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Abstract: In this paper, we have studied some geometric properties of spe-
cial weakly Ricci symmetric quasi-Einstein manifold, special weakly Ricci bi-
symmetric quasi-Einstein manifold and R-harmonic quasi-Einstein manifold.

1. Introduction

A non-flat Riemannian manifold (Mn, g) (n > 3) is called quasi-
Einstein manifold [5] if its Ricci tensor S of type (0, 2) is not identically
zero and satisfies the condition

(1.1) S(X, Y ) = ag(X, Y ) + bη(X)η(Y )

where a, b are scalars of which b 6= 0 and η is a nonzero 1-form such that

(1.2) g(X, ξ) = η(X) ∀X,

and ξ is a unit vector field. In such a case a, b are called the associated
scalars, η is called the associated 1-form and ξ is called the generator of
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the manifold. Such an n-dimensional manifold is denoted by the symbol
(QE)n.

In [1], [6], [7] and [4], the authors studied quasi-Einstein manifolds
and gave some examples of quasi-Einstein manifold. Quasi-Einstein man-
ifolds arose during the study of exact solutions of the Einstein field equa-
tions as well as during considerations of quasi-umbilical hypersurfaces
of semi-Euclidean spaces. For instance the Robertson–Walker spacetime
are quasi-Einstein manifolds [9].

As a generalization of Chaki’s pseudosymmetric and pseudo Ricci
symmetric manifolds (see [2] and [3]), the notion of weakly symmetric
and weakly Ricci symmetric manifolds were introduced by L. Tamássy
and T. Q. Binh (see [15] and [16]). These type of manifolds were studied
with different structures by many authors (see [8], [11] and [12]). The
notion of special weekly Ricci symmetric manifold was introduced and
studied by Singh and Khan in [13].

An n-dimensional Riemannian manifold (Mn, g) (n > 2) is called a
special weakly Ricci-symmetric manifold (SWRS)n (see [13]) if the Ricci
tensor S satisfies the condition

(1.3) (∇XS)(Y, Z) = 2α(X)S(Y, Z) + α(Y )S(X, Z) + α(Z)S(Y, X),

for any vector fields X, Y, Z on Mn, where α is 1-form and is defined by

(1.4) α(X) = g(X, ρ),

where ρ is a associated vector field and ∇ is the Levi-Civita connection
of Mn.

Also the notion of special weakly Ricci bi-symmetric manifold was
introduced by Singh and Sinha [14]. An n-dimensional Riemannian man-
ifold (Mn, g) (n > 2) is said to be a special weakly Ricci bi-symmetric
manifold (SWRBS)n (see [14]) if it satisfies the condition
(1.5)
(∇W∇XS)(Y, Z)=2β(W, X)S(Y, Z)+β(W, Y )S(X, Z)+β(W, Z)S(Y, X),

where β is a 2-form and is defined as

(1.6) β(W, X) = g((W, X), T ),

where T is a vector field.
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A non-flat Riemannian manifold (Mn, g) (n > 2) is said to be a R-
harmonic manifold (see [10]) if its Ricci tensor S satisfies the condition

(1.7) (∇XS)(Y, Z) = (∇ZS)(X, Y ),

for all vector fields X, Y, Z on Mn.
Motivated by the above studies, in this study we consider special

weakly Ricci symmetric quasi-Einstein manifold, special weakly Ricci bi-
symmetric quasi-Einstein manifold and R-harmonic quasi-Einstein mani-
fold. The paper is organized as follows: First, it is shown that if a special
weakly Ricci symmetric quasi-Einstein manifold admits a cyclic parallel
Ricci tensor with a + b 6= 0 then the 1-form α must vanish. Next, it is
proved that if in such a manifold the generator is a parallel vector field
then the scalar function a of such a manifold is constant along the gener-
ator. Also, the condition under which the generator of such a manifold is
parallel is enquired. Moreover a special weakly Ricci bi-symmetric quasi-
Einstein manifold has been studied. Further some interesting properties
regarding R-harmonic quasi-Einstein manifold are obtained.

2. Preliminaries

We consider a (QE)n with associated scalars a, b, associated 1-form
η and generator ξ. Since ξ is a unit vector field,

(2.1) g(ξ, ξ) = 1 i.e. η(ξ) = 1.

Contracting (1.1) over X and Y we get

(2.2) r = na + b,

where r denotes the scalar curvature of the manifold. Putting Y = ξ in
(1.1) we have

(2.3) S(X, ξ) = (a + b)η(X).

Putting X = Y = ξ in (1.1), we have

(2.4) S(ξ, ξ) = (a + b).

Let L be the symmetric endomorphism of the tangent space at each point
corresponding to the Ricci tensor S. Then

(2.5) g(LX, Y ) = S(X, Y ) ∀X, Y.
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Also,

(2.6) Lξ = (a + b)ξ.

These results will be used in the sequel.

