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1. Introduction

A Riemannian manifold (M2n+1, g) is said to be semi-symmetric if
its curvature tensor R satisfies R(X, Y ) · R = 0, X, Y ∈ χ(M), where
R(X, Y ) acts on R as a derivation (see [11] and [15]). In [16], S. Tanno
showed that a semi-symmetric K-contact manifold M2n+1 (2n + 1 > 3)
is locally isometric to the unit sphere S2n+1(1).

A contact metric manifold M2n+1 satisfying R(X, Y )ξ = 0, where
ξ is the characteristic vector field of the contact structure, is locally
isometric to the product En+1×Sn(4) for 2n+1 > 3 and flat in dimension
3 ([4] or see [5]). In [14], D. Perrone studied a contact metric manifold
M2n+1(2n + 1 > 3) satisfying R(ξ, X) · R = 0; he shows that under
additional assumptions the manifold is either Sasakian (and of constant
curvature +1) or R(X, ξ)ξ = 0.

Baikoussis and Koufogiorgos [2] showed that an N(k)-contact met-
ric manifold M2n+1 satisfying R(ξ, X) · C = 0, is either locally isomet-
ric to S2n+1(1) or locally isometric to the product En+1 × Sn(4), where
C is the Weyl conformal curvature tensor of M2n+1. This generalizes a
result of Chaki and Tarafdar [8] that a Sasakian manifold M2n+1 satis-
fying R(ξ, X) · C = 0 is locally isometric to S2n+1(1). In [13], Papan-
toniou showed that a semi-symmetric contact metric manifold M2n+1

(2n + 1 > 3) with ξ belonging to the (k, µ)-nullity distribution is ei-
ther locally isometric to S2n+1(1) or locally isometric to the product
En+1 × Sn(4). Both Perrone and Papantoniou also studied contact met-
ric manifolds satisfying R(ξ, X) ·S = 0, where S denotes the Ricci tensor
of M2n+1. In [14], Perrone showed that if ξ belongs to the k-nullity dis-
tribution, where k is a function, with R(ξ, X) · S = 0, then M2n+1 is
either Einstein–Sasakian manifold or locally isometric to the product
En+1 × Sn(4). De, Kim and Shaikh [9] studied contact metric manifolds
with characteristic vector field ξ belonging to the (k, µ)-nullity distribu-
tion satisfying R(X, ξ) · C = 0.

Recently, in [6], the authors studied contact metric manifold M2n+1

satisfying the curvature conditions Z(ξ, X) · Z = 0, Z(ξ, X) · R = 0 and
R(ξ, X) · Z = 0, where Z is the concircular curvature tensor of M2n+1

defined by

(1.1) Z(X, Y )W = R(X, Y )W − τ

2n(2n + 1)
(X ∧g Y )W,

and τ is the scalar curvature.
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In the theory of the projective transformations of connections the
Weyl projective curvature tensor plays an important role. The Weyl

projective curvature tensor P in a Riemannian manifold (M2n+1, g) is
defined by

(1.2) P (X, Y )W = R(X, Y )W − 1

2n
(X ∧S Y )W,

where S is the Ricci tensor.
In the present paper we give a full classification of the N(k)-contact

metric manifold M2n+1 satisfying the curvature conditions P (ξ, X)·R=0,
R(ξ, X) · P = 0, P (ξ, X) · P = 0, P (ξ, X) · S = 0 and P (ξ, X) · Z = 0.
In the conclusive part, we prove that an N(k)-contact metric manifold
with non-vanishing recurrent Weyl curvature tensor does not exist.

2. Preliminaries

Let (M2n+1, g) be a (2n + 1)-dimensional Riemannian manifold of
class C∞. We denote Riemannian–Christoffel curvature tensor by

(2.1) R(X, Y )W = ∇X∇Y W −∇Y ∇XW −∇[X,Y ]W,

where ∇ is the Levi–Civita connection and X, Y ∈ χ(M), χ(M) being
the Lie algebra of vector fields on M .

