∩ ω∗. A further

necessary request is that the set {xm} has no accumulation point in
Uδ/Qδ and that sup{l(xm)} < α. We want to remark that by l(xm) we
mean a successor ordinal. (In this way we are respecting U.2–U.3–U.4.)

Let us show that it is possible to find a δ-family Cξ: for example,
we can use again Lemma 4.2, since the subsets N∗

γ with γ < δ < ω1

comply with the hypotheses. We want to remark that here the fact that
δ is a countable ordinal is essential in order to apply Lemma 4.2. In this
way we are able to find a subset ∆δ ⊂ ω with |∆δ| = ω and such that ∆δ

intersects every Nγ in a finite number of points. We can decompose this
infinite set in an infinite number of infinite subsets Tn ⊂ ω which again
intersect every Nγ in a finite number of points; we set L0 = {T ∗

n : n ∈ ω}.
It is clear that L = L0 is a δ-family.

Among all the δ-families in Γ, let us take the one with the minimum
index δ: we can write it as Cδ = L0 ⊔ L1 where L0 = {N∗

δ,n
: n ∈ J0},

L1 = {N∗

δ,n
: n ∈ J1} and J0 ∩ J1 = ∅. Of course, by construction, the

δ-family Cδ will comply with the following properties.

U.1
⋃

L0 ∩ Uδ = ∅.

U.2 For every N∗

δ,n
with n ∈ J1 there exist an index γn ∈ δ, a point xn ∈

∈ Nγn/ ≈βγn+1 of level l(xn) < α and an elementary neighborhood
U(xn) such that N∗

δ,n
= j−1

βγn+1(U(xn)) ∩ ω∗.

U.3 The set {xn : n ∈ J1} has no accumulation point in Uδ/Qδ.
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U.4 It holds that sup{l(xn) : n ∈ J1} = βδ < α with βδ that can take
up value from 1 to α not included. Without loss of generality, we
can always assume that the levels of the points are ordered in a
nondecreasing way.

For every n ∈ J1 it holds that Û(xn) = U(xn)\ω is a clopen neigh-
borhood of xn in N∗

γn
/ ≈βγn+1. In order to apply Lemma 4.4, we need

to rewrite
⋃

γ∈δ N∗
γ as a disjoint union; notice that, since δ is a count-

able ordinal, we can enumerate {N∗
γ}γ∈δ as {N∗

γi
}i∈ω. Let us set Ñγ1

=

= Nγ1
, Ñγ2

= Nγ2
\Nγ1

, ..., Ñγk
= Nγk

\
⋃k−1

i=1 Nγi
. It holds that

⊔
k∈ω Ñγk

=

=
⋃

k∈ω Nγk
, whence

⊔
k∈ω Ñ∗

γk
=

⋃
k∈ω N∗

γk
; we have only to prove the

non-trivial inclusion
⊔

k∈ω Ñ∗
γk

⊇
⋃

k∈ω N∗
γk

: if x ∈
⋃

k∈ω N∗
γk

, then there

is ı̄ ∈ ω such that x ∈ N∗
γı̄

=
[⊔

k≤ı̄ Ñγk

]∗
=

⊔
k≤ı̄ Ñ

∗
γk

⊆
⊔

k∈ω Ñ∗
γk

. No-

tice that, for every k ∈ ω, Ñ∗
γk

is distinguished relative to Qδ. Finally

we can apply Lemma 4.4 since the countable family {Ñγ}γ<δ, the points
{xn}n∈J1

and the relation Qδ defined on Uδ =
⊔

γ<δ Ñ∗
γ =

⋃
γ<δ N∗

γ satisfy

the hypotheses.6 We remark that
⋃

Û(xn) 6= Uδ/Qδ since in Uδ/Qδ there
are points of level α that

⋃
Û(xn) does not cover.7

Therefore it is possible to find pairwise disjoint elementary neigh-
borhoods Un with xn ∈ Un and a subset N ′

δ ⊂ ω such that (N ′
δ)

∗ ∩ Uδ =
=

⊔
(jδ

α+1)
−1(Un) =

⊔
E∗

n. Let us set C′ = L0 ∪ {(jδ
α+1)

−1(Un) : n ∈ J1},
Q = {Nδ,n : n ∈ J0} and R = {Nγ : γ ∈ δ}.

