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Abstract: This paper consists of a survey of some problems involving isomor-
phism questions about nearring modules and questions about minimal nearring
modules.

1. Introduction

This note is an expanded written version of an invited hour lecture
by the author at the 20th International Conference on Near-rings and
Near-fields 2007 in Linz, Austria, July 23rd to July 27th, 2007 surveying
several problems about nearring modules. The first section of this pa-
per will primarily focus on an isomorphism question involving quotient
modules of faithful nearring modules. Questions about the isomorphism
classes of (to be defined) irreducibly faithful modules and indecompos-
able modules will also be touched on at the end of this section. The
second section will begin with an overview of idempotent quivers (which
are directed graphs using primitive nearring idempotents for their ver-
tices) and will end with a discussion of the potential of these quivers
indicating placements of type 2 factors within nearring modules. The
third and final section will begin with the observation that the integral
group ring of a group is a homomorphic image of the free distributively
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generated (d. g.) nearring of the group leading us to problems extending
results from group representation theory involving types of minimal and
indecomposable modules to the d. g. nearring setting.

2. Isomorphism questions

We begin this section with a problem which this author has been
referring to as the isomorphism question for nearrings:

Given an isomorphism ϕ from a nearring R to a nearring S
and two faithful modules G and H of R and S, respectively,

are there respective canonical R- and S-ideals of N of G and

M of H so that there is a group isomorphism β from G/N to

H/M such that

((g + N)r)β = (g + N)β(rϕ)

for all g ∈ G and all r ∈ R?

Of course, if we identify R and S we can restate this problem in the form:
Given two faithful modules G and H of a nearring R, are

there canonical R-ideals N of G and M of H so that G/N
and H/M are isomorphic R-modules?

For particular nearrings R natural candidates begin to emerge. For in-
stance if R = I(G) (and S = I(H)) it is natural to ask if G/Z(G) ≃
≃ H/Z(H) (Z(G) being the center of G) because of the elementary
result that Inn(G) ≃ Inn(H) (Inn(G) being the inner automorphism
group of G) implies G/Z(G) ≃ H/Z(H). However, the answer to this
question is no. Indeed in [21] Sergei Syskin has given two centerless non-
isomorphic solvable groups G and H for which I(G) ≃ I(H). Gordon
Mason and John Meldrum have done work extending Syskin’s example
in [8]. But something can be salvaged as Syskin went on to show that
if G and H are finite groups with no nontrivial factors of normal sub-
groups that are abelian (called strictly nonabelian groups in [21]), then
I(G) ≃ I(H) implies G ≃ H . Actually Stuart Scott obtained a more
general result in [18] shortly before Syskin: If R/J2(R) has dccr (de-
scending chain condition on right ideals)and R is ring free (meaning that
R contains no proper ideals I with R/I a ring), then any two faithful
2-tame R-modules are isomorphic. In [13] this author showed that if G
and H are finite perfect groups with isomorphic compatible automor-
phism nearrings, then G/Z(G) ≃ H/Z(H). In [14] this was generalized
to only requiring G/Z(G) and H/Z(H) to be perfect and R to have dccr.
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Scott continued to make progress in [19] showing that if R is a
nearring that has no nonzero ideals that are ring modules (Scott calls such
a nearring semiprimary) and R has dccr, then all faithful compatible
R-modules are isomorphic if and only if all faithful compatible R-modules
are Z-constrained. (A precise definition of Z-constrained will be given
shortly. For the time being, just think of it roughly meaning there are
no central factors.) This brings us to Scott’s paper in the proceedings
of the 2003 Hamburg conference [20], which we will consider in greater
detail beginning with a discussion of centralizers and Fitting submodules.
Scott has used several types of centralizers of a subset X of an R-module
G in his work over the years. Two of these using the terminology and
notation of [14] are the module centralizer of X,

MCG(X) = {g ∈ G|gr + x = x + gr ∀x ∈ X, r ∈ R},

and the distributor DG(X) of X in G, which consists of the union of
all R-subgroups H of G for which

(h + x)r = hr + xr

for all h ∈ H , x ∈ X, and r ∈ R. We have
DG(X) ⊆ MCG(X)

with equality if R is distributively generated by a multiplicative semi-
group S, G is an (R, S)-module, and X is an R-subgroup of G by [14,
Prop. 2.2(ii)]. Module centralizers and distributors can be extended to
factors of G in the obvious ways. Continuing to follow the notation and
terminology of [14], we say that an R-module H is R-nilpotent if H has
a series of R-ideals