A contact metric manifold M2n+1 is said to be Einstein if its Ricci
tensor S is of the form

(2.2) S(X, Y ) = γg(X, Y ),

for any vector fields X, Y, where γ is a constant on M2n+1 [3].
We next define the endomorphism X ∧A Y of χ(M) by

(2.3) (X ∧A Y )W = A(Y, W )X − A(X, W )Y,

where X, Y, W ∈ χ(M) and A is a symmetric (0, 2)-tensor field.
Now, the homomorphisms R(X, Y ) · R, R(X, Y ) · S and the endo-

morphisms (X ∧A Y ) · R, (X ∧A Y ) · S are defined by

(R(X, Y )·R)(U, V )W =R(X, Y )R(U, V )W−R(R(X, Y )U, V )W(2.4)

−R(U, R(X, Y )V )W−R(U, V )R(X, Y )W,
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(2.5) (R(X, Y ) · S)(U, V ) = −S(R(X, Y )U, V ) − S(U, R(X, Y )V ),

((X ∧A Y ) · R)(U, V )W =(2.6)

= (X ∧A Y )R(U, V )W − R((X ∧A Y )U, V )W−
− R(U, (X ∧A Y )V )W − R(U, V )(X ∧A Y )W,

(2.7) ((X ∧A Y ) · S)(U, V ) = −S((X ∧A Y )U, V ) − S(U, (X ∧A Y )V ),

respectively, where X, Y, U, V, W ∈ χ(M) and A is a symmetric (0, 2)-
tensor field on (M, g). For the case A = S the last equation vanishes,
i.e.

(2.8) ((X ∧A Y ) · S)(U, V ) = 0.

From now on we assume that M2n+1 is an (2n + 1)-dimensional
Riemannian manifold of class C∞. The manifold M2n+1 is said to admit
an almost contact structure, sometimes called a (φ, ξ, η)-structure, if it
admits a tensor field φ of type (1, 1) a vector field ξ and a 1-form η

satisfying

(2.9) φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0.

An almost contact structure is said to be normal if the induced almost
complex structure J on the product manifold M2n+1 × R defined by

J

(

X, λ
d

dt

)

=

(

φX − λξ, η(X)
d

dt

)

is integrable, where X is tangent to M2n+1, t the coordinate of R and
λ a smooth function on M2n+1 × R. Let g be a compatible Riemannian
metric with (φ, ξ, η), that is,

(2.10) g(φX, φY ) = g(X, Y ) − η(X)η(Y )

or equivalently,
g(X, φY ) = −g(φX, Y ) and η(X) = g(X, ξ)

for all X, Y ∈ TM2n+1. Then, M becomes an almost contact metric
manifold equipped with an almost contact metric structure (φ, ξ, η, g).

An almost contact metric structure becomes a contact metric struc-
ture if
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g(X, φY ) = dη(X, Y ).

The 1-form η is then a contact form and ξ is its characteristic vector field.
It is well known that the tangent sphere bundle of a flat Riemannian
manifold admits a contact metric structure satisfying R(X, Y )ξ = 0 [4].
On the other hand, we have on a Sasakian manifold [3]

(2.11) R(X, Y )ξ = η(Y )X − η(X)Y.

In [4], Blair, Koufogiorgos and Papantoniou considered the (k, µ)-
nullity condition on a contact metric manifold M2n+1. The (k, µ)-nullity

distribution of a contact manifold M is a distribution
N(k, µ) : p −→ Np(k, µ) =

=

{

W ∈ TpM | R(X, Y )W = k [g(Y, W )X − g(X, W )Y ]
+µ [g(Y, W )hX − g(X, W )hY ]

}

,

for all X, Y ∈ TM, where (k, µ) ∈ R
2 and k ≤ 1. For more details see

also [4], [13].
In particular a contact metric manifold M is Sasakian if and only

if k = 1 and, consequently, µ = 0 [4].
Furthermore, in a (k, µ)-contact manifold

S(X, ξ) = 2nkη(X),(2.12)

Qξ = 2nkξ,(2.13)

h2 = (k − 1)φ2,(2.14)

R(X, Y )ξ= k
{

η(Y )X−η(X)Y
}

+µ {η(Y )hX−η(X)hY } ,(2.15)

R(ξ, X)Y =k
{

g(X, Y )ξ−η(Y )X
}

+µ {g(hX, Y )ξ−η(Y )hX} ,(2.16)

holds, where Q is the Ricci operator defined by S(X, Y ) = g(QX, Y ).
If µ = 0, the (k, µ)-nullity distribution N(k, µ) is reduced to the

k-nullity distribution [16], where k-nullity distribution N(k) of a Rieman-
nian manifold M is defined by

(2.17) N(k) : p −→ Np(k) = {W ∈ TpM | R(X, Y )W = k(X ∧g Y )W}.