From now on, by replacing everywhere the index ω by δ and fol-
lowing exactly the same steps we did for the construction of Nω and the
relation ≈βω+1, we are able to find a suitable Nδ and a relation ≈βδ+1 on
it of type βδ + 1 with 2 ≤ βδ + 1 ≤ α8 which satisfies properties T.1 to
T.3: the proof of these properties follows the one given on page 193.

Then a relation Qδ+1 is defined on Uδ+1 =
⋃δ

γ=1 N∗
γ .

Let us check property T.4 which states that a family Cξ with index
ξ ≤ δ is not a (δ + 1)-family.

A family Cξ ∈ Γ is a (δ + 1)-family if it can be decomposed into

6At most we have to restrict the neighborhoods of the points {xn} in such a way
that each of them belongs to some Ñ∗

γ /Qδ for some γ < δ.
7Notice that

⋃
Û(xn) 6= Uδ/Qδ also in the case in which α is a limit ordinal:

indeed at the beginning of the construction we put decompositions of type βi + 1 on
the subsets Ni in such a way that sup{βi + 1} = α; hence in Uδ/Qδ there certainly
exists a point of level βδ + 1 < α that

⋃
Û(xn) does not cover.

8In the case in which α is a limit ordinal it turns out that 2 ≤ βδ + 1 < α.
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two subfamilies Lδ+1
0 and Lδ+1

1 , which satisfy conditions of the type U.1
to U.4 at level δ + 1.

Remember that Cδ is the δ-family with minimum index we have just
used in the construction of N δ/ ≈βδ+1. If δ > δ the families Cξ with ξ ≤ δ
are not δ-families and then they neither are (δ + 1)-families. Towards a
contradiction, suppose that they are (δ + 1)-families; then in Lδ

0 we put
the elements that lie in Lδ+1

0 and all those elements c ∈ Lδ+1
1 such that δ

is the only value of the index γ for which U.2 is satisfied; these c are such
that c∩Uδ = ∅ (this result follows from the extension of Rem. 5.1 to the
case δ). Instead in Lδ

1 we put all the other c ∈ Lδ+1
1 that are left: they

obviously satisfy U.4 since we are estimating the supremum on a lesser
number of elements; moreover they satisfy U.3, since if the points xc

had accumulation points in Uδ/Qδ, then they would have accumulation
points in Uδ+1/Qδ+1, due to the fact that the new relation respects the
old ones.

On the other hand, if δ = δ then the families Cξ with ξ < δ
are not δ-families and by what we have just remarked they neither are
(δ + 1)-families; moreover Cδ = Lδ

0 ∪ Lδ
1 is not a (δ + 1)-family, since

the elements of Cδ would have all to stay in Lδ+1
1 but the corresponding

infinite points xc, which are all in the compact space N∗
δ / ≈βδ+1, must

have an accumulation point in Uδ+1/Qδ+1 ⊇ N∗
δ / ≈βδ+1.

Therefore, by transfinite induction, we have defined a relation Qω1

on
⋃

γ<ω1
Nγ which coincides with ≈βγ+1 on each Nγ.

Let us prove the following lemma.

Lemma 5.2. If a family Cξ ∈ Γ is not a ϑ-family then it is not a δ-family
for every δ > ϑ.

Proof. We prove that if Cξ ∈ Γ is a δ-family then it is also a ϑ-family.
Let us suppose that Cξ is a δ-family; then it can be decomposed into two
subfamilies Lδ

0 and Lδ
1 satisfying the following conditions.

U.1
⋃

Lδ
0 ∩ Uδ = ∅.

