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Abstract: In this paper, we have studied some geometric properties of spe-
cial weakly Ricci symmetric quasi-Einstein manifold, special weakly Ricci bi-
symmetric quasi-Einstein manifold and R-harmonic quasi-Einstein manifold.

1. Introduction

A non-flat Riemannian manifold (M",g) (n > 3) is called quasi-
Einstein manifold [5] if its Ricci tensor S of type (0, 2) is not identically
zero and satisfies the condition

(1.1) S(X,Y) = ag(X,Y) + bn(X)n(Y)
where a, b are scalars of which b # 0 and 7 is a nonzero 1-form such that
(1.2) 9(X,&) =n(X) VX

and ¢ is a unit vector field. In such a case a,b are called the associated
scalars, 7 is called the associated 1-form and ¢ is called the generator of
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the manifold. Such an n-dimensional manifold is denoted by the symbol
(QE)..

In [1], [6], [7] and [4], the authors studied quasi-Einstein manifolds
and gave some examples of quasi-Einstein manifold. Quasi-Einstein man-
ifolds arose during the study of exact solutions of the Einstein field equa-
tions as well as during considerations of quasi-umbilical hypersurfaces
of semi-Euclidean spaces. For instance the Robertson—Walker spacetime
are quasi-Einstein manifolds [9].

As a generalization of Chaki’s pseudosymmetric and pseudo Ricci
symmetric manifolds (see [2] and [3]), the notion of weakly symmetric
and weakly Ricci symmetric manifolds were introduced by L. Taméssy
and T. Q. Binh (see [15] and [16]). These type of manifolds were studied
with different structures by many authors (see [8], [11] and [12]). The
notion of special weekly Ricci symmetric manifold was introduced and
studied by Singh and Khan in [13].

An n-dimensional Riemannian manifold (M™, g) (n > 2) is called a
special weakly Ricci-symmetric manifold (SW RS),, (see [13]) if the Ricci
tensor S satisfies the condition

(1.3)  (Vx9(Y.Z) =2a(X)S(Y,Z) + a(Y)S(X, Z) + a(Z)S(Y, X),
for any vector fields X,Y, Z on M"™, where « is 1-form and is defined by

(1.4) a(X) = g(X,p),

where p is a associated vector field and V is the Levi-Civita connection
of M".

Also the notion of special weakly Ricci bi-symmetric manifold was
introduced by Singh and Sinha [14]. An n-dimensional Riemannian man-
ifold (M™, g) (n > 2) is said to be a special weakly Ricci bi-symmetric
manifold (SWRBS), (see [14]) if it satisfies the condition
(1.5)

(Vi VxS)(Y. 2)=28(W, X)S(Y, Z)+B(W,Y)S(X, Z)+B(W. Z)S(Y. X),

where (3 is a 2-form and is defined as
(1.6) BW, X) =g((W,X),T),

where T is a vector field.
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A non-flat Riemannian manifold (M", g) (n > 2) is said to be a R-
harmonic manifold (see [10]) if its Ricci tensor S satisfies the condition

(1.7) (VxS)(Y,Z) = (Vz9)(X,Y),

for all vector fields X,Y, Z on M™.

Motivated by the above studies, in this study we consider special
weakly Ricci symmetric quasi-Einstein manifold, special weakly Ricci bi-
symmetric quasi-Einstein manifold and R-harmonic quasi-Einstein mani-
fold. The paper is organized as follows: First, it is shown that if a special
weakly Ricci symmetric quasi-Einstein manifold admits a cyclic parallel
Ricci tensor with a + b # 0 then the 1-form a must vanish. Next, it is
proved that if in such a manifold the generator is a parallel vector field
then the scalar function a of such a manifold is constant along the gener-
ator. Also, the condition under which the generator of such a manifold is
parallel is enquired. Moreover a special weakly Ricci bi-symmetric quasi-
Einstein manifold has been studied. Further some interesting properties
regarding R-harmonic quasi-Einstein manifold are obtained.

2. Preliminaries

We consider a (QFE), with associated scalars a, b, associated 1-form
n and generator £. Since £ is a unit vector field,

2.1) gEE =1 ie gO=1
Contracting (1.1) over X and Y we get
(2.2) r =mna+ b,

where r denotes the scalar curvature of the manifold. Putting Y = ¢ in
(1.1) we have

(2.3) S(X,€) = (a+ bn(X).
Putting X =Y = ¢ in (1.1), we have
(2.4) S(6,€) = (a+b)

Let L be the symmetric endomorphism of the tangent space at each point
corresponding to the Ricci tensor S. Then

(2.5) g(LX,Y)=S(X,Y) VX,V
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Also,
(2.6) LE = (a + b)E.

These results will be used in the sequel.

