
Mathematica Pannonica

20/1 (2009), 1–9

EXISTENCE AND UNIQUENESS IN
COURNOT MODELS WITH COST EX-
TERNALITIES

Carl Chiarella

School of Finance and Economics, University of Technology, Syd-

ney, PO Box 123, Broadway NSW 2007, Australia

Ferenc Szidarovszky

Department of Systems and Industrial Engineering, University of

Arizona, Tucson, Arizona 85721-0020, USA

Received : April 2008

MSC 2000 : 91 A 07, 91 A 40

Keywords : n-person games, oligopolies.

Abstract: In this paper we examine single product Cournot oligopolies, with-
out product differentiation, under the assumption that the cost of each firm
depends on its own output and also on the output of the rest of the industry.
The competition of the firms on the secondary market for manpower, capital,
energy, and so forth as well as the spillover effect of the R&D investments
of the firms can be taken into account with this more general cost structure.
The existence of a unique Nash–Cournot equilibrium is proved under realistic
conditions. Our result is a straightforward generalization of the well-known
existence and uniqueness theorem of concave oligopolies.

1. Introduction

Cournot oligopolies are the most frequently discussed models in
the literature of mathematical economics. Based on the pioneering work
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of [4] many researchers have examined the properties of the different vari-
ants and extensions of the classical Cournot model. Models with product
differentiation, multi-product models, labor-managed firms, rent-seeking
games to mention only a few have been introduced and investigated
within the Cournot framework. A comprehensive summary of the ear-
lier literature is given in [8]. Multi-product models and some extended
models are discussed in [9], where some further applications to water
resources and the international fishery are introduced. The interdepen-
dence of the firms is considered in these models through the inverse de-
mand functions, which depend on the total output of all firms. However
very few attempts have been made to analyse the interdependence of
firms via their cost structures. The introduction of oligopsonies by [3]
served this purpose, when the competition of the firms on the labor and
capital markets was also included in their profit functions. In this pa-
per we adopt a different approach by assuming that the cost of each
firm depends on its own output and also on the output of the rest of
the industry. This framework is a realistic way to model the spillover
effect of various externalities, such as of the R&D investments of the
competitors. Such models have been already introduced and the asymp-
totic properties of the equilibria examined for duopolies and symmetric
firms, see in particular [7], and [2]. However in these works no gen-
eral result was presented for the existence and uniqueness of the equi-
libria in the general n-person nonsymmetric case. The existence, under
suitable concavity conditions, can be established by using fixed-point
theorems, however the uniqueness of the equilibrium cannot be guar-
anteed and no practical method has been suggested to find the equi-
libria. In this paper we will use an idea originally suggested in [10],
where the n-dimensional equilibrium problem was reduced to the solu-
tion of a one-dimensional monotonic equation leading to the existence
of a unique solution and to a simple computational procedure. Another
way of departing from the usual concavity assumptions of single-product
oligopolies was initiated by [5], when more realistic cost functions were
used, and the payoff functions were not concave. These results have
also been discussed in [6]. The structure of the paper is as follows.
In Sec. 2 we set up the Cournot model with cost externalities, and
prove the existence of a unique equilibrium. Sec. 3 concludes the pa-
per.
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2. The mathematic model and equilibrium analysis

Consider an n-firm single-product oligopoly without product differ-
entiation and with cost externalities. Let xk denote the output of firm
k, Qk =

∑
l 6=k

xl the output of the rest of the industry for firm k, and Q =

=
n∑

l=1

xl the total output of the industry. It is assumed that the price

function is f(Q), and the cost function of firm k depends on both xk

and Qk, so we write Ck(xk, Qk) to denote the cost function. If Lk is
the capacity limit of firm k, then an n-person noncooperative game is
obtained, where the firms are the players, the set of strategies of player
k is the compact interval [0, Lk] and the payoff function of this player is

(1) ϕk(xk, Qk) = xkf(xk + Qk) − Ck(xk, Qk).

