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Abstract: Real linear spaces equipped with core, directional, Klee and finite
topologies are examined by cardinal functions such as density, cellularity, ex-
tent, character, weight and tightness. There are also stated the cardinality of
the family of open and regularly open sets. Moreover, it is shown that there
exists an open set G in the directional topology such that its interior in the
finite topology is empty and the complement of G in every finite dimensional
subspace is nowhere dense in the Euclidean topology.

1. Introduction and notation

We continue the research on four topologies undertaken in [7] and [8].
All these topologies are defined in real linear spaces. In this paper a lin-
ear space is meant as a real linear space of dimension at least 1. Usually
it is denoted by X and its dimension (i.e., the cardinality of its Hamel
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base) by dim X.

Topologies we investigate are denoted by 7o(X), 71 (X), 7=2(X) and
73(X), or shortly by 79, 71, 7o and 73 if it is clear which a space X
is taken into consideration. Such sets as the interior, the closure and
the boundary of a set A in the topology 7;, ¢ = 0,1,2,3, are denoted
by Int;A, CL; A, Fr;A, resp. Analogous convention concerns, e.g., open
sets, compact sets, boundary sets, so we talk, e.g., about i-open sets,
i-compact sets, i-boundary sets with 7 € {0,1,2,3}. We put the index j
if the property at hand holds true for every one of three topologies 71, T
and 73. If the property holds also for the topology 7, we put the general
index j into parentheses, so we have, e.g., (j)-open sets.

The topology 7y has been introduced by Klee and Kakutani in [9]
and they named it a finite topology. It is defined as the strongest topol-
ogy such that in any finite dimensional space it induces the Euclidean
topology. Lelong in [17] showed that this topology is also the strongest
of all topologies defined on X such that for every y € X the function f,,
where f,(x,r) = x + ry, is continuous on X X R, where R denotes the
real line equipped with Euclidean topology (in the next we always take
R with this topology). In [17] there are discussed generalizations of such
topologies, namely the topologies in linear spaces over fields satisfying
special conditions (the real space is a particular case of these spaces).
These topologies are used to make insight into subharmonic functions in
linear spaces and into so-called p-topologies which are determined by a
family ¢ of functions.

Probably the most known topology among four topologies discussed
in this paper is the topology 71, in [10] Klee called it a core topology. It
is the strongest topology such that it induces the Euclidean topology
on any line. The topology 73 may be defined in various ways and we
later give some of them. This topology was investigated in [10], [11]
and [12], as well as in [14], [6], [15], [19] and in [13]. Moreover, in [13]
there is presented its application in optimization. Generalizations of
the core topology are given, e.g., in [20], [21], [22], [3], [4], [5] and [18].
These generalizations are mostly obtained in two ways, or the Euclidean
topology is not induced on all lines, or there is induced a topology which
is stronger than the Fuclidean one. The combination of these both ways
is also dealt with. An interesting property of the core topology is that it
is the strongest topology in a real space such that the addition and the
multiplication are separately continuous. Moreover, the topology 7, has
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this property that any directionally continuous function is continuous in
this topology (in this paper a function is called directionally continuous
if it is defined on X, assumes values in R, and its restriction to any line
is continuous in the Euclidean topology).

The topology determined by the family of all directionally contin-
uous functions (i.e., the weakest topology such that any directionally
continuous function is continuous in this topology) in [7] is called a di-
rectional topology. We denote it by 7. In [7, p. 60] it is shown that if
dim X > 2, then 75 is essentially weaker then the core topology.

The topology 73, in [7] called a Klee topology, has been first defined
in [12] for finite dimensional spaces. In [7] there is given its extension to
arbitrary real linear spaces, and this generalization is made via the topol-
ogy To. The definition of this topology will be given later. In [7] there
is proved that in spaces of dimension at least 2 the Klee topology is es-
sentially weaker than the directional topology. Roughly saying, the Klee
topology and the core topology approximate the directional topology.
We hope that the exploration of these topologies lets more completely
recognise the nature of the space of directionally continuous functions.

There are already known some properties of these topologies, e.g.,
their relation to the separation axioms [12], [6], [8], the structure of the
(7)-compact sets [19], [8], the structure of (j)-connected components of
open sets [8], the Baire property of 1-open sets [6]. There is also solved the
problem of the classification to sequential spaces and Frechet spaces [8].

The standard research of any topology includes the determination
of values of basic cardinal functions. In this paper we deal with following
cardinal functions (their names are followed by their denotations): the
density — d, the cellularity, or Souslin number — ¢, the hereditary cellu-
larity — he, character — x, the pseudocharacter — 1, the weight — w, the
m-character — -, the m-weight — m-w, the number of open sets (i.e., the
cardinality of collection of all open sets) — o0, the number of regular open
sets — ro (in [2] a regular set is called an open domain), the extent — e,
the tightness — t. Some particular statements concerning the weight and
the density of topologies 7y and 7; are stated in [12] and [6]. Here we
complete them by results for topologies 75 and 73, and related to the di-
mension of space at hand. By f;(X) we denote the value of the cardinal
function f for the topological space (X, 7;). If f1(X) = fo(X) = f3(X),
then, analogously as above, we shortly write f;(X). If fo(X) = f;(X),
we write f(;)(X).
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Before we will give the definition of the Klee topology we establish
some terminology and denotations used in this paper.

The sets of natural, rational, real and nonnegative numbers are
denoted by N, Q, R and R, respectively. The cardinality of N is denoted
by Ny, and that of R by ¢. R, denotes also the initial number of this
cardinality. Analogous convention concerns ¢. Other ordinal numbers
are denoted by Greek letters.

The zero element of X is written as 0. The closed line segment
between different points a,b€ X is designated as (a,b) = {Aa+(1—\)b:
: 0 < A < 1}, analogous denotations are used for (semi-)open intervals,
e.g. (a,b) = (a,b) \ {b}, (a,b) = (a,b) \ {a,b}. For any sets S C R and
A,B C X and for any s € S and z € X we write SA = {sa:s € S,a €
€ A}, sA={s}A, A+ B={a+b:a€ Abe B}, z+ B ={z} + B.
For x € X, r € R, and for any family B of subsets in X we set © + B =
={zx+B:BeB},rB={rB:be B}.

We say that subspaces L and M of X are complementary each
to another in X if L+ M = X and LN M = {0}. Then we write
codim L = dim M.

A cone generated by the set A C X and with its vertex at the point
y € X is the set Con (A,y) ={y+rz: r>0, x € A}. If y =0, then
we put Con A = Con (A4, 0).

