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Abstract: Let Topc be the category of compact spaces and continuous maps
and Topf ⊂ Topc be the full subcategory of finite spaces. Consider the co-
variant functor Mor : Top

op
f ×Topc −→ Topc that associates any pair (X, Y )

with the space of all morphisms from X to Y . In this paper, we describe a non
commutative version of Mor. More pricelessly, we define a functor Mor, that
takes any pair (B, C) of a finitely generated unital C*-algebra B and a finite
dimensional C*-algebra C to the quantum family of all morphism from B to C.
As an application we introduce a non commutative version of path functor.

1. Introduction

Let Top be the category of topological spaces and continuous
maps. For every X, Y ∈ Top, denote by Mor(X, Y ) the set of all mor-
phisms (continuous maps) from X to Y . Also for spaces X1, X2, Y1, Y2

and morphisms f : X2 −→ X1, g : Y1 −→ Y2, denote by Mor(f, g) the
map h 7−→ ghf from Mor(X1, Y1) to Mor(X2, Y2). Then Mor can be
considered as a covariant functor from the product category Topop×Top

to Top, where Mor(X, Y ) has the compact-open topology. Now, sup-
pose that Topc ⊂ Top and Topf ⊂ Top are the full subcategories of
compact Hausdorff spaces and finite discrete spaces, respectively. Then
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the restriction of Mor to Top
op
f ×Topc takes its values in Topc:

Mor : Top
op
f × Topc −→ Topc.

The aim of this paper is description of a quantum (non commutative)
version of Mor. We define a covariant functor

Mor : C∗
fg × C∗

fd
op −→ C∗

fg,

where C∗
fg is the category of finitely generated unital C*-algebras and

C∗
fd is the full subcategory of finite dimensional C*-algebras, such that

for C*-algebras B, C, Mor(B, C) is the quantum family of all morphisms
from B to C. For clearness of the idea behind this definition, we recall
some basic terminology of Non Commutative Geometry.

Let C∗ be the category of unital C*-algebras and unital *-homo-
morphisms and let C∗

com be the full subcategory of commutative algebras.
For every X ∈ Topc and A ∈ C∗

com, let fX and qA be the C*-algebra
of continuous complex valued maps on X and the spectrum of A with
w* topology, respectively. Then the famous Gelfand Theorem says that
Topc and C∗

com are dual of each other, under functors f and q. Thus for
every A ∈ C∗, one can consider a symbolic notion qA of a quantum or
non commutative space that its algebra of functions (fqA) is A. In this
correspondence, for A ∈ C∗

fg and B ∈ C∗
fd, qA and qB are called finite

dimensional compact quantum space and discrete finite quantum space,
respectively.

Now, suppose that X, Y, Z are topological spaces and f : X −→
−→ Mor(Z, Y ) is a continuous map. One can redefine the map f in a
useful manner:

f : X × Z −→ Y (x, z) 7−→ f(x)(z).

Thus, one can consider a family {f(x)}x∈X of maps from Z to Y param-
eterized by f and with parameters x in X, as a map from X × Z to Y .
Using this, Woronowicz [6] defined the notion of quantum family of maps
from quantum space qC to quantum space qB as a pair (qA, Φ), where
Φ : B −→ C⊗A is a *-homomorphism and ⊗ denotes the minimal tensor
product of C*-algebras. (Note that Woronowicz has used the terminol-
ogy “pseudo space” instead of “quantum space”. Our terminology here
is from Soltan’s paper [4].) Also, using a universal property, he defined
the notion of quantum family of all maps, that may or may not exist in
general case, see Sec. 2.

Now for the definition of Mor, we let Mor(B, C) be the quantum
family of all maps from qC to qB.
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In the following sections, we use the terminology “quantum family
of morphisms from B to C” instead of “quantum family of maps from
qC to qB”.

2. Quantum family of morphisms

Let B, B′, C, C ′ be unital C*-algebras. We denote by B ⊗ C and
B ⊕ C the minimal tensor product and direct sum, respectively. For
*-homomorphisms Φ : B −→ C and Φ′ : B′ −→ C ′, Φ ⊗ Φ′ denotes the
natural homomorphism from B ⊗ B′ to C ⊗ C ′ defined by b ⊗ b′ −→
−→ Φ(b) ⊗ Φ′(b′) (b ∈ B, b′ ∈ B′). Also, let Φ ⊕ Φ′ : B ⊕ B′ −→ C ⊕ C ′

be the homomorphism defined by Φ ⊕ Φ′(b, b′) = (Φ(b), Φ′(b′)). Denote
by C◦, the space of all bounded functionals on C, and by 1C the unite
element of C.