Assume that the functions f and Ck, k = 1, 2, · · · , n, are twice
continuously differentiable, and furthermore that

(A) f ′(xk + Qk) < 0;

(B) f ′(xk + Qk) + xkf
′′(xk + Qk) ≦ 0;

(C) f ′(xk + Qk) − C ′′
kxx(xk, Qk) < 0

for all feasible values of xk and Qk, where C ′
kx and C ′′

kxx denote the first
and second order partial derivatives of Ck with respect to xk.

Condition (A) means that the price function is strictly decreasing.
Condition (B) is satisfied if f is concave or slightly convex, and condition
(C) holds if Ck is convex or slightly concave in xk. If f is linear, then
f ′′ = 0, so condition (B) is implied by (A), and (C) requires that for all
k, C ′′

kxx is bounded from below by a negative lower bound.
Notice first that

(2)
∂ϕk

∂xk

(xk, Qk) = f(xk + Qk) + xkf
′(xk + Qk) − C ′

kx(xk, Qk)

and

∂2ϕk

∂x2
k

(xk, Qk) = 2f ′(xk + Qk) + xkf
′′(xk + Qk) − C ′′

kxx(xk, Qk) < 0,

so with fixed values of Qk, the payoff function ϕk is strictly concave in xk.
Therefore for any feasible values of Qk, there is a unique best response
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of firm k given by
(3)

Rk(Qk) =





0, if f(Qk) − C ′
kx(0, Qk) ≦ 0,

Lk, if f(Lk + Qk) + Lkf
′(Lk + Qk) − C ′

kx(Lk, Qk) ≧ 0,

zk, otherwise,

where zk is the unique solution of the equation

(4) f(zk + Qk) + zkf
′(zk + Qk) − C ′

kx(zk, Qk) = 0

inside the interval (0, Lk). Notice that equation (4) has a unique solution
since the left-hand side is strictly decreasing in zk, its value is positive at
zk = 0 and negative at zk = Lk. By implicit differentiation of (4) with
respect to Qk we have

f ′ · (R′
k + 1) + R′

k · f
′ + zkf

′′ · (R′
k + 1) − C ′′

kxxR
′
k − C ′′

kxQ = 0

implying that

(5) R′
k = −

f ′ + zkf
′′ − C ′′

kxQ

2f ′ + zkf ′′ − C ′′
kxx

,

where C ′′
kxQ is the mixed second order partial derivative of Ck. The

denominator of (5) is negative under assumptions (A)–(C), and the value
of R′

k belongs to interval (-1, 0] if in addition we assume that

(D) f ′(xk +Qk)+xkf
′′(xk+Qk)≦C ′′

kxQ(xk, Qk)<C ′′
kxx(xk, Qk)−f ′(xk+Qk)

for all k and all feasible values of xk and Qk.
The left-hand side of this inequality is nonpositive and the right-

hand side is positive by assumptions (B) and (C). Therefore this condi-
tion requires that the mixed second order partial derivatives of the cost
functions must not have large absolute values.

We can also rewrite the best responses as functions of the total
output Q of the industry, using R̃k(Q) to denote these modified best
response functions. In this case we have

(6) R̃k(Q) =





0, if f(Q) − C ′
kx(0, Q) ≦ 0,

Q, if Q < Lk and f(Q) + Qf ′(Q) − C ′
kx(Q, 0) ≧ 0,

Lk, if Q ≧ Lk and

f(Q) + Lkf
′(Q) − C ′

kx(Lk, Q − Lk) ≧ 0,

z∗k, otherwise,

where z∗k is the unique solution of the equation

(7) f(Q) + zkf
′(Q) − C ′

kx(zk, Q − zk) = 0
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inside the interval (0, min{Q, Lk}). Notice that the left-hand side of (7)
is strictly decreasing in zk, since its derivative with respect to zk is

f ′(Q) − C ′′
kxx(zk, Q − zk) + C ′′

kxQ(zk, Q − zk) < 0,

where the last inequality follows because of assumption (D). In addition,
in the last case of (6), the left-hand side is positive at zk = 0 and negative
at zk = min{Q, Lk}.