We write > a; when almost all summing elements a, are equal to 0.
teT
The linear space spanned by the set A C X is defined to be the set

Lin A = {Zatut oy €ERjuy € A}.

teT

The family of all functions defined on a set A and assuming values
in a set B is denoted by BA. The restriction of the function f to the
set A contained in the domain of f is denoted by f|A, and f~1(B) =
= {a: f(a) € B} is the inverse-image of the function f assuming values
in the set B. The superposition f o g of functions f and ¢ is defined
by fog(z) = f(g(x)). A linear map f such that fo f = f is called a
projection. If @ is a projection in X, p(X) = L and p~1(0) = M, we say
that the projection p maps onto L and parallelly to M.

Sequences are denoted as (z,), (y,) etc. We write (z,) C A if
x, € A foralln € N.
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If fi’'s, (k = 1,2,...,n) are real functions then sup{fx : k
= 1,2,...,n} is the function ¢ defined by formula ¢(x) = sup{ fi(x)
ck=1,2,...,n}.

The Euclidean norm of an element x € R” is denoted by ||z||, and
K (x,r) stands for the open ball centered at = and of radius r. pa(x) is the
distance of the point x to the set A, i.e., pa(z) = inf {||x — al| : a € A},
and p(A, B) = inf {||x — a|| : a € A,b € B} is the distance between sets
A and B, where A, B C R™.

Let A be any subset in X. The core of A (with respect to X)
denoted by Corx A, or shortly CorA, is defined to be the subset of A
such that a € CorA if and only if for every x € X \ {a} there exists
an element y in the segment (a,z) such that (a,y) C A. Following [6]
we call a set A a core set if A = CorA. The family of all core sets is a
topology, and it is nothing else than the core topology.

The definition of the topology 73 will be here given in terms of a
Klee pair. A pair (U, F) of subsets U, F' C X is called a Klee pair for a
point z € X if

1° U is 0O-open in X,

2° FcCU,

3° {x} U F is O-closed in X,

4° x € Cor ({z} U F).

The Klee topology in X is the topology, the base of which is the family
consisted of all open sets in 79(X) and all sets of the form {z}UU, where
x € X\ U, U is open in 79(X) and there exists a subset F' of X such
that (U, F') is the Klee pair for z.

Topological notions are as they are defined in [2], however we allow
some exceptions. They affect, e.g., the notions of a neighbourhood. By
the neighbourhood of a point  we mean a set A such that x belongs to
its interior.

The family B of open sets in a topology is called a m-base for this
topology if for every open set G there exists a set B € B such that B C
C G. If we also demand G to include the point x, then B is called a
m-base for the topology at the point z.

If LCY and Y is a space equipped with the topology 7, then the
topology induced in L by the topology 1 in Y is denoted by n|L. As in
[16, p. 270], for a set A C Y and an ordinal number « the derived set of
an order « is denoted by A(®). First ordinal number « such that the set
A is perfect is called the rank of A and denoted by §(A).
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From [7] and [8] let us here recall following facts:
Fact 1.1. The inclusions 1o C 73 C 75 C 71 take place in any X and
they turn into equalities only if dim X = 1.
Fact 1.2. If B is a Hamel base of X and

1
K:{x:z&bbi‘&b‘<§},

beB
then for every b € B the set U, = b+ K is an 0-open neighbourhood of b,
and Uy, N Uy, = O for by # by.

2. Density, cellularity and extent

Lemma 2.1. Let B be a Hamel base of X. B is 0-closed set and every
its element is 0-isolated of B.
Proof. For every finite dimension subspace L of X the set L N B is
finite, so it is O-closed. Therefore B is O-closed. By Fact 1.2, the family
{K +b: b€ B} consists of 0-open and pairwise disjoint sets. Hence every
b € B is the 0-isolated point of B. ¢
Theorem 2.1. There hold the equalities

d()(X) = ¢(;)(X) = sup{R, dim X}.
Proof. According to Cor. 1 in [6, p. 244], the space (X, 71) is separable if
dim X < Ry. Hence (X, 7(;)) is separable if dim X < Rg. In the next let
dim X > N,. Let {b; : t € T'} be a Hamel base of X and let S(X) be the

set of elements > auby, where for all ¢ € T the coefficients «; are rational
teT

numbers. We will show that S(X) is 1-dense. Let x € X\ {0}. Therefore
there exists a finite set 7, C 7 such that x € L = Lin{t; : t € T,}.
Hence z € Cl; (S(X)N L) = L. Since L is 1-close, so L C Cly (S(X))
and, finally, z € Cl; (S(X)). It says that S(X) is 1-dense, in consequence
it is (j)-dense. This proves that d;(X) < sup{¥, dim X}.

Now we are going to find an inequality involving c(;(X) and
sup{RNg, dim X'}. In this aim let’s notice that in R"™ there exists a count-
able family of open (and therefore (j)-open) and pairwise disjoint sets,
so ¢(;)(X) > Ry. By Fact 1.2 there exits a family F of 0-open and pair-
wise disjoint sets such that card7 = dim X. It implies that c(;(X) >
> sup{Ny, dim X }.

The relation c(;(X) < d;(X) given in [2, p. 86] completes the
proof. ¢
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Theorem 2.2. There hold hco(X) = eo(X) = sup {Rg, dim X }.
Proof. It’s clear that eo(X) > Ny (it’s enough to see it for Nz, where
x # 0). Taking into account Fact 1.2 we have ey(X) > sup (No, dim X).

We will show that heo(X) < sup (N, dim X). First we consider
the case dim X > Ng. Let B = {b, : t € T} be a Hamel base of X, and
T be the family of all finite subsets of T'. Obviously, card 7 = card T
Let £ = {Lin{b;:t € S} :S € T}. Let’s suppose that there exists a
set A C X such that card A > dim X and every its element is isolated.
Because card A > dim X = card 7, so there exists Ly € L such that
card (AN Ly) = card A > .

It is easy to state that hcy (R™) = Rq for every n € N. Indeed, if
this equality would not hold then there should exist an uncountable set
C C R" such that every its point is isolated and r(z) = pey\ (e (z) > 0 for
each z € C. Taking C,, = {z : r(z) > 1} n € N, we see that there exists

no € N such that card C,, = card C. Hence the open balls K (:cl, ﬁ)

and K (:)32, ﬁ) are disjoint for different zy, x5 € C,,,. Therefore there

exists the uncountable family of balls which are disjoint each with other.
In R™ it is impossible. This contradiction proves that hcg (R™) < Ry.