0 = H0 < H1 < . . . < Hn = H

such that DH(Hi+1/Hi) = H for each i and define the distributive

Fitting ideal of an R-module G, denoted DF (G), to be the sum of
the R-nilpotent ideals H of G. If R = I(G), DF (G) is the same as the
Fitting subgroup F (G) of G. If G is 3-tame and R satisfies dccr, then

DF (G) = ∩DG(H/K)

where the intersection runs over all the type 2 factors of G, which gen-
eralizes the well-known group theoretic result that the Fitting subgroup
of a finite group is the intersection of the centralizers of the chief factors
of the group. The distributive Fitting ideal has emerged as a candidate
for the desired canonical R-ideal in the isomorphism problem. Indeed in
Cor. 39.4 of [20], Scott obtains the following result where an R-module
G is called Z-constrained if G contains no R-ideals K < L such that
DG(L/K) = G.
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Theorem 2.1. Suppose that G and H are faithful compatible R-modules

and R satisfies dccr. If G/DF (G) is Z-constrained, then G/DF (G) and

H/DF (H) are isomorphic R-modules.

In the case of endomorphism nearrings, this author was able to
obtain the following stronger result [14, Th. 3.3]:

Theorem 2.2. Suppose R is a compatible endomorphism nearring of

two groups G and H and R satisfies dccr. If G/DF (G) and H/DF (H)
are both perfect groups, then G/DF (G) and H/DF (H) are isomorphic

R-modules.

Th. 2.2 generalizes Th. 2.1 in the compatible endomorphism near-
ring setting since a Z-constrained module is a perfect group in this set-
ting. Moreover, if we define an R-module G to be R-perfect if it contains
no proper R-ideal I such that DG(G/I) = G, it is easily seen that an R-
perfect module is a perfect group in the endomorphism nearring setting
and a Z-constrained module is R-perfect. Thus we have the question
of whether the endomorphism nearring assumption can be dropped in
Th. 2.2 obtaining a stronger version of Th. 2.1 with R-perfect in place
of Z-constrained. But this is not only possible generalization. A large
part of Scott’s Hamburg paper is devoted to proving the following result
which plays a crucial role in the proofs of Thms. 2.1 and 2.2.

Theorem 2.3. Suppose that G and H are faithful 3-tame R-modules

and R satisfies dccr. Further, suppose that G and H are both R-perfect.

If K < L are R-ideals of G and M < N are R-ideals of H such that

L/K and N/M are isomorphic type 2 R-modules, then

G/DG(L/K) ≃ H/DH(N/M)

as R-modules.

An R-perfect module is a monogenic module and parts of the work
involved in proving Th. 2.3 suggest the possibility that it might be ob-
tained by requiring only monogenicity of the module. Could perfect be
replaced by monogenic in Th. 2.3? If so, it might open the door to
extending Th. 2.1 to the case where G/DF (G) is monogenic. In fact,
Syskin constructs his example of two nonisomorphic centerless groups G
and H for which I(G) ≃ I(H) by forming the direct product D1 ×D2 of
two copies

D1 = 〈u, a|u11 = a5 = 1, ua = u4〉

and
D2 = 〈v, b|v11 = b5 = 1, vb = v4〉



Some problems in the theory of nearring modules 5

of a metacyclic group of order 55, setting

g = ab−1 and h = ab2,

and then using
G = 〈u, v, g〉 and H = 〈u, v, h〉.

In this example, F (G) = 〈u, v〉 = F (H), G/F (G) ≃ H/F (H), and
G/F (G) is monogenic. In fact, we do not need R-ideals as big as F (G)
and F (H) to obtain an isomorphism since G/〈v〉 ≃ H/〈v〉. Thus we are
led to the question: Does a smaller ideal than DF (G) suffice to obtain
an isomorphism in general? If not, does a smaller ideal suffice if we work
with nearrings distributively generated by groups as is the case with
Syskin’s example and the automorphism nearring results of this author
mentioned earlier?

Another natural isomorphism problem to study involves the iso-
morphism classes of the types of faithful modules of a nearring R. One
particular type arises as follows: Suppose that R is a nearring with dccr
and G is a faithful tame R-module. Since

∩g∈GAnnR(g) = 0,

the descending chain condition on R gives us that
AnnR(g1) ∩ · · · ∩ AnnR(gn) = 0

for some finite subset {g1, . . . , gn} of G. As each giR ≃ R/AnnR(gi) has
both the ascending and descending chain conditions on R-ideals by [17,
Th. 5.7], it follows that

H = g1R + · · ·+ gnR

also has both chain conditions on R-ideals. Moreover, as H is a faithful
R-module, we have:

Theorem 2.4. If R is a nearring satisfying dccr and G is a faithful

tame R-module, then G contains a faithful R-ideal H that satisfies both

the ascending and descending chain conditions on its R-ideals.