A quantum family (A, Φ) of morphisms from B to C consists of a
unital C*-algebra A and a unital *-homomorphism Φ : B −→ C ⊗ A.

Definition 1. Let B, C and (A, Φ) be as above. Then (A, Φ) is called
a quantum family of all morphisms from B to C if for every unital C*-
algebra D and any unital *-homomorphism Ψ : B −→ C ⊗ D, there is
a unique unital *-homomorphism Λ : A −→ D such that the following
diagram is commutative:

B
Φ // C ⊗ A

idC⊗Λ
��

B
Ψ // C ⊗ D

If (A, Φ) and (A′, Φ′) are two quantum families of all morphisms
from B to C, then by the above universal property there is a isometric
*-isomorphism between A and A′.

Theorem 2. Let B be a finitely generated unital C*-algebra and C be
a finite dimensional C*-algebra. Then the quantum family (A, Φ) of all
morphisms from B to C exists. Also A is finitely generated (and unital)
and the set G = {(ω ⊗ idA)Φ(b) : b ∈ B, ω ∈ C◦} is a generator for A

(the smallest closed *-subalgebra of A containing G is equal to A).

Proof. See [4]. ♦

For examples of quantum families of morphisms see, [6] and [4].
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3. Definition of the functor

As previously, let C∗ be the category of unital C*-algebras and
unital homomorphisms. Also, let C∗

fg ⊂ C∗ and C∗
fd ⊂ C∗ be the full

subcategories of finitely generated and finite dimensional C*-algebras,
respectively. For B1, B2 ∈ C∗, denote by Mor(B1, B2) the set of all
morphisms from B1 to B2 in C∗. For more details on the category of
C*-algebras, see [6]. Note that by elementary results of the theory of
C*-algebras, a morphism f ∈ Mor(B1, B2) is an isomorphism in the
categorical sense (i.e. there is g ∈ Mor(B2, B1) such that gf = idB1 and
fg = idB2) if and only if f is an isometric *-isomorphism from B1 onto B2.

For any B ∈ C∗
fg and every C ∈ C∗

fd, let (Mor(B, C), PB,C) be the
quantum family of all morphisms from B to C (P stands for “parame-
ter”).

For every B1, B2 ∈ C∗
fg, C1, C2 ∈ C∗

fd and f ∈ Mor(B1, B2), g ∈
∈ Mor(C2, C1), let Mor(f, g) be the unique morphism from Mor(B1, C1)
to Mor(B2, C2) in C∗

fg such that the following diagram is commutative:

(1) B1

PB1,C1 //

f

��

C1 ⊗ Mor(B1, C1)

idC1
⊗Mor(f,g)

��
B2

(g⊗idMor(B2,C2))PB2,C2 // C1 ⊗ Mor(B2, C2)

B2

PB2,C2 // C2 ⊗ Mor(B2, C2)

g⊗idMor(B2,C2)

OO

Let B3 ∈ C∗
fg, C3 ∈ C∗

fd and f ′ ∈ Mor(B2, B3), g′ ∈ Mor(C3, C2), then
by the definition we have the following commutative diagram:

(2) B2

PB2,C2 //

f ′

��

C2 ⊗ Mor(B2, C2)

idC2
⊗Mor(f ′,g′)

��
B3

(g′⊗idMor(B3,C3))PB3,C3 // C2 ⊗ Mor(B3, C3).
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Then we have,

(idC1 ⊗ Mor(f ′, g′)Mor(f, g))PB1,C1

= (idC1 ⊗ Mor(f ′, g′))(idC1 ⊗ Mor(f, g))PB1,C1

= (idC1 ⊗ Mor(f ′, g′))(g ⊗ idMor(B2,C2))PB2,C2f (by (1))

= (g ⊗ idMor(B3,C3))(idC2 ⊗ Mor(f ′, g′))PB2,C2f

= (g ⊗ idMor(B3,C3))(g
′ ⊗ idMor(B3,C3)PB3,C3f

′)f (by (2))

= ((gg′) ⊗ idMor(B3,C3))PB3,C3(f
′f).

Thus by the uniqueness property of the definition of Mor(f ′f, gg′) we
have,

Mor(f ′f, gg′) = Mor(f ′, g′)Mor(f, g).