In consequence, there does not exist a set A, the existence of which

was assumed above. This way it is proved that hcy(X) < dim X if
dim X > N,. In conclusion, we have hcg(X) < sup (g, dim X) and, in
view of the inequality ey(X) < hey(X), it proves the thesis. ¢
Theorem 2.3. For every space of dimension at least 2 there holds
e;(X) = card X.
Proof. It’s obvious that in R? any circle is j-closed and it is composed
of j-isolated points only. Hence e;(X) > ¢. Let B = {b, : t € T'} be
a Hamel base of the space X. Lemma 2.1 states that the base B is 0-
closed in X and consisting exclusively of 0-isolated elements. Now, by
Fact 1.1, B is (j)-closed. Because of card X = sup{c,dim X}, the proof
is finished. ¢

The inequality hc;(X) > e;(X) and Th. 2.3 imply
Corollary 2.1. For every space X there holds hc;(X) = e;(X) =
= card X.

Theorem 2.4. For every X there holds roj)(X) = sup{c, 24™~}.
Proof. Let a set D be a (j)-dense in X and card D = d;)(X). Since
Cl;G = Clj(D N G) for every (j)-open set G, so rog;(X) < 240 @) =
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_ 25up{N0,dim X} SU.p{C, 2dimX}‘

Since the topology 79|X is Euclidean for X if dim X < W, so
rog(X) = ¢. By Fact 1.1, it follows that ro;)(X) > ¢.

In the next dim X > N, and let B be a Hamel base of X. First we
notice that the set K defined in Fact 1.2 is 0-regularly open. Therefore

for every set By C B the set |J (b+ K) is O-regularly open. In conse-
beBoy

quence, rog(X) > 24X and it implies that rog(X) > 24mX . Therefore
rog)(X) > sup {¢,24™ X1 and this completes the proof. ¢

3. Character, weight

Theorem 3.1. For every space X there holds 1¢;(X) = Ry.

Proof. It’s obvious that ;) (z) = ¥;(0) for every z € X. Let B be a
Hamel base of the space X. Then, for K defined as in Fact 1.2, we have

N 1K = {0}. It implies that ¢(X) = Ng. The equality ;(X) = R,

?ozﬁows from Fact 1.1.
From Thms. 2.1 and 2.4 it follows
Corollary 3.1. For every X and for i =0,2,3 there holds
w;(X) < sup {c, 29X}

Proof. By [7] 7y is hereditary normal. By [8] 7, and 73 are totally regular.
Hence all these topologies are regular, so for ¢ = 0, 2, 3 the family of all
i-regular open sets is the base of the topology 7;. Therefore, by Th. 2.4,
we have w;(X) < sup{c, 24X}, ¢

Now we will deal with the character and m-character of topological
spaces (X, 7;), where ¢ = 0,1, 2, 3.

Since any translation, i.e. the transformation f, : X — X defined
by the formula f,(r) = x + y, where y € X, is the homeomorphism
mapping the space (X , T(j)) onto itself, so the family B is a (7-)base for
the topology 7;) at the point 0 iff for each € X the family » + B is a
(m-)base for the topology 7(;) at the point x. Therefore (7-)character of
the space is equal to (m-)character at 0. Thanks to this property we will
deal with (7-)character at 0 only and in the next we will not mention it.
Lemma 3.1. Let L and M be complementary subspaces, ¢ be a projec-
tion onto L and parallel to M. Then o(G) is (j)-open in L for every
(7)-open set G.
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Proof. Let x € M. Then GN (v + L) €
= {z}. Consequently, (G N (z + L)) =
Hence p(G) = U p(GN(x+ L)) € 75 (L

reM
Fact 3.1. Let f be one of following cardinal functions x(j), ™X(j), W),

m-w(;). Then, for any subspace L of X, there holds f(L) < f(X).
Proof Since 7(jy|L = 7;)(L), so for any subspace L of X there holds
f(L) < f(X)if f X(j) or f = w(). In the next we deal with f = m-x ;)
or f = m-w;) only.

In thls proof we say that a family B is an appropriate base if it is
m-base for the topology 7(;) at the point 0 in case f = 7-X(;), and it is
m-base for the topology 7(;) in case f = m-w;).

Suppose that f(L) > f(X) for a subspace L of X. Then there
exists an appropriate base B for X such that card B < f(L). Let p be
a projection onto L and parallel to M. Therefore {p(B) : B € B} is
not an appropriate base for L. By Lemma 3.1 the set p(B) € 7;)(L)
for every B € B, and B is not an appropriate base for L. Hence there
exists a (j)-open set G or (j)-neighbourhood G of 0, respectively, such
that p(B) \ G # 0 for every B € B. Hence B\ (G + M) # 0 for every
B € B. Taking into account that G + M € 7 we conclude that B is
not an appropriate base. This contradiction proves the validity of the
inequality f(L) < f(X). O
Lemma 3.2. The inequality m-xjy(X) > dim X holds true for every
space X .

() (:E+L) and (z+ L)NM =
)( N(z+ L)) —x e 15(L).

Proof. The lemma is obvious in case when X is finite dimensional.
Therefore in the next we deal with X such that dim X > N,.

Suppose that m-y;(X) < dim X for an index ¢ € {0,1,2,3} and for
some space X . Then there exists w-base for the topology 7; at 0; let this
m-base be {V,, : a < §}, where § < dim X. We inductively define the set
B = {b, : o < B} such that b; € V4 \ {0} and b, € V,, \ Lin{b, : v < a}
for 1l < a<f.

The set B is the Hamel base of the subspace L = Lin B of X. Let
M = {0} in case L = X, and M be the complementary subspace to L in
X otherwise. Now, for any r, > 0 such that r,b, € B,, we denote

— {Z Saba 1 |8al < ra} + M.

a<pf

It’s clear that K is O0-open. Hence K is (j)-open. Since V, \ K # () for
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a < 3,80 {V, : a < B} is not a w-base for the topology 7; at 0, This
contradiction closes the proof. ¢

From Lemma 3.2 we immediately have
Corollary 3.2. The inequality x(;(X) > dim X holds for every space X .
Corollary 3.3. If dim X > ¢, then w;) = X(j)-
Proof. Let B be a base for the topology 7(;) at the point 0. Then

> (x4 B) is a base for the topology 7(;). Therefore w;y < x(;) - card X.
zeX
Since x(;) > dim X > ¢ and, in accordance with the assumption, we have

card X = dim X, so w(;) < x(;). It, in view of the obvious inequality
X() < W, gives the equality wg;y = x(). ¢

Corollary 3.4. For every space X there holds the equality m-x;j(X) =
= m-w;)(X).

Proof. From Th. 2.1 we have d;)(X) = sup{R,,dim X}. In view of
the inequality m-w;)(X) < (m-x(;)(X)) - d)(X) from Lemma 3.2 we
get m-w;)(X) < m-x(;y(X). This, together with the obvious inequality
T-X()(X) < m-w(;)(X), gives the desired equality. ¢

Theorem 3.2. If dim X > 2, thensup{c,dim X} < 7m-x1(X) < x1(X) <
2sup{c,dim X} )

Proof. Let L be a subspace of X and dim L = 2. Let’s suppose that
B is a m-base for the topology 71 at 0 such that card B < ¢. Then, by
Lemma 1 [6, p. 241] there exists a set M such that 0 ¢ M, card M = ¢
and M N B # () for every B € B and each line in X has no more than 2
points laying in M. Therefore G = X \ M is 1-open and B\ G # () for
every b € B. In consequence, B is not a m-base for the topology 7 at 0.
This contradiction implies that m-y1(X) > ¢.