We will next examine the properties of the modified best response
function R̃k(Q). To this end we introduce the notation

(8) gk(xk, Q) = f(Q) + xkf
′(Q) − C ′

kx(xk, Q − xk)

for all feasible xk and Q. We note that
∂gk

∂xk

= f ′ − C ′′
kxx + C ′′

kxQ < 0,

by the right-hand inequality of assumption (D) and that
∂gk

∂Q
= f ′ + xkf

′′ − C ′′
kxQ ≦ 0

by the left-hand inequality of assumption (D), hence the function gk is
strictly decreasing in xk and is nonincreasing in Q.

Assume first that for a firm k, gk(0, 0) ≦ 0. Then for all Q ≧ 0,
gk(0, Q) ≦ 0, so the first case of (6) occurs for all Q ≧ 0, therefore

R̃k(Q) ≡ 0. Since these firms have zero output, they have no effect
on the payoffs of other firms (see Fig. 1, panel (a)). Therefore in the
subsequent analysis these firms can be omitted. So we assume that for all
k, gk(0, 0) > 0. Then gk(Q, Q) > 0 with sufficiently small Q > 0. If there
is a Q(0) ∈ (0, Lk) such that gk(Q

(0), Q(0)) = 0, then the monotonicity of
gk(xk, Q) implies that the third case of (6) can never occur with Q ≧ Lk.

If Q ≦ Q(0), then the second case of (6) applies, so R̃k(Q) = Q. If Q >

> Q(0) and gk(0, Q) ≦ 0, then R̃k(Q) = 0, otherwise it is the unique
solution of equation (7). The monotonicity of gk(xk, Q) also implies that
gk(0, Q) ≦ 0 either cannot occur, or it does for all Q ≧ Q(1), where Q(1)

denotes the smallest solution of equation gk(0, Q) = 0. Clearly, Q(1) >

> Q(0). (See Fig. 1, panel (b).)
Assume next that gk(Q, Q)>0 for all Q∈(0, Lk). Then gk(Lk, Lk)≧

≧ 0 implying that R̃k(Lk) = Lk. We have now two possibilities. If there
is a feasible Q such that gk(Lk, Q) = 0, then let Q(2) denote the largest
solution of the equation gk(Lk, Q) = 0. Then for all Q ∈ [Lk, Q

(2)],

R̃k(Q) = Lk. Clearly for all Q > Q(2), the first or the last case of (6)

occurs, therefore R̃k(Q) is either zero or the solution of equation (7).
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R̃k(Q)

Q

R̃k(Q)

Q

Q(0)

Q(0) Lk Q(1)

(a) Firms with gk(0, 0) ≤ 0 (b) Firms with Q(0) and with gk(0, 0) > 0

R̃k(Q)

Q

Lk

Lk

Q(2) Q(1)

R̃k(Q)

Q

Lk

Lk

(c) Firms with Q(2) and (d) Firms without Q(2) and

with gk(Q, Q) > 0 for all Q ∈ (0, Lk) with gk(Q, Q) > 0 for all Q ∈ (0, Lk)

Figure 1: The graph of R̃k(Q)

Notice that Q(1) > Q(2) in this case. (See Fig. 1, panel (c).) Otherwise

R̃k(Q) = Lk for all Q > Lk (see Fig. 1, panel (d)). We can finally show
that the solution of (7) is nonincreasing in Q. Assume that it is not, that
is, there are Q < Q̄ such that

zk = R̃k(Q) < R̃k(Q̄) = z̄k.

Then
0 = gk(zk, Q) ≧ gk(zk, Q̄) > gk(z̄k, Q̄) = 0,

which is clearly a contradiction. Fig. 1 shows the different possibilities
of the graph of R̃k(Q). Note that in these cases, the horizonal segments
might be omitted.

We are now ready to prove our main result.
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Theorem 1. Under conditions (A)–(D) there is a unique Nash equilib-

rium.

Proof. Assume first that for all firms, gk(0, 0) ≦ 0. Then clearly x̄k = 0
for all k is the only equilibrium. Assume next that gk(0, 0) > 0 for only
one firm. Then x̄l = 0 for all l 6= k, and x̄k = Q is the solution of the
maximization problem

(9) max
0≦Q≦Lk

{Qf(Q) − Ck(Q, 0)}.