U.2 For every c ∈ Lδ
1 there exist γ < δ, a point xc ∈ Nγ/ ≈βγ+1

of level γc + 1 and an elementary neighborhood Uc of xc such that
c = j−1

βγ+1(Uc) ∩ ω∗.

U.3 The set
{
xc : c ∈ Lδ

1

}
has no accumulation point in Uδ/Qδ.

U.4 It holds that sup
{
γc + 1 : c ∈ Lδ

1

}
< α.

We want to show that Cξ is also a ϑ-family. In Lϑ
0 we put the

elements that lie in Lδ
0 and all those elements c ∈ Lδ

1 for which the
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only ordinals that fit for U.2 are larger than or equal to ϑ; these c are
the inverse images of elementary neighborhoods of points constructed by
starting from some Fn where F ∗

n ∈ Lζ
0 with ζ ≥ ϑ. We know that the

elementary neighborhoods of these points are contained in F n/ ≈βζ+1

and then, by Rem. 5.1 and its extension to the case δ, it follows that
for each of these c it holds that c ∩ Uϑ = ∅. On the other hand in Lϑ

1

we put all the other c ∈ Lδ
1 that are left. They obviously satisfy U.4,

since we are estimating the supremum on a lesser number of elements;
moreover they satisfy U.3, since if the points xc had accumulation points
in Uϑ/Qϑ, then they would have accumulation points in Uδ/Qδ since the
new relations respect the old ones. ♦

Now we can prove the following fundamental remark.

Remark 5.3. For every ϑ < ω1, Cϑ ∈ Γ is not an ω1-family. By
contradiction suppose that there exists an index ϑ < ω1 such that Cϑ is
an ω1-family. By transfinite induction we proved that, for every ϑ < ω1,
a family Cξ with ξ ≤ ϑ is not a (ϑ + 1)-family and hence Cϑ is not a
(ϑ + 1)-family. On the other hand we supposed that Cϑ is an ω1-family
and then by Lemma 5.2 it is a (ϑ + 1)-family. A contradiction. Let us
point out that there can not exist ω1-families in Γ, since the elements of
the set Γ have indices that go from ω included to ω1 not included.

Finally we define the relation ≈α+1 on βω in this way:

– it coincides with Qω1
on

⋃
γ<ω1

Nγ ;

– two free ultrafilter belonging to ω∗\
⋃

γ<ω1
N∗

γ are equivalent under
the relation ≈α+1.

Let us call Kα+1 the space obtained by the quotient of βω with this
relation and jα+1 the natural quotient mapping. Let us remark that, by
property U.2, ω∗\

⋃
γ<ω1

N∗
γ is not empty: indeed for every γ ∈ ω1 it

holds that Bγ = ω∗\
⋃

γ′≤γ N∗
γ′ is a closed subset of ω∗ and the subsets

Bγ (with γ ∈ ω1) are such that Bγ1
⊇ Bγ2

for every γ1 < γ2; moreover
the family of closed subsets {Bγ}γ∈ω1

has the finite intersection property
by T.2 proved for every step γ ∈ ω1. Thus, due to the compactness of ω∗,
it follows that

⋂
γ∈ω1

Bγ =
⋂

γ∈ω1
(ω∗\

⋃
γ′≤γ N∗

γ′) = ω∗\
⋃

γ∈ω1
N∗

γ 6= ∅.
Then jα+1 collapses ω∗\

⋃
γ<ω1

N∗
γ to a single point which we call x∞.

If an element of Kα+1 is a point of the decompositions ≈βδ+1 and
≈βγ+1, then the point lies in the same level in Nδ/ ≈βδ+1 and Nγ/ ≈βγ+1:
indeed whenever we reconsider a point that was in some previous decom-
positions we take care that there exists an elementary neighborhood of
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it that accompanies the point in the new decomposition; in this way the
level of the point is preserved and the definition of Lβ+1 as the set of
the points that lie in the level β + 1 in some Nγ/ ≈βγ+1 is correct. If
a point of the space Kα+1 is a point of the decompositions ≈βδ+1 and
≈βγ+1 with δ > γ, then the problem reduces to examine what happens in

Nδ/ ≈βδ+1 as regards its elementary neighborhoods. We have to remark
that in the construction of the space Kα+1 we paid attention to the fact
that for every level 0 < β + 1 ≤ α9 every point of level β + 1 had a basis
of clopen subsets homeomorphic to the space Kβ+1 which is compact and
sequential by inductive hypothesis.