By Lemma 3.2 we have m-x1(X) > dim X. This proves the left
inequality. It also completes the proof because m-y1(X) < x1(X) and
XI(X) < 2cardX. <>
Corollary 3.5. For any space X there hold the equalities m-x1(X) =
= m-wi(X) and x1(X) = wi(X).

Proof. The first of above equalities is stated in Cor. 3.4.

The second equality is obvious in case dim X = 1, because 71(X) is
the Euclidean topology and, consequently, m-y1(X) = x1(X) = w1 (X) =
= 1w (X) = Ny, If dim X > 2, then by Th. 3.4 we have card X <
< m-x1(X). By the obvious inequality w;(X) < card X - x1(X) we get
X1(X) < wi(X) < xa(X), so wi(X) = x1(X). ¢
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As in [1, p. 115], the family D C NN is called a dominating family
if for each f € NN there exists a function g € D such that f(n) < g(n)
for all but finitely many n € N. If this inequality holds true for all
n € N, then let us call the family D a strongly dominating family. As
in [1, p. 115], the minimal cardinality of a dominating family is denoted
by 0. In [1, p. 119] it is shown that the cardinality of strongly dominating
family is also equal to D.
Lemma 3.3. Let {b,:n €N} be a Hamel base of X. Let U be a 0-open
neighbourhood of the point 0. Then there exists the sequence (g,) of pos—

itive numbers such that V = {{L’ =Y apby o] <ep, forn € N}
neN

Proof. It is obvious that there exists £; > 0 such that (—e1b1,e1b1) C UN
NRb;. Now we suppose that there exist positive g5, where k = 1,2,...,n

such that V,, = {x: > agby : |ag] < eg for k = 1,2,...,n} c U. We
k=1

will show that there exists €,,1 > 0 such that

Vn+1 = Vn + <_5n+1bn+175n+1bn+1> cU.
In the Euclidean topology in L,.; = Lin{b, : k = 1,2,...,n+ 1} the
set Vj, is compact, L,.1 \ U is closed and V;, N (L,;1 \ U) = (). Hence
r=p(Vu, Ly \V) > 0. Taking €,,1 < r we have V,,,; C U. By
induction, there exists the sequence (&,) of positive numbers such that
V= {:c = > apby, i |a,| < e, forn € N} C U and it makes the proof

neN
complete. ¢

Corollary 3.6. Let {b, : n € N} be a Hamel base of the space X and
let G be a non-empty 0-open set. Then there exist m € N, u™ € Q for
n=12....,m cmdf € NN such that

1
Zu b, +{Zann.|an|<m}CG.

neN

Proof. Since the set {Z apb,  a, € Q} is O-dense, so there exist
neN

m € Nand ™ € Q for n = 1,2,...,m such that v = > u™b, € G.

n=1
From Lemma 3.3 there exists a sequence (g,) of positive numbers such

that {Z anby @ |ag| < én} C G — u. Taking a function f € NY such
neN
that f(n) > E% and it easily implies the validity of the corollary. ¢

In particular, we have
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Corollary 3.7. If 0 € G and G is 0-open set, then there exists f € NN

such that {Z anby ©|ay| < ﬁ} C G.
neN
Lemma 3.4. Let {b, : n € N} be a Hamel base of X. For every f € NN

we define the set Ky = {Z anby, ¢ |ay| < ﬁ} Let V be a m-base
neN
for the topology 7 at 0. For every V € V there are defined ny € N,

ny
uy € QW and fy € NN such that Gy = ugf)bn + Ky, CV, where

n=1

ugl) denotes the n-th coordinate of wy. Then the family {fy : V € V}
contains a dominating family in NV,
Proof. Suppose that {fi, : V € V} does not contain a dominating family
in N¥. Then there exists a function g € N¥ such that for every V € V
there exists ky € N such that g(ky) > fy(ky) and ky > ny. It implies
that Gy \ K, # 0 for every V € V. Since K is 0-open and contains 0, so
Y is not a m-base for 75 at 0. This contradiction shows that {f;, : V € V}
contains a dominating family in NV, ¢
Theorem 3.3. (1) If X is finite dimensional, then xo(X) = mxo(X) =
= 7T—’UJO(X) = U)O(X) = No.

(2) If dim X =Xy, then xo(X)=m-xo(X)=m-w(X)=wo(X)="0.

(3) If dim X > Ny, then dim X < m-wo(X) = m-x0(X) < xo(X) <
< wp(X) < 29mX gnd 0 < m-we(X) = mx0(X) < xo(X) < wo(X).
Proof. (1) holds true because 79(X) is Euclidean.

(2). Let {b, : n € N} be a Hamel base of X and let B be m-base

for topology 7. Let Uy o p = > u™p,, + { > apby oy < ﬁ}, where
n=1 neN

m €N, u e Q™, u™ is the n-th coordinate of u and f € NY. By Cor. 3.6
for each V' € B there exist my € N, uyy € Q™ and fir € NV such that
Uy v, fy € V. On behalf of Lemma 3.4 we have card {fy : V € B} > 0.
Since my € N and uy € Q™v, so we easily conclude that card B > 0,
hence m-wy(X) > 2. By Cor. 3.4 we have m-wy(X) = m-xo(X) > 0.

Now let F be a strongly dominating family in N¥ such that card F =0.
We put Vy = {%anbn | < ﬁ} for f € F. Cor. 3.7 implies that

ne

{Vy + f € F} is a base for the topology 7y at 0. Hence the family

{r+V;: feF,xe X} is the base for the topology 7. Denote L, =
= Lin{b, : k = 1,2,...,n}, M, = Lin{b, : k£ > n}, and for given
z € X \ {0} let n, denote a natural number such that « € L,,. Let’s



Four topologies examined by some cardinal functions 273

take x = > apb, € X \ {0}, where a,, € R. Then there exist 7, s € Q,

neN
Na

where k =1,2,...,n,, such that r, < ap <sgand Uy p= > (1k, sx)bx C
k=1
C (z+ Vy) N Ly, . Therefore
(>I<) ZL’EUx7f+(VfﬂMnx) CZL’—I—Vf.
It’s clear that U, r + (Vy N M,,) € 7.
Let By ={V;: f € F} and

Bn = {Z(Tk7sk>bk+<vmen) Tk, Sk € @, T < Sk, f Gf}
k=1
for n € N. It’s obvious that B,, C 79 and card B,, = Ny-0 =0 forn € NU
U {0}. From the inclusion (x) it follows that B = |J B, is the base for

n=0

the topology 7. Obviously, card B =0 and, consequently, wy(X) < 0.