Also, it is clear that
Mor(idB, idC) = idMor(B,C),

for every B ∈ C∗
fg and C ∈ C∗

fd. Thus we have defined a covariant
functor

Mor : C∗
fg ×C∗op

fd −→ C∗
fg

that is called Quantum Functor Mor. We often write M instead of Mor.

4. Some properties

In this section we prove some basic properties of the functor Mor.
We need the following simple lemma.

Lemma 3. Let A, A′, B, B′, C be C*-algebras, Φ, Φ′, Λ, Γ be *-homo-
morphisms and ω ∈ C◦ such that the following diagram is commutative:

B
Φ //

Λ
��

C ⊗ A

idC⊗Γ
��

B′ Φ′
// C ⊗ A′

Then for any b ∈ B, we have
Γ(ω ⊗ idA)Φ(b) = (ω ⊗ idA′)Φ′Λ(b).

Proof. By commutativity of the diagram we have
(idC ⊗ Γ)Φ(b) = Φ′Λ(b),

and thus
(ω ⊗ idA′)(idC ⊗ Γ)Φ(b) = (ω ⊗ idA′)Φ′Λ(b).
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Then the left-hand side of the latter equation is equal to Γ(ω⊗ idA)Φ(b),
since (ω ⊗ idA′)(idC ⊗ Γ) = Γ(ω ⊗ idA). ♦

Theorem 4. Let B ∈ C∗
fg and C1, C2 ∈ C∗

fd. Then Mor(B, C1 ⊗ C2)
and Mor(Mor(B, C1), C2) are canonically isometric *-isomorphic.

Proof. Let Ψ : M(B, C1 ⊗ C2) −→ C1 ⊗ C2 ⊗ M(M(B, C1), C2) be the
unique morphism such that the following diagram is commutative:
(3)

B
PB,C1⊗C2 //

PB,C1

��

C1 ⊗ C2 ⊗ M(B, C1 ⊗ C2)

idC1⊗C2
⊗Ψ

��
C1 ⊗ M(B, C1)

idC1
⊗PM(B,C1),C2 // C1 ⊗ C2 ⊗ M(M(B, C1), C2).

Suppose that the morphisms
Γ : M(B, C1) −→ C2 ⊗ M(B, C1 ⊗ C2)

and
Ψ′ : M(M(B, C1), C2) −→ M(B, C1 ⊗ C2)

are the unique morphisms such that the following diagrams are commu-
tative.

(4) B
PB,C1 // C1 ⊗ M(B, C1)

idC1
⊗Γ

��

B
PB,C1⊗C2 // C1 ⊗ C2 ⊗ M(B, C1 ⊗ C2),

(5) M(B, C1)
PM(B,C1),C2 // C2 ⊗ M(M(B, C1), C2)

idC2
⊗Ψ′

��
M(B, C1)

Γ // C2 ⊗ M(B, C1 ⊗ C2).

Then commutativity of Diagram (5), implies that

(6) idC1 ⊗ Γ = (idC1⊗C2 ⊗ Ψ′)(idC1 ⊗ PM(B,C1),C2
).

Now, we have

(idC1⊗C2 ⊗ (Ψ′Ψ))PB,C1⊗C2

= (idC1⊗C2 ⊗ Ψ′)(idC1⊗C2 ⊗ Ψ)PB,C1⊗C2

= (idC1⊗C2 ⊗ Ψ′)(idC1 ⊗ PM(B,C1),C2
)PB,C1 (by (3))

= (idC1 ⊗ Γ)PB,C1 (by (6))

= PB,C1⊗C2 . (by (4))
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Thus by the universal property of quantum family of all morphisms, we
have

(7) Ψ′Ψ = idMor(B,C1⊗C2)

Now, we show that

(8) (idC2 ⊗ Ψ)Γ = PMor(B,C1),C2 .

By Th. 2, it is sufficient to prove
(idC2 ⊗ Ψ)Γ(a) = PM(B,C1),C2(a),

where a = (ω ⊗ idM(B,C1))PB,C1(b) for ω ∈ C◦
1 and b ∈ B. We have

(idC2 ⊗ Ψ)Γ(a)

= (idC2 ⊗ Ψ)Γ(ω ⊗ idM(B,C1))PB,C1(b)

= (idC2 ⊗ Ψ)(ω ⊗ PB,C1⊗C2)(b) (by (4))

= (ω ⊗ idC2⊗M(M(B,C1),C2))(idC1 ⊗ PM(B,C1),C2)PB,C1(b) (by Lemma 3)

= PM(B,C1),C2(ω ⊗ idM(B,C1))PB,C1(b)

= PM(B,C1),C2
(a).