Now we have to understand which are the elementary neighbor-
hoods of the unique point of level α + 1 in Kα+1, i.e. of the point
x∞ = jα+1(ω

∗\
⋃

γ<ω1
N∗

γ ). On this subject let us prove the following
lemma.

Lemma 5.4. The collection of the clopen subsets Kα+1\
⋃

x∈G Ux (where
G is a finite set and for every x ∈ G the clopen subset Ux is an elemen-
tary neighborhood in Kα+1 of the point x that can have level equal to a
successor ordinal smaller than or equal to α) is a basis at the point x∞.

Proof. In an obvious way Kα+1\
⋃

x∈G Ux is a clopen subset of Kα+1

containing x∞. Let A be an open subset of Kα+1 containing x∞ and let
C = Kα+1\A be the complementary closed subset. For every x ∈ C, let
Ux be an elementary clopen neighborhood of x; trivially, by taking all
the clopen neighborhoods Ux, with x ∈ C, we cover C. Let us consider
j−1
α+1(C): it is a closed subset of βω and then it is compact. If we take

all the open subsets j−1
α+1(Ux) (with x ∈ C) they form an open cover of

j−1
α+1(C); then there exists a finite subcover

⋃
x∈G j−1

α+1(Ux) ⊇ j−1
α+1(C).

Hence it turns out that jα+1

(⋃
x∈G j−1

α+1(Ux)
)

=
⋃

x∈G jα+1(j
−1
α+1(Ux)) =

=
⋃

x∈G Ux ⊇ jα+1(j
−1
α+1(C)) = C and, by passing to the complementary

subsets, we can conclude that Kα+1\
⋃

x∈G Ux ⊆ Kα+1\C = A. ♦

We call elementary each of these neighborhoods of the point x∞.

6. Check of the properties of Kα+1

Now we want to check that the space Kα+1 satisfies all the requested
properties.

Lemma 6.1. Kα+1 is a T2 space and it is compact.

9strictly smaller than α in the case in which α is a limit ordinal.
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Proof. Trivially the points of L0 can be separated from every other
point since they are isolated. Moreover, if we want to separate x∞ =
= jα+1(ω

∗\
⋃

γ<ω1
N∗

γ ) from any other point x, it is enough to take re-
spectively the open disjoint elementary neighborhoods Kα+1\Ux and Ux.

Suppose now to have to part two points x1 and x2 of level smaller
than α + 1; it is possible to face up with two different situations.

1) There exists ϑ ∈ ω1 such that x1, x2 ∈ jα+1(Nϑ); notice that
jα+1(Nϑ) ≃ Kβ+1 (with β + 1 < α + 1) which is a T2 space by inductive
hypothesis. Then in jα+1(Nϑ) there are two open neighborhoods Vx1

and
Vx2

with empty intersection; they are also open in Kα+1 and hence Vx1

and Vx2
are open neighborhoods of x1 and x2 respectively with empty

intersection.

2) There is no ϑ ∈ ω1 such that x1, x2 ∈ jα+1(Nϑ); therefore there
are ϑ1, ϑ2 ∈ ω1 such that x1 ∈ jα+1(Nϑ1

) ≃ Kβ+1 with β + 1 < α + 1 and
x2 ∈ jα+1(Nϑ2

) ≃ Kγ+1 with γ+1 < α+1. Now I = jα+1(Nϑ1
)∩jα+1(Nϑ2

)
is a clopen subset of Kα+1 and hence jα+1(Nϑ1

)\I and jα+1(Nϑ2
)\I are

disjoint open neighborhoods of x1 and x2 respectively.