3. On special weakly Ricci symmetric quasi-Einstein
manifolds

In this section we consider a special weakly Ricci symmetric quasi-
Einstein manifold M", i.e. equations (1.1), (1.2), (1.3) and (1.4) are
satisfied in M™. Taking cyclic sum in (1.3), we get

(3.1 (Vx9N Z) + (VyS)IZ, X) + (V29) (Y, X)
= 4[a(X)S(Y, Z) + a(Y)S(X, Z) + a(Z)S(X,Y)].

Let M" admit a cyclic parallel Ricci tensor. Then (3.1) reduces to
(3.2) a(X)S(Y, Z) + a(Y)S(X, Z) + a(Z)S(X,Y) = 0.
Taking Z = ¢ in (3.2) and using (2.3), (1.4) and (1.2) we have
33)  (a+b)a(X)nY)+ (a+b)a(Y)n(X) +n(p)S(Y, X) =0.
Now putting ¥ = ¢ in (3.3) and using (2.1), (2.3) and (1.4) we get
(3.4) (a+b)a(X) + (a+ b)n(p)n(X) + (a + b)n(p)n(X) =0.
Taking X = ¢ in (3.4) and using (2.1) and (1.4) we obtain

(3.5) (a+b)n(p) =0,

which implies n(p) = 0 provided (a + b) # 0. Using n(p) = 0 in (3.4) we
have

(3.6) a(X)=0, since (a+0b)#0

for any vector fields X on M™. Hence we can state the following theorem:
Theorem 1. If a special weakly Ricci symmetric quasi- Finstein manifold
admits a cyclic parallel Ricci tensor with a +b # 0 then the 1-form «
must vanish.
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Next we suppose that the vector field ¢ is parallel in M™. Then
Vx¢& =0, which implies R(X,Y)¢ = 0. Hence contracting this equation
with respect to Y we obtain S(X, ) = 0. So from (2.3) we have a+b =0,
which implies a = —b.

Then equation (1.1) becomes

(3.7) S(X,Y) = alg(X,Y) = n(X)n(Y)],
which implies that

(3.8) (VxS)(Y; Z) = Xlallg(Y, Z) = n(Y)n(Z)]
= a[(Vxn)(¥)n(Z) +n(Y)(Vxn)(2)],
where X |[a] denotes the derivative of a with respect to the vector field X.

Since ¢ is a parallel vector field, (Vxn)(Y) = 0 V X,Y,Z. Therefore
equation (3.8) becomes

(3.9) (VxS)(Y; 2) = Xal[g(Y, Z) = n(Y)n(Z)].

Since M™ is special weakly Ricci symmetric, by the use of (1.3) and (3.9),
we can write

(3.10)

Xla]lg(Y, Z2)=n(Y)n(Z)] = 2a(X)S(Y, Z)+a(Y)S(X, Z)+a(Z)S(Y, X).

Putting X = ¢ in (3.10) and using (3.7), we have

(3.11) ¢la] = 2aa(§).
Taking Z = ¢ in (3.10) and using (3.7), we get
(3.12) a(¢) =0.

So, in view of (3.11) and (3.12) we have {[a] = 0, which implies a is con-
stant along the vector field £&. Hence we can state the following theorem:
Theorem 2. Let M™ be a special weakly Ricci symmetric quasi-Einstein
manifold under the condition that & is a parallel vector field. Then the
scalar function a is constant along the vector field &.

Now we assume that the associated scalars a¢ and b are constants
in M™. Then for a (QF),, we have from (1.1),

(3.13) (VxS)(Y, Z) = b[(Vxn)(Y)n(Z) + (Vxn)(Z)n(Y)].
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From (1.3) and (3.13) we have,

(3.14) 20(X)S(Y, Z) + a(Y)S(X, Z) + a(Z)S(Y, X)
=b[(Vxn)(Y)n(Z) + (Vxn)(Z)n(Y)].

Putting Z = ¢ in (3.14) and using (2.3) we get,

(3.15) 2(a+b)a(X)n(Y)+(a+b)a(Y)n(X)+a(§)S(Y, X) = b(Vxn)(Y).
Taking Y = £ in (3.15) and using (2.3) we obtain,

(3.16) (a+ b)a(X) + (a+ b)a(E)n(X) = 0.

Putting X = ¢ in (3.15) we have

(3-17) 2(a +b)a(§)n(Y) + (a +b)a(Y) + (a+ b)a(En(Y) = b(Ven) (V).
Replacing Y with X in (3.17), we have

(3.18) 3(a+0)a(§)n(X) + (a + b)a(X) = b(Ven) (X).

Adding (3.16) and (3.18) we obtain,

(3.19) 2(a+ b)a(X) + 4(a + b)a(E)n(X) = b(Ven)(X).