Now, let us call an R-module K of a nearing R irreducibly faith-

ful if K contains no nontrivial proper R-ideal L such that either L or
K/L is faithful. Or, equivalently, we could say that K is irreducibly
faithful if it contains no nontrivial proper factor M/N of R-ideals (that
is, there are no R-ideals N < M with either 0 < N or M < K) with
M/N a faithful R-module. (This concept of irreducibly faithful modules
is a stronger form of minimality than the minimal faithful modules in §19
of [20].) As a consequence of Th. 2.4, we get the following result which
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includes existence of irreducibly faithful R-modules in the tame-dccr set-
ting.

Theorem 2.5. Suppose the nearring R satisfies dccr. If G is a faithful

tame R-module, then G contains R-ideals L ≤ M such that M/L is

irreducibly faithful. Also, any irreducibly faithful tame R-module satisfies

both the ascending and descending chain conditions on its R-ideals.

Proof. Let H be a faithful R-ideal of G satisfying both chain conditions
on R-ideals guaranteed by Th. 2.4. If H is irreducibly faithful, we are
done, so suppose it is not irreducibly faithful. Then H contains a proper
nontrivial R-ideal L1 such that either L1 or H/L1 is faithful. Repeating
this with either L1 or H/L1 in place of H as appropriate, the chain
conditions on H force this process to terminate after a finite number of
steps in an irreducibly faithful R-module M/L with 0≤L≤M ≤H≤G.
The last sentence in an immediate consequence of Th. 2.4. ♦

Now that we have their existence, the study of the isomorphism
classes irreducibly faithful modules becomes an avenue of investigation.
One beginning point is to reexamine Scott’s Z-constrained semiprimary
result of [19]. Might it be that his Z-constrained assumption can be
eliminated if we restrict to irreducibly faithful modules obtaining all irre-
ducibly faithful compatible R-modules are isomorphic when R is semipri-
mary and satisfies dccr? Do notice too, however, that we cannot expect
to have a single isomorphism class in general due to Syskin’s example as
both of his groups G and H are irreducibly faithful nearring modules for
their respective endomorphism nearrings generated by their inner auto-
morphisms.

Since the Krull–Schmidt Theorem holds for nearring modules sat-
isfying both the ascending and descending chain conditions [10], we can
express an irreducibly faithful tame module K of a nearring R with dccr
uniquely as

K = K1 ⊕ · · · ⊕ Kn

where the summands are indecomposable and unique up to order and
isomorphism of the direct summands. Thus in the study of isomorphism
classes of irreducible modules we may have to consider another problem
that has received considerable attention within the subject of representa-
tion theory of groups and artinean algebras: What are the isomorphism
classes of indecomposable modules? Directed graphs called quivers have
played an important role in studying this problem in the artinean alge-
bra setting. An excellent introduction to this can be found in [16] and
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additional material can be found in [2] and [3]. An approach to form-
ing quivers in the nearring setting was developed in [15] that we shall
consider in the next section. It is not clear whether these quivers will
have any impact on the determination of the isomorphism classes of in-
decomposable nearring modules, but, as we shall see, they do have other
relationships to the structure of nearring modules. The study of the iso-
morphism classes of indecomposable nearring modules is one that has
received little attention among nearringers to this author’s knowledge.
We will return to it in the last section of this note.

3. Idempotent quivers

We begin by reviewing some of the details found in [15] for con-
structing the idempotent quiver of a nearring. We start with a 0-sym-
metric nearring with identity R that has the descending chain condition
on right R-subgroups and has nilpotent J2-radical. Our quiver will be
formed using selected primitive idempotents for its vertices where (follow-
ing Lausch’s definition [6]) an idempotent e of R is primitive if there
does not exist an idempotent f ∈ R such that ef = f and fe 6= e.
The next theorem gives us equivalent characterizations on primitivity of
idempotents. In its second part, the terminology of saying that a right
R-subgroup M of R is self-monogenic means that mM = M for some
m ∈ M .

Theorem 3.1. For e an idempotent of R, the following are equivalent:

1. e is primitive.

2. eR is a minimal self-monogenic right R-subgroup of R.

3. eR is a minimal nonnilpotent right R-subgroup of R.