Since m-Xo(X) < Xo(X) < wo(X), s0 m-x0(X) = x0(X) = wo(X) =
= 0. The equality mwy(X) = mxo(X) is stated in Cor. 3.4.

(3). The inequality dim X < m-xo(X) is stated in Lemma 3.2.
The inequality xo(X) < 24mX follows from Cor. 3.1. The inequality
m-Xo(X) > 0 follows from the part (2) and Fact 3.1. On the behalf of
Cor. 3.4 and the obvious inequality mXo(X) < xo(X) < wo(X) we see
the desired inequalities are satisfied. It closes the proof.

Theorem 3.4. For every space X there hold the equalities m-x3(X) =
= m-w3(X) = m-wo(X) = m-xo(X).

Proof. Into(G) # () for every nonempty set G € 73. Therefore, if B is
a m-base for the topology 7, then it is also a m-base for 75. It proves
that m-ws(X) < mwe(X). On the other side, if B is a m-base for the
topology 73, then for every G € 73 there exists a set B € B such that
B C G. Consequently, IntgyB C G and {IntyB : B € B} is a m-base for
the topology 79 and m-wg(X) <m-w3(X). Therefore m-wy(X)=m-ws(X).

Applying Cor. 3.4 we get the equalities m-xo(X) = m-wo(X) =
= m-w3(X) = m-x3(X) and it makes the proof complete.

In aim to determine the values of the character of the Klee topol-
ogy and the directional topology, and the value of w-character of 7 we
introduce the notion of the isolated direction.

Definition 3.1. Let G be an j-open set and let x € G. A semiline,
denoted by P, is called an solated direction of the set G for the point x
if there are satisfied following conditions:
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1° the semiline P has its origin at z,

2° there exist a j-component U of G \ {z} and a point y € P\ {z}
such that the segment (z,y) C U,

3° there does not exist an element z € U \ P such that (z,2) C U,
where P is the line containing the semiline P.

Obviously, the set G \ {z} is j-open if G is j-open. Since every
two different j-components of G\ {z} are disjoint, so for the point z
the cardinality of all isolated directions is not greater than the cellularity
¢;(X). So, by Th. 2.1, we immediately get
Corollary 3.8. In every j-open set there exist at most sup{Ry, dim X }
i1solated directions.
Fact 3.2. For every semiline P C X there exists a 3-open set G such
that P is its isolated direction and IntgG = G\ {x}, where x is the origin
point of P.
Proof. Let L be a subspace of X such that card(P N L) < 1 and
codim L = 1. Let {b; : t € T'} be a Hamel base of L. First we will show
that there exists a 3-open set satisfying the requirements concerning the
semiline P — x.

Letye (P—xz)\ Land F = {ozy—i—Zoztbt : Zaf:a4,o¢>0}.

teT teT

For every finite dimensional space M containing y the set (FU{0})NM

is 0-closed. Hence F' U {0} is O-closed and G; \ {0} C IntgG;, where
G =X \ F'. Since 0 € CIQF, so IntgG7 = G4 \ {O}

Let E= [J(0,2) and L_ ={ay+u:a <0,u € L}. It is easy to

zeF

see the set H = (P —y)ULE U L_ is O-closed, H \ {0} C IntoG; and
0 € Cor H. It says that the sets IntoG; and H \ {0} form the Klee pair
for the point 0. In consequence, GG is 3-open.

Moreover, if dim M = 2, then (F U {0}) N M is composed of parts
of two parabolas. Every one of them is tangent to the semiline P — x
at the point 0. These parts lay on different sides of the line Ry. Hence
P — z is the isolated direction for the set G; at the point 0. Since the
translation f,, where f,(v) = x 4 v, is a homeomorphism from (X, 1)
onto the same space, so GG; 4+ x is the set G mentioned in the thesis. ¢
Lemma 3.5. If 2 < dim X < N,, P denotes the family of all semilines
in X beginning at the point 0, Gp, where P € P, denotes a 3-open set
such that P 1is its isolated direction at 0, then card B > ¢, where B is
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a family of 1-neighbourhoods of the point 0 such that for every P € P
there exists B € B and B C Gp.

Proof. It’s clear that if B€ B and B C G p then P is the isolated direction
for Inty B. Since card P=c¢ and for every B € B, the set Int; B may have
at most countable many isolated directions at 0, so card B>¢.

In virtue of the inclusions 73 C 7 C 71, from Lemma 3.5 it imme-
diately follows
Corollary 3.9. If dim X > 2 and B is a base for the topology T; at 0,
where i = 2,3, then card B > «¢.

Theorem 3.5. For every space X there holds ws(X) = x3(X). More-
over, (1) if dim X > 2 and 29X < ¢, then x3(X) =,

(2) if 24mX > ¢ then dim X < y3(X) and ¢ < y3(X) < 24mX,
Proof. First we consider Case (1). By Cor. 3.9 we have x3(X) > ¢. By
Cor. 3.1 we have y3(X) < 24mX < ¢ Therefore (1) holds true.

The first inequality in (2) follows from Cor. 3.2. The left part of
the second inequality is implied by (1) and Fact 3.1, the right one follows
from Cor. 3.1.

Since x3(X) > sup{c,dim X} = card X and ws3(X) < card X -

- x3(X), so w3(X) < x3(X). By the obvious inequality ws(X) > x3(X)
we get the equality w3(X) = x3(X). ¢
Lemma 3.6. Let L be a subspace of X, codimL =1,b¢€ X \ L. Let f
be a directionally continuous function on L such that f(L) C (0,1). Let
by € L\{0}, L' = Lin{b,b1} and F = {ab+a;1b; : |oy| = a*, a > 0,0, €
€ R}. Then for a € f~1({0,1)) there exists a directionally continuous
function f, in L such that f,|L = f, fuo(X) C (0,1) and (X \ L) N
NfY1)=a+F.
Proof. Since every translation, i.e., the function p, : X — X defined for
every y € X by the formula p,(X) = = + y, is a homeomorphism of the
space (X, 7y) onto itself, so without the loss of generality we can work
with a = 0. Let B = {b; : t € T'} be a Hamel base of the space L and let
1 € T. Let’s denote |y|| = /> a? for y = > asb;, where ay € R, and
teT teT
Fi={ab+y:a®=|y|,y € L,a > 0}. It’s clear that F; N L' = F and
Fy U {0} are 0-closed.