Since the objective function is strictly concave in Q, there is a
unique optimal solution:

(10) x̄k = Q =

{
Lk, if Lkf

′(Lk) + f(Lk) − C ′
kx(Lk, 0) ≧ 0,

z̄k, otherwise,

where z̄k is the unique solution of the equation

(11) zkf
′(zk) + f(zk) − C ′

kx(zk, 0) = 0.

Notice that the left-hand side is strictly decreasing in zk, it is positive at
zk = 0 and negative at zk = Lk.

Assume next that gk(0, 0) > 0 for at least two firms. We will finally
show that the equation

(12)
n∑

k=1

R̃k(Q) − Q = 0

has exactly one solution, so the equilibrium is therefore unique. Let
h(Q) denote the left-hand side of (12). With sufficiently small Q > 0,

R̃k(Q) = Q for at least two firms, so with small Q > 0, h(Q) > 0. If

Q =
n∑

k=1

Lk, then h(Q) ≦ 0, since for all k and Q we have R̃k(Q) ≦ Lk.

Since R̃k(Q) is continuous for all k, there is at least one positive solution
of equation (12). The uniqueness of the solution can be proved in the
following way. Assume that (0 <)Q∗ < Q∗∗ are two solutions of equation

(12). Notice that R̃k(Q) is nonincreasing in Q everywhere except on the

initial segment, where R̃k(Q) = Q. In addition,
n∑

k=1

R̃k(Q
∗) <

n∑

k=1

R̃k(Q
∗∗)

is possible only if for at least one k, R̃k(Q
∗) = Q∗. Then equation

(12) implies that for all other firms R̃l(Q
∗) = 0, and for the same firms
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R̃l(Q
∗∗) = 0 as well, since Q∗∗ > Q∗. This would lead to two possible

equilibria when only one firm produces positive amount. Since we have
already demonstrated that the maximization problem (9) cannot have
multiple solutions, this is impossible. ♦

3. Conclusions

We have established the existence and uniqueness of the equilibria
in single-product Cournot models without product differentiation under
the assumption that the cost of each firm depends on its own output
as well as on the output of the rest of the industry. The competition
of the firms on the secondary market, and the spillover effect of the
R&D investments of the competitors can be realistically modelled in this
way. In the special case when the cost of each firm depends on its own
output, then the mixed partial derivative C ′′

kxQ is identically zero. Then
assumption (D) is identical with (B) and (C), so it can be omitted. So
in this case our conditions are reduced to the usual conditions of concave
oligopolies (see Ch. 2 of [1]).

Assume that the cost of firm k is Ck(xk, Qk) = xkMk(Qk), so the
fixed cost is zero and the marginal cost of firm k depends on Qk. In
this case C ′′

kxQ(xk, Qk) = M ′
k(Qk) and C ′′

kxx is identically zero. Therefore
condition (C) reduces to (A) and condition (D) becomes

f ′(xk + Qk) + xkf
′′(xk + Qk) ≦ M ′

k(Qk) < −f ′(xk + Qk)

for all feasible xk and Qk.
Since the left-hand side is nonpositive and the right-hand side is

positive, this condition does not restrict the sign of M ′
k, it only requires

that |M ′
k(Qk)| be sufficiently small.

It would be interesting to investigate the existence and uniqueness
of the equilibrium with nonconcave payoff functions by generalizing the
results given in [5]. We leave this issue to future research.

Many results on the local asymptotic stability of the equilibria un-
der both discrete and continuous time scales for the classical Cournot
model are based on the assumption that the derivative of the best re-
sponse function always belongs to the interval (−1, 0]. Since this is
true also with externalities under conditions (A)–(D), all relevant re-
sults known for the classical Cournot model remain true in the more
general case with cost externalities (see [1]). The equilibrium under the
adaptive adjustment process is always locally asymptotically stable with
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continuous time scales, and is locally asymptotically stable with discrete
time scales if the speeds of adjustments are sufficiently small.

We leave for future research the global asymptotic properties of the
general n-firm case.
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