3. On special weakly Ricci symmetric quasi-Einstein

manifolds

In this section we consider a special weakly Ricci symmetric quasi-
Einstein manifold Mn, i.e. equations (1.1), (1.2), (1.3) and (1.4) are
satisfied in Mn. Taking cyclic sum in (1.3), we get

(∇XS)(Y, Z) + (∇Y S)(Z, X) + (∇ZS)(Y, X)(3.1)

= 4
[

α(X)S(Y, Z) + α(Y )S(X, Z) + α(Z)S(X, Y )
]

.

Let Mn admit a cyclic parallel Ricci tensor. Then (3.1) reduces to

(3.2) α(X)S(Y, Z) + α(Y )S(X, Z) + α(Z)S(X, Y ) = 0.

Taking Z = ξ in (3.2) and using (2.3), (1.4) and (1.2) we have

(3.3) (a + b)α(X)η(Y ) + (a + b)α(Y )η(X) + η(ρ)S(Y, X) = 0.

Now putting Y = ξ in (3.3) and using (2.1), (2.3) and (1.4) we get

(3.4) (a + b)α(X) + (a + b)η(ρ)η(X) + (a + b)η(ρ)η(X) = 0.

Taking X = ξ in (3.4) and using (2.1) and (1.4) we obtain

(3.5) (a + b)η(ρ) = 0,

which implies η(ρ) = 0 provided (a + b) 6= 0. Using η(ρ) = 0 in (3.4) we
have

(3.6) α(X) = 0, since (a + b) 6= 0

for any vector fields X on Mn. Hence we can state the following theorem:

Theorem 1. If a special weakly Ricci symmetric quasi-Einstein manifold

admits a cyclic parallel Ricci tensor with a + b 6= 0 then the 1-form α

must vanish.
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Next we suppose that the vector field ξ is parallel in Mn. Then
∇Xξ = 0, which implies R(X, Y )ξ = 0. Hence contracting this equation
with respect to Y we obtain S(X, ξ) = 0. So from (2.3) we have a+b = 0,
which implies a = −b.

Then equation (1.1) becomes

(3.7) S(X, Y ) = a[g(X, Y ) − η(X)η(Y )],

which implies that

(∇XS)(Y, Z) = X[a][g(Y, Z) − η(Y )η(Z)](3.8)

− a[(∇Xη)(Y )η(Z) + η(Y )(∇Xη)(Z)],

where X[a] denotes the derivative of a with respect to the vector field X.
Since ξ is a parallel vector field, (∇Xη)(Y) = 0 ∀ X, Y, Z. Therefore
equation (3.8) becomes

(3.9) (∇XS)(Y, Z) = X[a][g(Y, Z) − η(Y )η(Z)].

Since Mn is special weakly Ricci symmetric, by the use of (1.3) and (3.9),
we can write
(3.10)
X[a][g(Y, Z)−η(Y )η(Z)] = 2α(X)S(Y, Z)+α(Y )S(X, Z)+α(Z)S(Y, X).

Putting X = ξ in (3.10) and using (3.7), we have

(3.11) ξ[a] = 2aα(ξ).

Taking Z = ξ in (3.10) and using (3.7), we get

(3.12) α(ξ) = 0.

So, in view of (3.11) and (3.12) we have ξ[a] = 0, which implies a is con-
stant along the vector field ξ. Hence we can state the following theorem:

Theorem 2. Let Mn be a special weakly Ricci symmetric quasi-Einstein

manifold under the condition that ξ is a parallel vector field. Then the

scalar function a is constant along the vector field ξ.

Now we assume that the associated scalars a and b are constants
in Mn. Then for a (QE)n, we have from (1.1),

(3.13) (∇XS)(Y, Z) = b[(∇Xη)(Y )η(Z) + (∇Xη)(Z)η(Y )].
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From (1.3) and (3.13) we have,

2α(X)S(Y, Z) + α(Y )S(X, Z) + α(Z)S(Y, X)(3.14)

= b[(∇Xη)(Y )η(Z) + (∇Xη)(Z)η(Y )].

Putting Z = ξ in (3.14) and using (2.3) we get,

(3.15) 2(a+b)α(X)η(Y )+(a+b)α(Y )η(X)+α(ξ)S(Y, X) = b(∇Xη)(Y ).

Taking Y = ξ in (3.15) and using (2.3) we obtain,

(3.16) (a + b)α(X) + (a + b)α(ξ)η(X) = 0.

Putting X = ξ in (3.15) we have

(3.17) 2(a + b)α(ξ)η(Y ) + (a + b)α(Y ) + (a + b)α(ξ)η(Y ) = b(∇ξη)(Y ).

Replacing Y with X in (3.17), we have

(3.18) 3(a + b)α(ξ)η(X) + (a + b)α(X) = b(∇ξη)(X).

Adding (3.16) and (3.18) we obtain,

(3.19) 2(a + b)α(X) + 4(a + b)α(ξ)η(X) = b(∇ξη)(X).

Again, taking X = ξ in (3.14) we have

2α(ξ)S(Y, Z) + (a + b)α(Y )η(Z) + (a + b)α(Z)η(Y )(3.20)

= b
[

(∇ξη)(Y )η(Z) + (∇ξη)(Z)η(Y )
]

.