If ξ ∈ N(k), then we call a contact metric manifold M an N(k)-contact

metric manifold. For a N(k)-contact metric manifold the equations (2.15)
and (2.16) reduce to

(2.18) R(X, Y )ξ = k {η(Y )X − η(X)Y } ,
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(2.19) R(ξ, X)Y = k {g(X, Y )ξ − η(Y )X} ,

respectively. If k = 1 then an N(k)-contact metric manifold is Sasakian
and if k = 0 then an N(k)-contact metric manifold is locally isometric
to the product En+1 × Sn(4) for n > 1 and flat for n = 1. In [1], N(k)-
contact metric manifolds were studied in some detail. In particular, if
k < 1, the scalar curvature is τ = 2n(2n − 2 + k).

Using (1.1), (1.2), (2.18) and (2.19) for an N(k)-contact metric
manifold we have the followings:

P (ξ, X)Y = kg(X, Y )ξ − 1

2n
S(X, Y )ξ,(2.20)

P (X, Y )ξ = 0,(2.21)

Z(ξ, X)Y =

(

k − τ

2n(2n + 1)

)

{g(X, Y )ξ − η(Y )X},(2.22)

Z(X, Y )ξ =

(

k − τ

2n(2n + 1)

)

{η(Y )X − η(X)Y }.(2.23)

The standard contact metric structure on the tangent sphere bundle
T1M satisfies the (k, µ)-nullity condition if and only if the base manifold
M is of constant curvature. In particular if M has constant curvature c,
then k = c(2 − c) and µ = −2c.

We also recall the notion of a D-homothetic deformation. For a
given contact metric structure (ϕ, ξ, η, g), this is the structure defined by

−
η = aη,

−

ξ =
1

a
ξ,

−
ϕ = ϕ,

−
g = ag + a(a − 1)η ⊗ η,

where a is a positive constant. While such a change preserves the state
of being contact metric, K-contact, Sasakian or strongly pseudo-convex
CR, it destroys a condition like R(X, Y )ξ = 0 or

R(X, Y )ξ = k {η(Y )X − η(X)Y } .

However the form of the (k, µ)-nullity condition is preserved under a
D-homothetic deformation with

−

k =
k + a2 − 1

a2
,

−
µ =

µ + 2a − 2

a
.

Given a non-Sasakian (k, µ)-manifold M , E. Boeckx [7] introduced
an invariant

IM =
1 − µ

2√
1 − k
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and showed that for two non-Sasakian (k, µ)-manifolds (Mi, ϕi, ξi, ηi, gi),
i = 1, 2, we have IM1

= IM2
if and only if up to a D-homothetic deforma-

tion, the two manifolds are locally isometric as contact metric manifolds.
Thus we know all non-Sasakian (k, µ)-manifolds locally as soon as we
have for every odd dimension 2n + 1 and for every possible value of the
invariant I, one (k, µ)-manifold (M, ϕ, ξ, η, g) with IM = I. For I > −1
such examples may be found from the standard contact metric structure
on the tangent sphere bundle of a manifold of constant curvature c, where
we have I = 1+c

|1−c|
. E. Boeckx also gives a Lie algebra construction for

any odd dimension and value of I ≤ −1.
In Th. 6 of the present paper we need the following example.

Example 1 [7]. Since the Boeckx invariant for a (1 − 1
n
, 0)-manifold

is
√

n > −1, we consider the tangent sphere bundle of an (n + 1)-
dimensional manifold of constant curvature c, so chosen that the result-
ing D-homothetic deformation will be a (1 − 1

n
, 0)-manifold. That is for

k = c(2 − c) and µ = −2c we solve

1 − 1

n
=

k + a2 − 1

a2
, 0 =

µ + 2a − 2

a
for a and c. The result is

c =
(
√

n ± 1)2

n − 1
, a = 1 + c

and taking c and a to be these values we obtain an N(1 − 1
n
)-contact

metric manifold.