Again, taking X = ¢ in (3.14) we have

(3.20) 20()S(Y, Z) + (a + b)a(Y)n(Z) + (a + b)a(Z)n(Y)
= b[(Ven)(Y)n(Z) + (Ven)(Z)n(Y)].

Now putting Y = Z = £ in (3.20), we get
(a+b)a(§) =0,

which implies

(3.21) a(§) =0, provided (a+0b)#0.
Again Y = € in (3.20) implies,

(3.22) 3(a+b)a()n(Z2) + (a+b)a(Z) = b(Ven)(Z).
Replacing Z by X in (3.22) implies

(3.23) 3a+b)a(E)n(X) + (a+b)a(X) = b(Ven)(X).
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Now, from (3.19) and (3.23), we have

(3.24) (a+ b)a(X) + (a+ b)a(E)n(X) = 0.
So, in view of (3.21) we get from (3.24)

(3.25) a(X)=0, VX [ (a+b)#0).
Now, by virtue of (3.21) and (3.25) we obtain from (3.15)
(3.26) (Vxm)(Y) =0, [.-b#0].

We can write (3.26) as follows:

(3.27) g(Vx&Y)=0, VX,V

From (3.27) it follows that

Vx{ =0,
which implies that the vector field £ is parallel. Hence we can state the
following theorem:
Theorem 3. Let M"™ be a special weakly Ricci symmetric quasi-Finstein
manifold with constants associated scalars a, b and (a+b) # 0. Then the
generator of such a manifold is parallel.

4. On special weakly Ricci bi-symmetric quasi-
Einstein manifolds

Let us consider a special weakly Ricci bi-symmetic quasi-Einstein
manifold M™ (n > 3), which is conformally flat. It is known [17] (p. 40)
that for a conformally flat (M™,g), the Riemann curvature tensor has
the following form:

(4.1) MXKZWﬁﬁﬁﬂﬂKEMKW%ﬂKZMKW)
+ S(X7 W)g(Y7 Z) o S(K W)g(X7 Z)]
t g, 2)g (Y, W)~ (Y, Z)g(X.W)],

(n=1)(n-2)
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where'R(X,Y, Z, W) = g(R(X,Y, Z),W). Taking bi covariant derivative
of (4.1) with respect to X and W, respectively, we get
(4.2)

(Vi Vx R)Y, 2,V) = — (V' TxS) (£ V)Y — (G Vx S)(Y,V) 2]

Permuting twice the vectors X, Y, Z in equation (4.2) and using Bianchi’s
second identity, we get

(4.3) (VwVxS)(Z, V)Y = (VwVxS)(Y,V)Z
(Vi Vy ) (X, V)Z — (Vi VyS)(Z, V)X
(Vi V2S) (Y, V)X — (Vg V2S) (X, V)Y = 0.

Using (1.5) in (4.3) and also using the symmetric properties of Ricci
tensor, we have

(4.4) BW, X)S(Z, V)Y =p(W, X)S(Y,V)Z+BW,Y)S(X,V)Z
—BW,Y)S(Z,V)X+B(W,2)S(Y,V)X-B(W,Z)S(X,V)Y =0.

Contracting (4.4) with respect to X, we have

(4.5) BW,Z)S(Y,V) = B(W.Y)S(Z,V) = 0.
By factoring off V' in (4.5), we get

(4.6) BW,Z)L(Y) — B(W,Y)L(Z) = 0.
Contracting (4.6) with respect to Y, we have

(47) BV, Z)r — BW, L(Z)) = 0.
Putting Z = ¢ in (4.7), we get

(4.8) BW,Er = (a+b)B(W,§), [using (2.6)]
or, {r—(a+b}3(W.¢) =0,
or, BW,&)=0, [.r #a+}),

i.e. the 2-form [ is zero for all W and the vector field &.

Theorem 4. In a special weakly Ricci bi-symmetric quasi- Finstein man-
ifolds M™, the 2-form 3 is zero for all vector fields X and the vector field
€ e B(X,§)=0,VX.
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5. On R-harmonic quasi-Einstein manifolds

Next we assume that M" is an R-harmonic quasi-Einstein manifold.
If £ is a parallel vector field then from (1.7) and (3.9) we have

(5.1)  (VxS)(Y,Z) = (Vz5)(X,Y)
= X[allg(Y, Z2) = n(Y)n(2)] = Z]a][g(X,Y) = n(X)n(Y)] = 0.

Now taking X = ¢ in (5.1) we get

g[a] = 07
which implies that a is constant along the vector field £&. This leads to
the following theorem:
Theorem 5. Let M™ be an R-harmonic quasi-Einstein manifold under
the condition that £ is a parallel vector field. Then the scalar function a
s constant along the vector field &.
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