Therefore it turns out immediately that Kα+1 is compact since jα+1

is a continuous function from the compact space βω to the T2 space
Kα+1. ♦

Before proving the sequentiality of the space Kα+1 we need to
demonstrate that properties S.4 and S.5 hold.

Remark 6.2. In Kα+1, if a nonconstant sequence (xn)n∈ω of points
xn ∈ Lγn+1 with nondecreasing levels converges to a point x ∈ Lγ+1, then
for the sequence (γn+1) of ordinal numbers it holds that sup{γn+1} = γ.
(Properties S.4.)

Proof. For every γ + 1 < α + 1 we apply the inductive hypothesis, since
we have supposed that property S.4 holds in Kγ+1 for every γ+1 < α+1.

Now we have to prove that for a non-constant sequence of points
xn ∈ Lγn+1 (where the sequence (γn+1) is not decreasing) that converges
to the point x∞ ∈ Lα+1 it holds that sup{γn + 1} = α. Towards a
contradiction, let us suppose that sup{γn + 1} < α. In principle there
are two different cases we have to analyse:

1) from the sequence (xn)n∈ω we can extract an injective subse-
quence (xni

)i∈ω;
2) from the sequence (xn)n∈ω we can not extract any injective sub-

sequence (xni
)i∈ω.
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We can avoid considering the latter case: indeed, since (xn)n∈ω is a non-
constant sequence, there are at least two points that appear infinite times
and then the sequence is not convergent to any point against the hypoth-
esis.

In the former case the sequence (xni
)i∈ω has to converge to x∞ too.

If {xni
}i∈ω had no accumulation point in Uω1

/Qω1
, then by Rem. 4.5 it

would be possible to find a countable infinity of pairwise disjoint clopen
subsets of ω∗; moreover these clopen subsets would satisfy the properties
to be an ω1-family (notice that sup{γn + 1} < α) and this would be
inconsistent with Rem. 5.3. Then the subset S = {xni

: i ∈ ω} has at
least an accumulation point in Uω1

/Qω1
; thus there exists a point y ∈

∈Uω1
/Qω1

(where certainly l(y)=δ+1<α+1) such that y∈{xni
: i∈ω}.

Then let us consider an elementary neighborhood of y, Uy, which has to
be homeomorphic to the space Kδ+1; we can assert that infinite points of
S such that the supremum of their levels is equal to an ordinal number
η < α are in Uy. We denote this set of points by S ′ ⊆ S; we know that
property S.5 holds in Kδ+1 and then from the injective sequence S ′ it is
possible to extract a sequence converging to a point of level η+1 < α+1.
Therefore the sequence (xn)n∈ω admits a subsequence which converges to
a point of level strictly smaller than α + 1 against the hypothesis. ♦

Remark 6.3. In Kα+1, from every injective sequence S = (xn)n∈ω of
points with nondecreasing levels such that sup{l(xn)} = η ≤ α it is
possible to extract a subsequence converging to a point of level η + 1.
(Property S.5.)

Proof. If η = 0 then the sequence (xn)n∈ω is formed by points of ω;
therefore there is an index γ ∈ ω1 such that |{xn}n∈ω ∩ Nγ | = ω: oth-
erwise, if it turns out that |{xn}n∈ω ∩ Nγ | < ω for every γ ∈ ω1, then
from Nω1

= {xn}n∈ω we are able to construct an ω1-family and this is a
contradiction. Then in Nγ/ ≈α+1 there are infinite points of the above
sequence but Nγ/ ≈α+1≃ Kβ+1 with β+1 < α+1 and hence, since prop-
erty S.5 holds in Kβ+1 by inductive hypothesis, it is possible to extract a
subsequence converging to a point of level 1 from the starting sequence.

Suppose now that 0 < η < α; let us choose an injective subse-
quence S ′ = (xni

)i∈ω ⊆ S in such a way that the sequence of the lev-
els of the points converges upwards to η; if S ′ had no accumulation
point in Uω1

/Qω1
, then by Rem. 4.5 it would be possible to find a count-

able infinity of pairwise disjoint clopen subsets of ω∗; moreover these
clopen subsets would satisfy the properties to be an ω1-family (notice
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that sup{l(xni
)} < α) and this would be inconsistent with Rem. 5.3.