3. N(k)-contact metric manifolds satisfying some

curvature conditions

In the present section we consider N(k)-contact metric manifold
M2n+1 satisfying the curvature conditions P (ξ, X)·R = 0, R(ξ, X)·P = 0,
P (ξ, X) · S = 0, P (ξ, X) · P = 0 and P (ξ, X) · Z = 0. First we recall the
following result:

Theorem 1 [14]. Let M be a contact Riemmanian manifold. If

a) R(X, ξ) · S = 0,
b) R(X, Y )ξ = k {η(Y )X − η(X)Y } ,

then M is either locally isometric to the Riemannian product En+1×Sn(4)
or M is an Einstein–Sasakian manifold.

Now we give the following main results:
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Theorem 2. Let M be a (2n + 1)-dimensional N(k)-contact metric

manifold that satisfies

P (ξ, X) · R = 0

then M is locally isometric to the product En+1×Sn(4) or is an Einstein

manifold. Furthermore if M is an Einstein manifold then P (ξ, X)·R = 0.

Proof. Let M2n+1 be an N(k)-contact metric manifold satisfying P (ξ, X)·
R = 0.

By (2.4), we can write

(P (ξ, X)·R)(U, V )W =(3.1)

= P (ξ, X)R(U, V )W−R(P (ξ, X)U, V )W−
− R(U, P (ξ, X)V )W−R(U, V )P (ξ, X)W =0,

where X, U, V, W ∈ χ(M). Developing the right-hand side of (3.1) and
using the hypothesis and (2.18), (2.19), (2.12), (1.2), (2.3) we have

kg(R(U, V )W, X)ξ − 1

2n
S(X, R(U, V )W )ξ − k2g(X, U)g(V, W )ξ+

(3.2)

+ k2g(X, U)η(W )V +
k

2n
S(X, U)g(V, W )ξ − k

2n
S(X, U)η(W )V +

+ k2g(X, V )g(U, W )ξ − k2g(X, V )η(W )U − k

2n
S(X, V )g(U, W )ξ+

+
k

2n
S(X, V )η(W )U + k2g(X, W )η(U)V − k2g(X, W )η(V )U+

+
k

2n
S(X, W )η(V )U − k

2n
S(X, W )η(U)V = 0.

Taking the inner product with ξ in (3.2), again using (2.18) and (2.19),
we get

kg(R(U, V )W, X) − 1

2n
S(X, R(U, V )W )−(3.3)

− k2g(X, U)g(V, W ) + k2g(X, U)η(W )η(V )+

+
k

2n
S(X, U)g(V, W ) − k

2n
S(X, U)η(W )η(V )+

+ k2g(X, V )g(U, W )− k2g(X, V )η(W )η(U)−

− k

2n
S(X, V )g(U, W ) +

k

2n
S(X, V )η(W )η(U) = 0.
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Substituting U by ξ in (3.3) and using (2.18), we obtain

(3.4)
k

2n
S(X, V )η(W ) − k2g(X, V )η(W ) = 0.

If k = 0 then M2n+1 is locally isometric to the product En+1 × Sn(4). If
k 6= 0, again substituting W by ξ in (3.4), we get

(3.5) S(X, V ) = 2nkg(X, V ).

Thus M2n+1 is an Einstein manifold.
Conversely, if M is an Einstein manifold then (3.5) holds by virtue

of (2.13). Hence we substitute (3.5) in (2.20) and get P (ξ, X) · R = 0.
Our theorem is thus proved. ♦

Theorem 3. Let a (2n + 1)-dimensional N(k)-contact metric manifold

M satisfies

R(ξ, X) · P = 0

then either M2n+1 is locally isometric to the product En+1 × Sn(4) or

M2n+1 is an Einstein manifold.

Proof. Let M2n+1 be an N(k)-contact metric manifold such that R(ξ, X)·
P = 0. By (2.4), we get

R(ξ, X)P (U, V )W − P (R(ξ, X)U, V )W−
− P (U, R(ξ, X)V )W − P (U, V )R(ξ, X)W = 0.

Using (1.2), (2.18) and (2.19), we get

kg(P (U, V )W, X)ξ − kη(P (U, V )W )X − kg(X, U)P (ξ, V )W+(3.6)

+ kη(U)P (X, V )W − kg(X, V )P (U, ξ)W + kη(V )P (U, X)W−
− kg(X, W )P (U, V )ξ + kη(W )P (U, V )X = 0.