The first step in forming the set of primitive idempotents for the
vertex set of our quiver is to form a principal set of primitive orthog-

onal idempotents (PPO-set) by which we mean a set of primitive
orthogonal idempotents {e1, . . . , en} of R so that modulo J2(R),

r = e1r + · · ·+ enr
for all r ∈ R where bars denote images in R/J2(R). The existence
of PPO-sets can be seen by using [11, Cor. 8] to lift the idempotents
from a Wedderburn decomposition of R/J2(R) into minimal right ideals
to obtain the desired PPO-set. Indeed it can be shown that all PPO-
sets correspond to such a Wedderburn decomposition of R/J2(R). An
alternative way to obtain a PPO-set that (in conjunction with Lausch’s
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definition of primitivity) can be implemented on software packages such
as SONATA [1] involves adjoining an additional primitive idempotent
ek+1 orthogonal to a set of orthogonal primitive idempotents {e1, . . . , ek}
until AnnR(e1, . . . , en) becomes nilpotent.

Next, we define two primitive idempotents e and f to be linked if
there exist primitive idempotents

e = e1, e2, . . . , en = f

such that eiR and ei+1R have isomorphic R-factors for each i. An alter-
native equivalent definition is to say that e and f are linked if there exist
primitive idempotents

e = e1, e2, . . . , en = f

such that eiRei+1 6= 0 or ei+1Rei 6= 0 for each i. Linkage of primitive
idempotents is an equivalence relation on the set of primitive idempo-
tents which, if we fix a PPO-set W = {e1, . . . , en} of R, partitions W
into equivalence classes W1, . . . , Wr of linked idempotents. There is a
relationship between these equivalence classes and direct sum decompo-
sitions, at least in the case of tame nearrings, that we next discuss.

Our nearring R is uniquely expressible as
R = B1 ⊕ · · · ⊕ Bt

where each Bi is an indecomposable ideal of R. The ideals Bi are called
the blocks of R. If R is a tame nearring, the number r of equivalence
classes Wi of linked primitive idempotents of a PPO-set W is the same
as the number of blocks t of R. In fact, the blocks of R are the same
as the ideals of R generated by the Wi. For notational purposes, let us
relabel if necessary so that Bi is the ideal generated by Wi. The unique
decomposition of R into blocks induces a similar unique decomposition
of any faithful tame R-module G into the form

G = G1 ⊕ · · · ⊕ Gt

with Gi = GBi. The Gi are called the blocks of G and are characterized
by the fact that Gi and Gj have no common isomorphic factors for i 6= j
and each Gi cannot be further decomposed into a nontrivial direct sum of
R-ideals without the summands having common isomorphic factors. It
is an open question as to whether these unique block decompositions in
the tame case extend to other nearrings and associated faithful modules.

Now let us develop how we construct the idempotent quiver of R.
We start by choosing a PPO-set W of R. Next define an equivalence
relation ∼ on W by having ei ∼ ej if eiR ≃ ejR where R = R/J2(R). In
fact, the equivalence classes of W under ∼ correspond to the isomorphism
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classes of type 2 R-modules. There are several other equivalent ways of
defining ∼ that can be found in [15]. One that is useful for computer
calculation is to define ei ∼ ej if eiRejR contains a primitive idempotent
as this can be checked by using only the multiplication of the nearring.
(A by-product of this is that it gives us a way based solely on the nearring
multiplication of determining the number of isomorphism classes of type
2 modules of R. Often this has been done by resorting to determining the
Wedderburn decomposition of R/J2(R) or, in the case of a compatible
endomorphism nearring, by finding the isomorphism classes of the type 2
summands of socle series factors of the group.) To form the vertex set V
of our quiver, we choose a set of representatives

V = {e1, . . . , em}

(relabeling if necessary) of the equivalence classes of W under ∼. The
directed edges of our quiver are formed by having and arrow from ei to
ej if eiRej 6= 0. It can be shown that different choices of a vertex set
from W as well as different choices of PPO-set W result in isomorphic
quivers allowing us to speak of the quiver of R, which we shall denote
by Γ(R).

There are some connections between Γ(R) and the structure of R
and its modules. One is the following result relating the connected com-
ponents of Γ(R) and blocks in the tame case.

Theorem 3.2. If R has a faithful tame R-module G, then the connected

components of Γ(R) are in one-to-one correspondence with the blocks of

R and G.