Now putting Y = Z = ξ in (3.20), we get
(a + b)α(ξ) = 0,

which implies

(3.21) α(ξ) = 0, provided (a + b) 6= 0.

Again Y = ξ in (3.20) implies,

(3.22) 3(a + b)α(ξ)η(Z) + (a + b)α(Z) = b(∇ξη)(Z).

Replacing Z by X in (3.22) implies

(3.23) 3(a + b)α(ξ)η(X) + (a + b)α(X) = b(∇ξη)(X).
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Now, from (3.19) and (3.23), we have

(3.24) (a + b)α(X) + (a + b)α(ξ)η(X) = 0.

So, in view of (3.21) we get from (3.24)

(3.25) α(X) = 0, ∀X [∵ (a + b) 6= 0].

Now, by virtue of (3.21) and (3.25) we obtain from (3.15)

(3.26) (∇Xη)(Y ) = 0, [∵ b 6= 0].

We can write (3.26) as follows:

(3.27) g(∇Xξ, Y ) = 0, ∀X, Y.

From (3.27) it follows that
∇Xξ = 0,

which implies that the vector field ξ is parallel. Hence we can state the
following theorem:

Theorem 3. Let Mn be a special weakly Ricci symmetric quasi-Einstein

manifold with constants associated scalars a, b and (a+ b) 6= 0. Then the

generator of such a manifold is parallel.

4. On special weakly Ricci bi-symmetric quasi-

Einstein manifolds

Let us consider a special weakly Ricci bi-symmetic quasi-Einstein
manifold Mn (n > 3), which is conformally flat. It is known [17] (p. 40)
that for a conformally flat (Mn, g), the Riemann curvature tensor has
the following form:

′R(X, Y, Z, W ) =
1

n−2

[

S(Y, Z)g(X, W )−S(X, Z)g(Y, W )(4.1)

+ S(X, W )g(Y, Z)− S(Y, W )g(X, Z)
]

+
r

(n−1)(n−2)

[

g(X,Z)g(Y,W )−g(Y,Z)g(X,W )
]

,
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where ′R(X, Y, Z, W ) = g(R(X, Y, Z), W ). Taking bi covariant derivative
of (4.1) with respect to X and W , respectively, we get
(4.2)

(∇W∇XR)(Y, Z, V )=
1

n−2

[

(∇W∇XS)(Z, V )Y −(∇W∇XS)(Y, V )Z
]

.

Permuting twice the vectors X, Y , Z in equation (4.2) and using Bianchi’s
second identity, we get

(∇W∇XS)(Z, V )Y − (∇W∇XS)(Y, V )Z(4.3)

+ (∇W∇Y S)(X, V )Z − (∇W∇Y S)(Z, V )X

+ (∇W∇ZS)(Y, V )X − (∇W∇ZS)(X, V )Y = 0.

Using (1.5) in (4.3) and also using the symmetric properties of Ricci
tensor, we have

β(W, X)S(Z, V )Y −β(W, X)S(Y, V )Z+β(W, Y )S(X, V )Z(4.4)

−β(W, Y )S(Z, V )X+β(W, Z)S(Y, V )X−β(W, Z)S(X, V )Y = 0.

Contracting (4.4) with respect to X, we have

(4.5) β(W, Z)S(Y, V ) − β(W, Y )S(Z, V ) = 0.

By factoring off V in (4.5), we get

(4.6) β(W, Z)L(Y ) − β(W, Y )L(Z) = 0.

Contracting (4.6) with respect to Y , we have

(4.7) β(W, Z)r − β(W, L(Z)) = 0.

Putting Z = ξ in (4.7), we get

β(W, ξ)r = (a + b)β(W, ξ), [using (2.6)](4.8)

or, {r − (a + b)}β(W, ξ) = 0,

or, β(W, ξ) = 0, [∵ r 6= a + b],

i.e. the 2-form β is zero for all W and the vector field ξ.

Theorem 4. In a special weakly Ricci bi-symmetric quasi-Einstein man-

ifolds Mn, the 2-form β is zero for all vector fields X and the vector field

ξ, i.e. β(X, ξ) = 0, ∀X.
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5. On R-harmonic quasi-Einstein manifolds

Next we assume that Mn is an R-harmonic quasi-Einstein manifold.
If ξ is a parallel vector field then from (1.7) and (3.9) we have

(∇XS)(Y, Z) − (∇ZS)(X, Y )(5.1)

= X[a][g(Y, Z) − η(Y )η(Z)] − Z[a][g(X, Y ) − η(X)η(Y )] = 0.

Now taking X = ξ in (5.1) we get
ξ[a] = 0,

which implies that a is constant along the vector field ξ. This leads to
the following theorem:

Theorem 5. Let Mn be an R-harmonic quasi-Einstein manifold under

the condition that ξ is a parallel vector field. Then the scalar function a

is constant along the vector field ξ.
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