Now we define the function f; on the set H = {ab+y : a® >
> |lyll,y € L,a > 0}. Accordingly to [7, p. 57|, the space (X, ) is
hereditary normal. Since R, b\ {0} and F' are disjoint 0-closed sets in H,



276 L. Jankowski and A. Marlewski

so there exists in H a function 0-continuous, i.e., continuous in 7y, such
that fi(H) C (f(0),1), fi(z) =1 for x € F} and fi(x) = f(0) for x € R,
+b\ {0}. We extend f; to the set —R, b+ L by the formula f;(ab+y) =
= f(y), where av < 0. At last we extend it to the set (Ryb+ L)\ (HUL)
by the formula fi(ab +y) = 8+ (1 — B8)f(y), where 3 = ally|| /2. One
can check that fi|P \ {0} is continuous if P is an arbitrary line in X
and P is equipped with the Euclidean topology. We will show that the
function f|P is also continuous on every line in X. The continuity is
obvious if P C L or P =Rb. If 0 € P # Rb and PN L = {0}, then
there exist ap > 0 and z € L\ {0} such that (0,a0b+2) C PN X \ H.
In consequence, there exist a point yo € L\ {0} and a positive number 6
such that ab+y € Py iff a = 0||y|| and y = ||y||yo, where yo € Py, Py is
the semiline beginning at 0 and contained in the line P.

It is easy to check that li:r(1)1+ fi(r(6b + yo)) = f(0). Therefore the

restriction f;|P is continuous. Hence f; is directionally continuous.

In the space —R b + L we define the function f; by the formula
fa(ab+ y) = exp(a), where « < 0 and y € L. For any = € L' we put
fo(z) = 1. For y € Lin (B\{b1}) we set fo(ab+aib;+y) = exp(—a|ly|1),

where @ > 0, a; € R and ||y|; = S atfory= Y ayb, where
teT\{1} teT\{1}

a; € R. The function f, is O-continuous in X and f, (1) = LU L.

The function fy = fifs is directionally continuous. Moreover,
folL = f, f51(1) = f73(1) U F. Tt makes the proof complete. ¢
Lemma 3.7. Let {b, : t € T'} be a Hamel base of X, T — the family of all
finite subsets of T, the empty set excluded and let Lg = Lin {b, : t € S},
where S € T. Then there exists a set A such that

(1) ANLg is dense in the Euclidean topology in Lg for every S € T,

(2) card (AN Lg) =Ny,

(3) if v,ye A, x#y and x="> ayby, y=>_ By, where oy, B ER,

teT teT
then for every t € T the equality oy = B implies ay = By = 0.

Proof. Let 7, = {S € 7 : cardS = n} and Ly = J{Ls : 5" & S},
where n € N and S € 7. We inductively define the sets A,,, n € N, such
that A, C A,y and for every n € N there hold the conditions (1)—(3)
with A and 7 replaced by A, and 7,, resp.

It’s obvious that for every S € 7; there exists a set As C Lg which
is countable and dense in the Euclidean topology in Lg. Hence it is clear
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that the set A; = |J Ag fulfills the conditions (1)—(3) with A and 7
SeTy
replaced by A; and 77, resp.

Now let’s suppose that (1)—(3) are satisfied with A and 7 replaced
by A, and 7,, resp. Let’s take a set S € 7,,,. For a set Z C Lg we
define the set Dg(Z) = Z+ |J Lg\(s}- It’s clear that if card Z < X, then

seS

Ls\ Ds(Z) is dense in Lg in the Euclidean topology.

Let {B, : n € N} be a base of the Euclidean topology in Lg.
Now we can inductively define the sequence (as,) C Lg \ LY such that
as1 € Bin (LS \ DS(An N LS)) and agnpt1 € BN (LS \ Ds«An N Ls) U
Udai,as,...,a,})). We apply this procedure for every S € 7,1. It’s
obvious that the set A, = A, U{asy : S € T,41,k € N} satisfies the
conditions (1)—(3) with A and 7 replaced by A,+1 and 7,1, resp.

This way we constructed the family {A,, : n € N} of sets satisfying

appropriately conditions (1)—(3). In consequence, the set A = [J A,

n=1

fulfills (1)—(3) and it closes the proof. ¢
Lemma 3.8. Let {b, : 1 < o < ~} be a Hamel base of the space
X, where v is the initial ordinal number for dim X > Ny. Let’s denote
Lg = Lin{b, : 1 < o < B} for B < v and M, = Lin{by,bas1} for
1 <a<n. Let ¢y € My, \ Rby for every a such that 1 < o <~. If A is
the set investigated in Lemma 3.7, then there exists a bijection u : {c :
1 <a <y} — A\Rb for which there exists a directionally continuous
function f satisfying following conditions:

(1) f(X) C(0,1),

(2) f7Y1(1) = U F., where Fy, = aq + {rce + sby:r?>=|s|,r >0,

1<a<y
s € R} and a, = p(a).
Proof. Immediately from the definition of set A it follows that
card (A \ Rb;) = dim X.

Let v be a bijection from {a: 1 < a <7} onto A\ Rb,. Instead of v(«a)
we write al,. We introduce I = {a/, : 1 < o < v}. We will construct a
transfinite sequence {a, : 1 < a < 7} such that

(a) for every a € A\ Rb; there exists a < v such that a, = a,

(b) ai,ag € L3 N (A \ Rbl),

(¢) aq € Lay1 N(A\Rb), if 3< <.
The condition (b) is fulfilled when a;, as are two first elements in the set
I N L. Let’s suppose that we already have a, with a < 3,2 < § < ~,
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satisfying (b) and (c). Since (AN Lgy1) \ U Lo+1 # 0,50 I\ {a, : 1 <
0<p

< a < f} # 0 and we denote its first element belonging to Lgy1 by ags.
It’s clear that for every a’ € I there exists a such that 1 < a < v and
a' = a,. Therefore there exists a transfinite sequence {a, : 1 < a < 7}
satisfying conditions (a)—(c).

Now, for every 3, where 3 < 3 <+, we define on Lg a directionally
continuous function fz such that

(@) fs(Lg) C (0,1),

(B) fslLa = fafor3<a<p <7,

(7) fﬁ_jl(l) \ Lg =0 if 3 is a limit number and X, < 5 < 7,

©) fﬁ_jQ(l) = Fj for 2 < B < v, where Fj is the set mentioned
in the thesis,

(e) f7 () N(A\RD) =0 if 3< B <.

We set f3 = 0. Let’s suppose that for any 3 where 4 < 8 < ~, and for
every ordinal number 9, where 3 < § < 3, there is defined a directionally
continuous function fs fulfilling the conditions («a)—(¢). Now, we define
a directionally continuous functions fz satlsfymg (a)—(e).

If 8 is a limit number, we put fz(z) = fs(x) for x € Ls. It’s clear
that fs is directionally continuous and fulfills () and (3), so it fulfills
all conditions (a)—(¢e).