By (2.21), we have

kg(P (U, V )W, X)ξ − kη(P (U, V )W )X − kg(X, U)P (ξ, V )W+(3.7)

+ kη(U)P (X, V )W − kg(X, V )P (U, ξ)W + kη(V )P (U, X)W+

+ kη(W )P (U, V )X = 0.

Taking the inner product with ξ in (3.7), we get

kg(P (U, V )W, X)−kη(P (U, V )W )η(X)−kg(X, U)η(P (ξ, V )W )+(3.8)

+ kη(U)η(P (X, V )W ) − kg(X, V )η(P (U, ξ)W )+

+ kη(V )η(P (U, X)W ) + kη(W )η(P (U, V )X) = 0.
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Using (2.12) and (2.19) in (3.8), we get

kg(R(U, V )W, X) − k2g(X, U)η(W )η(V )+(3.9)

+ k2g(X, V )η(W )η(U) − k

2n
S(X, V )η(W )η(U)+

+
k

2n
S(X, U)η(W )η(V ) − kη(X)g(R(U, V )W, ξ)+

+ kη(U)g(R(X, V )W, ξ) + kη(V )g(R(U, X)W, ξ)+

+ kη(W )g(R(U, V )X, ξ) − kg(X, U)g(R(ξ, V )W, ξ)+

+ kg(X, V )g(R(ξ, U)W, ξ)− k

2n
S(X, W )η(U)η(V )+

+
k

2n
S(W, U)η(X)η(V ) = 0.

Let {ẽi : i = 1, . . . , 2n + 1} be an orthonormal φ-basis of vector fields in
M2n+1. If we put V = W = ẽi in (3.9) and sum up with respect to i and
using (2.12), (2.13), (2.18) and (2.19), then we get

(3.10) k

[(

1 +
1

2n

)

S(U, X) − (2n + 1)kg(U, X)

]

= 0.

If k = 0 then M is locally isometric to the product En+1 × Sn(4). If
k 6= 0, from (3.10), we have

(3.11) S(U, W ) = 2nkg(U, W ),

which means that M2n+1 is an Einstein manifold.

Theorem 4. If a (2n+1)-dimensional N(k)-contact metric manifold M

satisfies

P (ξ, X) · S = 0

then either M is locally isometric to the product En+1 × Sn(4) or M is

an Einstein–Sasakian manifold.

Proof. Let M2n+1 be an N(k)-contact metric manifold. By the equations
(2.8) and (1.2) the condition P (ξ, X) · S = 0 turns into

(R(ξ, X) · S)(U, V ) =
1

2n
((ξ ∧S X) · S)(U, V ) = 0.

Hence using Th. 1, we get the result. Thus, our theorem is proved. ♦

Theorem 5. If a (2n+1)-dimensional N(k)-contact metric manifold M

satisfies
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P (ξ, X) · P = 0

then the condition
S2(X, U) = 4nkS(X, U) − 4n2k2g(X, U),

holds on M.

Proof. Let M2n+1 be an N(k)-contact metric manifold satisfying
P (ξ, X) · P = 0. Then we get

(P (ξ, X) · P )(U, V )W = P (ξ, X)P (U, V )W − P (P (ξ, X)U, V )W−
(3.12)

− P (U, P (ξ, X)V )W − P (U, V )P (ξ, X)W = 0.

Using (2.4), (2.18) and (2.19) in (3.12), and taking the inner product
with ξ we get

kg(X, R(U, V )W )− 1

2n
S(X, P (U, V )W )+

k

2n
g(X, V )S(U, W )−(3.13)

−k2g(X, U)g(V, W )+
k

2n
S(X, U)g(V, W )+k2g(X, V )g(U, W )−

− k

2n
g(X, V )S(U, W ) − k

2n
S(X, V )g(U, W ) = 0.

Let {ẽi : i = 1, . . . , 2n + 1} be a orthonormal φ-basis of vector fields in
M2n+1. If we put V = W = ẽi in (3.13) and sum up with respect to i

and using (2.12) and (2.13), then we get

(3.14) S2(X, U) = 4nkS(X, U) − 4n2k2g(X, U).