Thus S ′ must have at least an accumulation point in Uω1
/Qω1

and hence
there exists a point y ∈ Uω1

/Qω1
with l(y) = δ + 1 < α + 1 such that

y ∈ {xni
: i ∈ ω}. Then let us consider an elementary neighborhood of

y, Uy, which has to be homeomorphic to the space Kδ+1; we can assert
that infinite points of the set {xni

: i ∈ ω} such that the limit and hence
the supremum of their levels is equal to η < α are in Uy. We denote this
set of points by S ′′ ⊆ S ′; we know that property S.5 holds in Kδ+1 and
then from the injective sequence S ′′ it is possible to extract a sequence
converging to a point of level η + 1 < α + 1.

If η = α then let us choose again an injective subsequence S ′ =
= (xni

)i∈ω ⊆ S in such a way that the levels of the points xni
converges

upwards to α; the sequence S ′ converges to x∞, since its points fall
eventually in every neighborhood of x∞. ♦

Now we are able to prove the sequentiality of Kα+1.

Lemma 6.4. Kα+1 is sequential.

Proof. Let us begin by proving that Bα+1 = Kα+1\{x∞} is sequential,
i.e. by showing that if F is a sequentially closed subset of Bα+1 then it
is closed. Let us suppose that F is sequentially closed and let us show
that for every x ∈ Bα+1\F there exists an elementary neighborhood Ûx

of x such that Ûx ⊆ Bα+1\F . If x ∈ Bα+1\F , then there exists an open
neighborhood of x, Ux ⊆ Bα+1 with the peculiarity that Ux ≃ Kβ+1 (with
β+1 < α+1) which is a compact sequential space. Notice that x /∈ F∩Ux;
if F ∩Ux = ∅, then Ux is an elementary neighborhood containing x such
that Ux ⊆ Bα+1\F . If instead F ∩ Ux 6= ∅, since F is sequentially closed
in Bα+1, then F ∩Ux is sequentially closed in Ux (otherwise, if F ∩Ux is
not sequentially closed in Ux, hence we have a sequence in F ∩ Ux with
its limit point in Ux\F ; we can see this sequence as a sequence in F with
its limit point out of F and then F is not sequentially closed against the
hypothesis). It follows that F ∩ Ux is closed in Ux since Ux is sequential
and hence it is compact; let us consider the open cover of F∩Ux formed by
elementary neighborhoods of points in F∩Ux not containing x. From this
open cover it is possible to extract a finite subcover

⋃n

i=1 Uyi
⊇ F ∩ Ux.

Then Ûx = Ux\
⋃n

i=1 Uyi
is an open neighborhood of x which has empty

intersection with F . Thus we can conclude that Bα+1 is sequential.
Now we have still to demonstrate that, if F is sequentially closed

in Kα+1 and x∞ /∈ F , then x∞ /∈ F . Towards a contradiction, suppose
that x∞ /∈ F and, at the same time, x∞ ∈ F . Since x∞ /∈ F then either
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F is finite (and in this case the point x∞ /∈ F against the hypothesis) or
F is infinite and in this second case from F it is not possible to extract
any injective sequence of points with nondecreasing levels such that the
supremum of the levels is equal to α; indeed if such a sequence existed, by
Rem. 6.3 from this sequence it would possible to extract a subsequence
converging to x∞ and then x∞ would stay in F (since F is sequentially
closed) against the hypothesis. Now if α is a successor ordinal, there
exists at most a finite number of points of level α = γ0 in F that we call
z1, z2, . . . , zm; let us consider an elementary neighborhood Uzi