If 3=¢+1and ¢ is a limit number, we construct the function g,
on Lg such that g,(rb, +y) = f,(y), where y € L,. Moreover, we take
the function h, on Lg such that h,(rb, + y) = exp(—r?), where y € L.
It’s clear that both functions, g, and h,, are directionally continuous
on Lg. Hence their product fz = g,h, is the directionally continuous
function. It’s easy to verity that fj fulfills conditions («)—(e).

Now let 8 = ¢ + 2, where ¢ is an ordinal number (not necessarily
a limit one). From the condition (c) it follows that a, € L,y1 C Lg.
It’s clear that now we can apply Lemma 3.6 with X, L, f, b, by and
a substituted by Lg, Loy1, fot1, Cp, b1 and ay,, respectively. By this
Lemma there exists in Lg a directionally continued function fz satisfying
conditions («), () and (J). At last we will show that the condition (¢)
holds. Let a, = ). 0ab,, where 6, € R. Since a, € A\ Rby, so

1<a<e
there exists ag such that 1 < oy < ¢ and 6,, # 0. Let’s suppose that

there exists an element a € (a, + M,) N (A \ Rby) and a # a, Then
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a= Y Obyand §, =0,if 1 <a < . Therefore ¢, = 0,, and
1<a<p+1

it is contradictory to the condition (3) in Lemma 3.7. Consequently,

(a, + M,) N (A\ Rby) = {a,}. Taking into account that F, C a, + M,

and a, ¢ F, we have that F, N (A\ Rb;) = 0. It implies that fﬁ_l(l) N

N(A\ Ly41) = 0. Since the function f,1 satisfies the condition (g), so

fs does it, too.

This way, by the transfinite induction, we proved that on X there
exists a directionally continued function f fulfilling the condition (1) and
such that f|L, = f, for every 3 < a < 7.

Since f3 = 0 and functions f,, satisfy conditions (a)-(¢) for 3 < a <

< 7, so f satisfies the condition (2). ¢
Corollary 3.10. If X is infinite dimensional, then there exists a 2-open
set G such that for any finite dimensional space L and every x € X the
set (x+ L)\ G is nowhere dense in the Euclidean topology in x + L and
IIlt(]G = (Z)
Proof. We keep denotations used in the proof of Lemma 3.8 and we
put G = f71((0,1)). From the condition (2) in Lemma 3.8 it follows
that each line P in X has at most 3 common points with the set f~1(1).
Hence P N f~%(1) is nowhere dense in the Euclidean topology in P.

If 2 < dim L < Ny, then for every x € X there exist at most finitely
many ordinal numbers aq, as, ..., @, such that (z + L) N F,, # 0 and
1 <ap <7vfork=1,2,...,n Therefore (x + L) N f~(1) is nowhere
dense in the Euclidean topology in x + L.

From the definition of the set A it follows that A\ Rb; is 0-dense
in X. Since for every a € A\Rb, there exists a two-dimensional subspace
L of X such that a is the accumulation point of the set f~1(1)N(a+ L),
so A\Rb; C Clp(X\G). Since A\Rb; is 0-dense in X, so Cly(X\G) = X
Hence IntoG = 0. ¢
Theorem 3.6. For any space X there hold the equalities x2(X) = wa(X)
and m-x2(X) = m-we(X), as well as

(1) x2(X) = m-x2(X) = Vg if dim X =1,

2) m- XQ( ) No Zf dim X < No,

(2)

(3) x2(X) = ¢ if dim X > 2 and 29X <,

(4) Tx2(X) = ¢ if dim X > Ry and 29mX =,

(5) x2(X) > m-x2(X) > ¢ if 24mX > ¢

(6) dim X < m-y2(X) < x2(X) < 29X 4f dim X > c.
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Proof. First we deal with points (1)—(6).

(1) is obvious.

(2). Since (X, 1) is regular for arbitrary X, so for every 2-open set
G and every z € G there exists a 2-open set G’ such that z € G’ and
CloG’ C G. From Cor. 2 in [6, p. 245] it follows that there exists an open
set U in the Euclidean topology in X such that x € CloU and U C Cl,G'.
Therefore each base for the Euclidean topology in X is a m-base for the
topology 75 at 0. Hence m-yo(X) = Ny.

(3). From Cor. 3.9 it follows that xo(X) > ¢ if dim X > 2. If
2dimX < ¢ then from Cor. 3.1 it follows that y2(X) < ¢. In consequence,
if dim X > 2 and 24X < ¢ then yo(X) = ¢.

(4). Let {b, : n € N} be a Hamel base of the space X and let A be
the set as in Lemma 3.7. Taking into account the definition of A it is easy
to state that there exists a sequence (a,) C X such that {a, : n € N} =
= A\Rby, a; € Ly and a,, € L, for n > 2, where L,, = Lin {b,bs,...,b,}.
Let ¢, 9 = 0by + by, 42, where n € N and 6 € R. Since the assumptions
of Lemma 3.8 are fulfilled, so for every 8 € R there exists a directionally
continuous function fy defined in this Lemma for the sequences (a,) and
(¢n), where ¢, = ¢, and n € N. It’s easy to see that the semiline a, +
+ R, ¢, 4 is the isolated direction of the set f,'((0,1)) N M, in the space
(M, 12| M,,) where M,, = a,, + Lin {by, b, 42}.

Let B be a m-base for the topology 75(X) at 0. We will show that
for every B € Btheset Op = {# € R: B C Gy}, where Gy = f, ({0, 1)),
is at most countable. Arguing as in part (2) we conclude that for every
L,, there exists a set U C B which is open in the Euclidean topology
in L,. Since (A\Rb;)NU = () for n = 1, so in the next we deal with
n > 2. Therefore, for B C Gy, and every a € (A\ Rb;) N U there exists
ne € N such that the semiline a + R, ¢,, ¢ is the isolated direction of
the set B N M, for the point a in the topology 75| M,,. Let ©% denote
the set of all real 6 such that a + Ryc,, ¢ is the isolated direction of the
set BN M, for every point a € U N (A \ Rb;) in the topology m|M,, .
Since B N M, has at most countable many isolated directions for every
point a, so card O} < N,. Taking into account that ©p C O} we have
card ©p < Wg. Since card {Gy : 0 € R} = ¢, so card B > ¢. Therefore
W—XQ(X) > C.

If dim X > Ny, then by Fact 3.1 it follows that m-yo(z) > ¢. If
2dim X < ¢ 50 from (3) it follows that m-yo(x) < ¢. It proves (4).

(5) is the consequence of (4) and Fact 3.1.
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(6). The left inequality is stated in Cor. 3.2, the right one is implied
by Cor. 3.1 because 24X > ¢.