Lemma 1 [10]. Let A be a symmetric (0, 2)-tensor at point x of a semi-

Riemannian manifold (M, g), dim(M) ≥ 3, and let T = g ⊼ A be the

Kulkarni–Nomizu product of g and A. Then, the relation

T · T = αQ(g, T ), α ∈ R

is satisfied at x if and only if the condition

A2 = αA + λg, λ ∈ R

holds at x.

Corollary 1. Let M2n+1 be a N(k)-contact metric manifold satisfying

the condition P (ξ, X) · P = 0 then T · T = αQ(g, T ), where T = g ⊼ S

and α = 4nk.

Regarding the concircular curvature tensor we have:
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Theorem 6. If a (2n+1)-dimensional non-Sasakian N(k)-contact met-

ric manifold M satisfies

P (ξ, X) · Z = 0

then either M is locally isometric to the manifold of Ex. 1 or M is an

Einstein manifold.

Proof. Let M2n+1 be an N(k)-contact metric manifold satisfying
P (ξ, X) · Z = 0. Then we can write

(P (ξ, X) · Z)(U, V )W =(3.15)

= P (ξ, X)Z(U, V )W − Z(P (ξ, X)U, V )W

− Z(U, P (ξ, X)V )W − Z(U, V )P (ξ, X)W = 0,

where X, U, V, W ∈ χ(M). Using (2.18) in (3.15), we have

kg(X, Z(U, V )W )ξ − 1

2n
S(X, Z(U, V )W )ξ−(3.16)

− kg(X, U)Z(ξ, V )W +
1

2n
S(X, U)Z(ξ, V )W−

− kg(X, V )Z(U, ξ)W +
1

2n
S(X, V )Z(U, ξ)W−

− kg(X, W )Z(U, V )ξ +
1

2n
S(X, W )Z(U, V )ξ = 0.

Taking the inner product with ξ in (3.16) and substituting V by ξ and
using (2.22) and (2.23), we get

(3.17) Ãkg(X, U)η(W ) − Ã

2n
S(X, U)η(W ) = 0,

where Ã = k − τ
2n(2n+1)

. Again substituting W by ξ in (3.17) , we get

Ã[kg(X, U) − 1

2n
S(X, U)] = 0.

Therefore either Ã = 0 or
S(X, U) = 2nkg(X, U).

Thus M2n+1 is an Einstein manifold if Ã 6= 0.
If Ã = 0, then we have τ = 2n(2n + 1)k. Thus, we recall that the

scalar curvature of an N(k)-contact metric manifold is τ = 2n(2n−2+k).
Comparing k = 1 − 1

n
and hence M is locally isometric to the manifold

of Ex. 1 for n > 1 and to the flat case if n = 1.
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4. Weyl projective recurrent contact metric mani-
folds

A non-flat Riemannian manifold M is said to be Weyl projective

recurrent if the Weyl projective curvature tensor P satisfies the condition

(4.1) ∇P = A ⊗ P,

where A is an everywhere non-zero 1-form [12].
Then, we prove the following theorem:

Theorem 7. An N(k)-contact metric manifold with non-vanishing re-

current Weyl curvature tensor does not exist.

Proof. If possible, let M2n+1 be an N(k)-contact metric manifold with
non-vanishing recurrent Weyl projective curvature tensor. Then from
(4.1), we get

∇X∇Y P = (XA(Y ) + A(X)A(Y ))P,

which implies that

(4.2) R(X, Y ) · P = 2dA(X, Y )P.

We define a function f on M2n+1 by f 2 = g(P, P ), where g is the usual
extension to the inner product between the tensor fields . Since Rieman-
nian metric tensor is parallel, by (4.1) and (4.2) it follows that

f(Xf) = f 2A(X),
or,

(4.3) Xf = fA(X).

By (4.3), it follows that

2dA(X, Y )f = (XA(Y ) − Y A(X) − A([X, Y ]))f(4.4)

= (∇X∇Y −∇Y ∇X −∇[X,Y ])f

= 0.

Since f is non-vanishing by assumption, the 1-form A has to be closed.
Thus, by (4.2) and (4.3) we get R(X, Y ) · P = 0, which in view of Th. 3
and the assumption non-vanishing of P , shows that M2n+1 is locally
isometric to the product En+1 × Sn(4). But En+1(0) × Sn(4) satisfies
∇P = 0 [5], hence our assumption is not possible. ♦
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