for each
of these points and let us set G1 = F\

⋃m
i=1 Uzi

⊆ F . We assert that
either G1 is finite (and in this case it turns out that x∞ /∈ F against the
hypothesis) or G1 is infinite and in this second case from G1 it is not
possible to extract any injective sequence of points with nondecreasing
levels such that the supremum of the levels is equal to α − 1 = γ1;
indeed if such a sequence existed, by Rem. 6.3 from this sequence it
would possible to extract a subsequence converging to a point of level
α different from z1, z2, . . . , zm and then also this point would stay in F
against our assumption. If instead α is a limit ordinal, it is not true that
for every γ ∈ α there exists x ∈ F such that l(x) > γ + 1 (otherwise
x∞ ∈ F which is sequentially closed) and hence there exists an index
γ ∈ α such that for every x ∈ F it turns out that l(x) ≤ γ + 1 < α.
Therefore we can assert that in F there are at most a finite number of
elements of level γ + 1 that we call y1, y2, . . . , yk: indeed if we had an
infinite number of these points, it would possible to extract a subsequence
converging to a point of level (γ +1)+1 and this point would stay again
in F but this is against what we have just remarked. Let us consider
an elementary neighborhood Uyi

for each of these points and let us call

G1 = F\
⋃k

i=1 Uyi
⊆ F . We can say that either G1 is finite (and in this

case the point x∞ /∈ F ) or G1 is infinite and in this second case from
G1 it is not possible to extract any injective sequence of points with
nondecreasing levels such that the supremum of the levels is equal to
γ1 = γ < α; indeed if such a sequence existed, by Rem. 6.3 from this
sequence it would be possible to extract a subsequence converging to a
point of level γ + 1 different from y1, y2, . . . , yk and then also this point
would stay in F against what we have assumed.

In each case we have constructed a sequentially closed subset G1

from which it is not possible to extract any injective sequence of points
with nondecreasing levels such that the supremum of the levels is equal
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to γ1 < α; moreover G1 is the complement of a finite number of elemen-
tary neighborhoods in F . Then it is possible to repeat the procedure and
to find step by step a decreasing sequence of ordinals γ0 > γ1 > γ2 >
> . . . > γn > . . . and corresponding subsets G1 ⊇ G2 ⊇ . . . ⊇ Gn ⊇ . . ..
This sequence has to be finite and then we find a finite set Gn after a
finite number of steps. Trivially we can cover Gn by a finite number of
elementary neighborhoods; moreover Gn has been constructed as com-
plement of a finite number of elementary neighborhoods in F . Then it
turns out that it is possible to cover F with finitely many elementary
neighborhoods of points of level smaller than α + 1 and hence it follows
that x∞ /∈ F . A contradiction. ♦

Now we want to show that every point in Kα+1 belongs to the
closure of L0, i.e that the set L0 is dense in Kα+1.

Remark 6.5. For every x ∈ Kα+1 it holds that x ∈ L0, i.e. L0 = Kα+1.

Proof. Let x be a point in Kα+1 with l(x) = β + 1 < α + 1 and
let V be a non-empty neighborhood of x; then there exists an open
elementary neighborhood Ux ≃ Kβ+1 ⊆ V and it turns out that j−1

α+1(Ux)
is a non-empty open subset in βω. Therefore there exists a free or a
fixed ultrafilter U such that U ∈ j−1

α+1(Ux). If U is fixed we trivially
finish; if U is a free ultrafilter, since j−1

α+1(Ux) is an open subset, there is
an infinite subset U ′ of ω with U ′ ∈ U such that (U ′)∗ ∪ U ′ ⊆ j−1

α+1(Ux);
then U ′ ⊆ ω (with |U ′| = ω) is such that U ′ ⊆ j−1

α+1(Ux) and hence
W = jα+1(U

′) ⊆ Ux; we can conclude that Ux ∩ L0 ⊇ W ∩ L0 6= ∅.
Now let us consider x∞ ∈ Kα+1 and let U be an open neighborhood

of x∞. By Lemma 5.4 there exists an open subset Ax∞
=Kα+1\

⋃
Ux⊆U ;

therefore j−1
α+1(Ax∞

) is a non-empty open subset of βω and hence we can
proceed as above. ♦

Since we have proved that the space Kα+1 is sequential and that
L0 = Kα+1, Rem. 6.2 allows us to conclude that the level of each point is
larger or equal to its order of sequentiality with respect to L0. We have
to prove a last remark before concluding that the level of each point is
exactly equal to its sequential order with respect to the set L0.