Some other relationships between the direction of the arrows of
Γ(R) and the arrangement of type 2 factors of an associated faithful
tame R-module G are emerging. For statements of results known at this
point the reader is referred to [15], but let us give some examples to
illustrate connections between Γ(R) and type 2 factors. The quiver of
E(G) where G = D24 is the dihedral group of order 24 is:

e2

e1

e3





�

J
JĴ

Notice the resemblance of this to the socle series of G viewed as an E(G)-
module which is

D24

|
C2 ⊕ C3
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where Cn denotes the cyclic group of order n. Here Soc1(G) = C2 ⊕ C3,
Soc2(G) = G, and G/Soc1(G) is the Kline 4-group, V4. As another
example, the quiver of I(G) where G = S4 is:

e2

e1

e3





�

B
B
B
B
BN

Z
Z

Z~

Here too notice the similarity between this quiver and the socle series for
S4 which is

S4

|
A4

|
V4

with Soc1(G) = V4, Soc2(G) = A4, and Soc3(G) = G. One obvious
question these examples raise is whether we can use the quiver Γ(R) to
read off (up to multiplicity) direct summands of (using the terminology of
Lyons and Meldrum in [7]) radical series of a faithful tame R-module G.
And there are many other questions that are natural to ask. For instance,
the Dynkin diagrams from the classification of simple Lie algebras play
an important role in the study of algebras of finite representation type.
Are there any such diagrams that play an essential role here?

4. Free d. g. nearrings

In this last section, we look at a type of nearring that may well
deserve more attention than it has up to this point. It is the free d. g.
nearring generated by a finite group G which we shall denote by F (G).
The reader desiring a reference on free d. g. nearrings may consult Ch. 12
of [9] where a more general form of a free d. g. nearring is constructed
within a given variety V of groups. We will stick to the most basic case
with the free d. g. nearring of a group (i.e., V will be the variety of all
groups), but some of the ideas mentioned here may well have correspond-
ing versions of interest for other varieties V as well as in the case where
G is replaced by a semigroup.
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A convenient way to view F (G) following from [9, Th. 12.12(i)]
is to note that (F (G), +) is the free group on G and then realize that
the multiplication on F (G) is determined by first applying the left-hand
distributive law and then distributing the elements of G on the right;
that is, elements of F (G) are multiplied as

(ε1g1 + · · ·+ εmgm)(δ1h1 + · · · + δnhn) =

= δ1(ε1g1 + · · ·+ εmgm)h1 + · · · + δn(ε1g1 + · · · + εmgm)hn =

= δ1(ε1g1h1 + · · · + εmgmh1) + · · ·+ δn(ε1g1hn + · · ·+ εmgmhn)

where each εi and δi is ±1 and each gi and hi is an element of G. The
reader familiar with group rings will notice that this is the same rule of
multiplication followed for the group ring R(G) of a commutative ring R
(group rings over commutative rings are the primary focus in the study
of group rings due to their role in group representation theory) where
the εi and δi are elements of R and (R(G), +) is the free R-module
on G. Another connection with group rings is that F (G) is related to
the integral group ring Z(G) in a natural way: Letting F (G)′ denote
the commutator subgroup of (F (G), +), which is an ideal of F (G), the
nearring F (G)/F (G)′ is Z(G).

Observe that studying the category of groups M on which a homo-
morphic image of G acts as group of automorphisms of M is equivalent
to studying the category of (F (G), G)-modules. In particular, the study
of an automorphism nearring of a group generated by a finite group of
automorphisms of that group falls within this realm. If M is an abelian
group, then F (G)′ ≤ AnnF (G)(M) and hence M is a Z(G)-module—not
only in the nearring sense, but as a ring module. To put it another way,
studying the abelian (F (G), G)-modules is the same studying the Z(G)-
modules. This puts us into the group representation setting where we
have a wealth of results at our disposal that we can use in the study
of (F (G), G)-modules. For instance, suppose that one is interested in
studying either simple, type 0, or type 2 (F (G), G)-modules. In all three
situations the same reasoning used to obtain [12, Prop. 1.1] gives us that
if M is any one of these three types of (F (G), G)-modules, then M is
either (1) an elementary abelian p-group, (2) a direct sum of copies of
the additive group of the rational numbers, or (3) a perfect group. In the
abelian cases (1) and (2), simple, type 0, and type 2 are all the same. In
particular, M is then monogenic, say, M = mF (G), m ∈ M . But now
case (2) cannot occur because M is finitely generated by the elements
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mg, g ∈ G, as a Z-module. Thus if M is abelian it is a simple Zp(G)-
module in which case a theorem of S.D. Berman [5, VII,3.11] gives us
information on the number of isomorphism classes of such modules M .
What about in the perfect situation? Can we get any results about the
number of perfect simple, type 0, or type 2 (F (G), G)-modules?

Another place a theorem from group representation theory has an
impact is in the study of when the number of indecomposable (F (G), G)-
modules is finite. Here a remarkable result of A. Jones [4, Th. 81.18] gives
us that we may restrict out attention to those groups G for which each
Sylow p-subgroup of G is cyclic of order at most p2 in the study of this
question.
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