Now, we have

(idC2 ⊗ (ΨΨ′))PM(B,C1),C2

= (idC2 ⊗ Ψ)(idC2 ⊗ Ψ′)PM(B,C1),C2

= (idC2 ⊗ Ψ)Γ (by (5))

= PM(B,C1),C2 (by (8)).

Thus by the universal property of Mor, we have

(9) ΨΨ′ = idM(M(B,C1),C2).

At last, (7) and (9) show that Mor(B, C1⊗C2), Mor(Mor(B, C1), C2) are
isomorphic in C∗. ♦

The above theorem corresponds to the following fact in Topc:
Let X1, X2 and Y be compact Hausdorff spaces. Then the map

F : Mor(X1 × X2, Y ) −→ Mor(X1, Mor(X2, Y )),

defined by (F (f))(x1)(x2) = f(x1, x2) for f ∈ Mor(X1 × X2, Y ),
x1 ∈ X1, x2 ∈ X2, is a homeomorphism of topological spaces.
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The proof of this topological fact is elementary. For some general
results on this type, see [2].

Let X, Y1, Y2 be in Top and let f : Y1 −→ Y2 be an injective
continuous map. Then the morphism Mor(idX , f) : Mor(X, Y1) −→
−→ Mor(X, Y2), defined by g 7−→ fg is also injective. Analogously, in
C∗ we have:

Theorem 5. Let B1, B2 ∈ C∗
fg, C ∈ C∗

fd and let f be in Mor(B1, B2).
Suppose that f is a surjective map. Then Mor(f, idC) is also surjective.

Proof. By Th. 2, the set
G = {(ω ⊗ idM(B2,C))PB2,C(b) : b ∈ B2, ω ∈ C◦}

is a generator for M(B2, C). For every b2 ∈ B2 there is a b1 ∈ B1 such
that f(b1) = b2. Thus by Lemma 3, we have

G = {M(f, idC)(ω ⊗ idM(B1,C))PB1,C(b) : b ∈ B1, ω ∈ C◦}.

Thus Mor(f, idC) : Mor(B1, C) −→ Mor(B2, C) is surjective, since the
image of every *-homomorphism between C*-algebras is closed. ♦

Theorem 6. Let B1, B2 ∈ C∗
fg and C1, C2 ∈ C∗

fd, then there is a
canonical morphism Ψ from Mor(B1 ⊕B2, C1 ⊕C2) onto Mor(B1, C1)⊕
⊕Mor(B2, C2).

Proof. Let B = B1 ⊕ B2 and C = C1 ⊕ C2. Let
Γ : (C1⊗M(B1, C1))⊕(C2⊗M(B2, C2)) −→ C⊗(M(B1, C1)⊕M(B2, C2))

be the natural embedding. Then, suppose that Ψ is the unique morphism
such that the following diagram is commutative:

B
PB,C //

PB1,C1
⊕PB2,C2

��

C ⊗ M(B, C)

idC⊗Ψ

��
(C1 ⊗ M(B1, C1)) ⊕ (C2 ⊗ M(B2, C2))

Γ // C ⊗ (M(B1, C1) ⊕ M(B2, C2)).

Now we prove that Ψ is surjective. By Th. 2, the C*-algebra
M(B1, C1) ⊕ M(B2, C2) is generated by the set G of all pairs (a1, a2)
where
a1 = (ω1 ⊗ idM(B1,C1

)PB1,C1(b1) and a2 = (ω2 ⊗ idM(B2,C2
)PB2,C2(b2)

for b1 ∈ B1, b2 ∈ B2, ω1 ∈ C◦
1 , ω2 ∈ C◦

2 . It is easily checked that such
pairs are in the form of

(a1, a2) = ((ω1 ⊕ ω2) ⊗ idM(B1,C1)⊕M(B2,C2))Γ(PB1,C1 ⊕ PB2,C2)(b1, b2),

and thus by Lemma 3, we can write
(a1, a2) = Ψ((ω1 ⊕ ω2) ⊗ idM(B,C))PB,C(b1, b2).

Thus the generator set G is in the image of Ψ and therefore Ψ is surjec-
tive. ♦
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Similarly one can prove the following.