Remark 6.6. Let A be a closed subset in
⋃

γ+1≤η Lγ+1 with η ≤ α.

Then it follows that A ∩
⋃

γ+1≤η+1 Lγ+1 = seqcl(A).

Proof. Since A is closed in
⋃

γ+1≤η Lγ+1, then A is sequentially closed in⋃
γ+1≤η Lγ+1 and hence there is no sequence in A converging to some point

of
⋃

γ+1≤η Lγ+1\A. Notice that by Rem. 6.2 it turns out that seqcl(A) ⊆



Sequential order under CH 205

⊆A∩
⋃

γ+1≤η+1Lγ+1.We want to prove that A∩
⋃

γ+1≤η+1Lγ+1⊆seqcl(A).

Let x be a point in (A\A) ∩ (
⋃

γ+1≤η+1 Lγ+1); trivially it holds that

l(x) = η + 1. Since Kα+1 is sequential and x ∈ A, it turns out that there
exists an index β ∈ ω1 such that x ∈ seqclβ(A); we state that β = 1.
Towards a contradiction, let us suppose that x /∈ seqcl1(A), i.e. let us
suppose that no sequence in A converges to x. Then x is the limit point of
a sequence whose elements are in some sequential closure of A and not in
A, i.e. x is the limit point of a sequence (yβi+1)i∈ω with sup{βi+1} ≥ η+1
but this is absurd since l(x) = η + 1: indeed if it was correct, in Kα+1

there would exist a sequence (yβi+1)i∈ω with sup{βi + 1} 6= η converging
to a point of level η + 1 and this is inconsistent with Rem. 6.2. ♦

Finally we can prove the following crucial lemma.

Lemma 6.7. In Kα+1 the order of sequentiality of a point of level β + 1
with respect to L0 is β+1 and Kα+1 is a space with sequential order α+1.

Proof. Notice that the points of level 0 and 1 have sequential order
respectively 0 and 1 with respect to the set L0. Now consider the set⋃

γ+1≤η Lγ+1 with η ≤ α; it complies with the hypotheses of Rem. 6.6
since it is closed in

⋃
γ+1≤η Lγ+1 and hence it holds that

⋃

γ+1≤η

Lγ+1

⋂ ⋃

γ+1≤η+1

Lγ+1 =

=

{
y ∈

⋃

γ+1≤η+1

Lγ+1 : ∀Uy,
(
Uy ∩

⋃

γ+1≤η

Lγ+1

)
6= ∅

}
=

=
⋃

γ+1≤η+1

Lγ+1 = seqcl
( ⋃

γ+1≤η

Lγ+1

)
.

This result together with Rem. 6.5 allows us to conclude that the level
of each point is smaller or equal to its order of sequentiality with respect
to the set L0. But we have already remarked that the level of each point
is larger or equal to its order of sequentiality with respect to the set L0

and hence we can conclude that the level of each point is exactly equal
to its order of sequentiality with respect to the set L0.

Then the space Kα+1 has sequential order equal to α + 1, since
x∞ ∈ L0 and x∞ has sequential order equal to α + 1 with respect to
L0. ♦

From the previous lemmas and remarks it follows that the space
Kα+1 satisfies conditions S.1 to S.6 presented in Sec. 3.
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Remark 6.8. Notice that every Baškirov’s space of sequential order a
successor ordinal is a scattered space such that the sequential order of
each point is equal to its scattering level.

Finally we can state the following theorem.

Theorem 6.9 (CH). Let α be any ordinal less than or equal to ω1. There
exists a compact sequential T2 quotient space of βω with sequential or-
der α.
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