Theorem 7. Let B1, · · · , Bn ∈ C∗
fg and let C1, · · · , Cn ∈ C∗

fd. Then
there is a canonical surjective *-homomorphism
Ψ : Mor(B1⊕· · ·⊕Bn, C1⊕· · ·⊕Cn) −→ Mor(B1, C1)⊕· · ·⊕Mor(Bn, Cn).

The construction appearing in the following theorem, is a special
case of the notion of composition of quantum families of maps, defined
in [4].

Theorem 8. Let B ∈ C∗
fg and C, D ∈ C∗

fd. Then there is a canonical
morphism

Ψ : Mor(B, C) −→ Mor(C, D)⊗ Mor(B, C).

Proof. The desired morphism Ψ is the unique morphism such that the
following diagram becomes commutative:

B
PB,D //

PB,C

��

D ⊗ M(B, D)

idD⊗Ψ
��

C ⊗ M(B, C)
PC,D⊗idM(B,C) // D ⊗ M(C, D)⊗ M(B, C). ♦

By the latter assumptions, let B = C = D = M be in C∗
fd. Then

it is proved in [4], that the map
Ψ : Mor(M, M) −→ Mor(M, M) ⊗ Mor(M, M)

is a coassociative comultiplication, i.e.
(idM(M,M) ⊗ Ψ)Ψ = (Ψ ⊗ idM(M,M))Ψ,

and thus the pair (M(M, M), Ψ) is a compact quantum semigroup.

Theorem 9. Let ({Bi}, {Φij})i≤j∈I be a directed system in C∗
fg, on the

directed set I, such that B = lim
−→

Bi ∈ C∗
fg. Suppose that C ∈ C∗

fd,
then the canonical morphism from A = lim

−→
Mor(Bi, C) to Mor(B, C) is

surjective.

Proof. For every i ∈ I, let fi : Bi −→ B and gi : M(Bi, C) −→ A be
the canonical morphisms of direct limit structures. Consider the directed
system

({M(Bi, C)}, {M(Φij, idC)})i≤j∈I .

Then, for every i ≤ j, we have
M(fi, idC) = M(fj, idC)M(Φij , idC).

Thus by the universal property of direct limit, there is a unique morphism
Ψ : A −→ M(B, C) such that

(10) Ψgi = M(fi, idC)
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for every i ∈ I. We must prove that Ψ is surjective. By Th. 2, the set
G = {(ω ⊗ idM(B,C))PB,C(b) : b ∈ B, ω ∈ C◦}

is a generator for M(B, C). Let b ∈ B and ω ∈ C◦ be arbitrary and
fixed. There are i ∈ I and bi ∈ Bi such that fi(bi) = b. Let

ai = (ω ⊗ idM(Bi,C))PBi,C(bi) ∈ M(Bi, C),

then by Lemma 3, M(fi, idC)(ai) = b. Now, by (10), we have Ψgi(ai) = b.
Thus G is in the image of Ψ, and Ψ is surjective. ♦

Question 10. Is the map Ψ, constructed in Th. 9, injective?

Theorem 11. Let C be a commutative finite dimensional C*-algebra
and let B1, B2 ∈ C∗

fg. Then there is a canonical surjective morphism

Ψ : Mor(B1 ⊗ B2, C) −→ Mor(B1, C) ⊗ Mor(B2, C).

Proof. Let m : C⊗C −→ C be defined by m(c1, c2) = c1c2 for c1, c2 ∈ C.
Since C is commutative, m is a morphism. Also, let
F : C ⊗ M(B1, C) ⊗ C ⊗ M(B2, C) −→ C ⊗ C ⊗ M(B1, C) ⊗ M(B2, C)

be the flip map (i.e. c1 ⊗ x1 ⊗ c2 ⊗x2 7−→ c1 ⊗ c2 ⊗ x1 ⊗x2) and let Ψ be
the unique morphism such that the following diagram is commutative:

B1 ⊗ B2

PB1⊗B2,C //

PB1,C⊗PB2,C

��

C ⊗ M(B1 ⊗ B2, C)

idC⊗Ψ
��

C ⊗ M(B1, C) ⊗ C ⊗ M(B2, C)
mF // C ⊗ M(B1, C) ⊗ M(B2, C).

Now, we show that Ψ is surjective. By Th. 2, the set G1 and G2,
defined by

G1 = {(ω ⊗ idM(B1,C))PB1,C(b1) : b1 ∈ B1, ω ∈ C◦}

and
G2 = {(ω ⊗ idM(B2,C))PB2,C(b2) : b2 ∈ B2, ω ∈ C◦}

are generator sets of M(B1, C) and M(B2, C), respectively. Thus the set
G = {a1 ⊗ 1M(B2,C), 1M(B1,C) ⊗ a2 : a1 ∈ G1, a2 ∈ G2}

is a generator for M(B1, C)⊗M(B2, C). On the other hand, for b1 ∈ B1

and ω ∈ C◦, we have

((ω ⊗ idM(B1,C))PB1,C(b1)) ⊗ 1M(B2,C)

= (ω ⊗ idM(B1,C)⊗M(B2,C))mF (PB1,C⊗PB2,C)(b1⊗1M(B2,C))

= Ψ(ω ⊗ idM(B1⊗B2,C))PB1⊗B2,C(b1 ⊗ 1M(B2,C)) (by Lemma 3).

Thus for every a1 ∈ G1, a1 ⊗ 1M(B2,C) is in the image of Ψ. Similarly, for
every a2 ∈ G2, 1M(B1,C) ⊗ a2 is also in the image of Ψ. Therefore G is in
the image of Ψ, and Ψ is surjective. ♦
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The above result, is similar to the following trivial fact in Top:
Let Y1, Y2, X be topological spaces, then the spaces Mor(X, Y1 ×Y2)

and Mor(X, Y1) × Mor(X, Y2) are homeomorphic.

Question 12. Is the map Ψ of Th. 11, injective?

5. Symbolic quantum family of paths

In this section we make a suggestion for more research. Let B ∈ C∗
fg

and C ∈ C∗
fd. We have a contravariant functor

Mor(B,−) : C∗
fd −→ C∗

fg,

and a covariant functor
Mor(−, C) : C∗

fg −→ C∗
fg.

Thus one can consider any contravariant functor F : C∗
fd −→ C∗

fg, (resp.
covariant functor G : C∗

fg −→ C∗
fg) as a generalized notion of a unital

(resp. finite dimensional) C*-algebra. Note that since Mor(B, C) ∼= B,
where C denotes the C*-algebra of complex numbers, one can recover
the C*-algebra B from the data of the functor Mor(B,−).

Recall from elementary Algebraic Topology ([5]), that for every
X ∈ Top the cylinder space cX of X is the space X × I with product
topology and the path space pX of X is the space Mor(I, X) of all
continuous maps from I to X with compact open topology, where I is
the interval 0 ≤ r ≤ 1. The covariant functors c and p are adjoint
functors on Top:

(11) Mor(cX, Y ) ∼= Mor(X, pY ),

for every topological spaces X and Y . For every unital C*-algebra A the
cylinder cA of A is the C*-algebra of all continuous maps f : I −→ A,
or equivalently fI ⊗ A. The cylinder functors c : Topc −→ Topc and
c : C∗ −→ C∗ are compatible with respect to Gelfand’s duality, that is
for every X ∈ Topc and A ∈ C∗

com we have:
cfX = fcX, cqA = qcA.

As is indicated by Alain Connes there is no interesting notion of
path or loop in non commutative (quantum) spaces (page 544 of [1]).
In fact, the natural notion for paths in a quantum space qA is nonzero
*-homomorphisms from A to fI. But such *-homomorphisms do not
exist for almost all noncommutative spaces. Using the functors Mor

and c, the generalized notion of C*-algebras as functors, and Identity
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(11), we symbolically define the concept of quantum space of paths in a
finite quantum space qC: If we replace Mor, X, Y and cX with the
functor Mor, unital C*-algebra B, finite dimensional C*-algebra C, and
the cylinder cB of B, respectively, then we have formally,

(12) Mor(cB, C) ∼= Mor(B, pC).

Therefore one can consider the covariant functor
Mor(c−, C) : C∗ −→ C∗

as a symbolic definition of pC.

Remark 13. i) In the above construction, we lost the natural duality
between Topc and C∗

com (note with a more care the replacement of the
notations in Formulas (11) and (12)). In the literature of Non Commuta-
tive Algebraic Topology, this type of constructions are called wrong-way
functorial.

ii) Using suspension of C*-algebras instead cylinder functor in (12),
one can derive a formal definition for the non commutative loop space.
But there is a gap in the transformation from commutative to non com-
mutative case. The problem is that, in the commutative case, the (re-
duced) suspension functor and the loop functor are adjoint on the cat-
egory of pointed topological spaces and point preserving maps instead
of Top. Also the standard notion of suspension for C*-algebras involves
non unital C*-algebras.

iii) There are some other notions of loop and path space for algebras
[3], that are very far from our construction.
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