As points (1)—(6) are proved, we notice that the equality m-y2(X) =
= m-wq(X) is stated by Cor. 3.4. The equality x2(X) = we(X) is obvious
if dim X = 1. If dim X > 1, from (2)—(6) we have x2(X) > card X. Since
w2 (X) < x2(X) - card X = x2(X), s0 wa(X) = x2(X). ¢
Theorem 3.7. 0y(X) = r0y(X) = sup{c, 24mX}.

Proof. Since 75(X) is Euclidean topology if dim X < R, so 0o(X) = ¢.

In the next we deal with X such that dim X > XN,. Let B be a
base for the topology 7y such that card B = wy(X) and {b, : t € T} be
a Hamel base of X. Let’s denote the family of all finite subsets of T
by 7, and Lg = Lin{b, : t € S} for every S € 7. We take G € 7
and G C B such that |JG = G. For arbitrary S € 7 we can choose
a countable subfamily Gg¢ C G such that Lg N |JGs = Ls N G. Let

G = U Gs. Therefore | JG' = G. Since card7 = dim X, so card G’ =
SeT
= dim X. Hence 0g(X) < wo(X)¥™X. Accordingly with Th. 3.3 we have

00(X) < (dim X)dm ¥ — odim X

Since 09(X) > rog(X) so, by Th. 2.4, 0y(X) > 24mX  From both
above inequalities we have og(X) = 24m¥X,

Reassuming, 0g(X) = sup{c, 24mX} for X of arbitrary dimension. ¢
Theorem 3.8. 0;(X) = ¢ if dimX = 1, and oj(X) = 2supledimX}
otherwise.

Proof. In case dim X = 1 the thesis is obvious. Investigating the case
dim X > 2 we put S = {Zatbt > a2 =1and oy € ]R}, where {b; :

teT teT

:t € T} is a Hamel base of X. Obviously, S is O-closed. Taking = € S
we see that the set G, = {z}U (X \ S) is 3-open. Since card S = card X,
50 03(X) > 264X At the same time o3(X) < 249X hence 03(X) =
= 2sup{edim X} Taking into account that 73 C 7 C 7y and 0;(X) < 2cardX
we get the thesis. ¢

4. Tightness

It’s obvious that there holds

Fact 4.1. For every X and every x € X we have t(;(x, X) = t(;(0, X),
where t;(z, X) denotes the i-tightness of a point x in the topological space
(X, Ti)-
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Since the tightness of the sequential space is equal R (see [2, p. 87])
and both 7y and 7 are sequential (it is proved in [8]), so there holds
Theorem 4.1. t5(X) =t (X) = V.

We will show that the analogous result takes place for the Klee
topology. Before stating this result we give
Lemma 4.1. Let U € 79(X), 2 ¢ U and V =UU{z}. If VNL € 13(L)
for every finite dimensional subspace L of infinite dimensional space X
then V € m3(X).

Proof. Without the loss of generality we can work with x = 0. Let
L be an arbitrary finite dimensional subspace of X. Since VN L €
€ 713|L, so there exists in Euclidean topology a closed set Fj, C L such
that (U N L, Fy, \ {0}) is the Klee pair for the point 0. Let F} = {y €
€ Fr : (0,y) C FL}. For arbitrary sequence (z,) C F}, which is conver-
gent in the Euclidean topology to zy, the segment (0, o) is contained in

Cl U (0, z,) C Fp. It shows that 2y € F}, so F}f U{0} is 0-closed.

Applymg the transfinite induction we will show that there exists a
O-closed set F' such that 0 € Cor /" and F'\ {0} C U.

In this aim let v be an initial number for dim X and let {b, : 1 <
< a < v} be a Hamel base of X. Let Xg = Lin {b, : 1 < a < 3}, where
1 < B <~v. We go to show that for every § such that 1 < 3 < v there
exists a O-closed set Fj satisfying three following conditions:

(1) Fs\ {0} c XN U,

(2) 0 € Corx, Fp,

(3) Fg, N X, = Fp, if By < B2 <.

For 8 = 2 we have Xz = Rb; and, obviously, there exists a set F}
satisfying conditions (1) and (2). Now let’s assume that for any g > 2
and for all 3 < (3 there exist 0-closed sets Fjp which satisfy the conditions
(1)=(3). In the next we consider two cases: [ is a limit number or it is
not.

If §is a limit number, we put Fy = |J Fp. It’s clear that Fjp

B'<B
satisfies conditions (1) and (3). Moreover, Fj is O-closed and in aim to
prove it we take an arbitrary finite dimensional subspace L C Xg. Then
there exists By < 3 such that L C Xjz,. Hence L N Fj, is 0-closed. In
virtue of the equalities L N Fg = L N Xg, N Fg = L N Fp, we see that
L N Fy is O-closed. Since L was chosen arbitrarily, so Fj3 is O-closed.
For every y € Xj there exists fy < [ such that y € Xz,. By (2),
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0 € Corx, (F3N Xg,) and, furthermore, there exists z € Xz such that
(0,2) C (0,y) N Fp. It implies that 0 € Cory,Fj. Hence Fjs satisfies
(1)=(3) in the case when [ is a limit number.

Now we deal with the case when 3 is not a limit number. Let
=0 +1

First we will show that there exists a 0-closed set E satisfying con-
ditions (1)-(2) with F3 = E. The existence of such a set is obvious if
B < Ng. In the opposite situation, 3 > Ny, we have card 3y = card3. We
take an automorphism h of the space X such that

h({ba : a < Bo}) = {ba : @ < o}

Then the set U' = h™'(U) is 0-open and (U’ U {0}) N L € m3|L for
every finite dimensional L. By the inductive assumption, in Xpg, there
exist O-closed sets F), where 2 < a < [, such that conditions (1)—(3)
are satisfied with U’ instead of U and F}, replacing Fj. Therefore F =
=h (Fé()) is O-closed in X3 and, in consequence, it satisfies conditions
(1)-(2), where Fj is replaced by E. We define

H= {:L’: Zrﬁbﬁ : \v/ 750 | Zré,}.
B'<pB B'<Bo

Since for every finite subset P C {3’ : ' < [} the intersection
Lin {bs : ' € P} N H is closed in the Euclidean topology, so H is 0-
closed. It’s obvious that H N Xg, = {0} and for every y € Xz \ Xg,
there exists z such that (0,2) C (0,y) N H. The set Fjs = (ENH) U Fp,
is 0-closed and satisfies conditions (1)—(3). In this way we inductively
proved that there exists a O-closed set F' = F, such that 0 € Cor F' and
F\ {0} C U. It means that (U, F'\ {0}) is a Klee pair for the point 0.
This way we proved that V' is 3-open. ¢

Let’s notice that Lemma 4.1 does not hold for an arbitrary V' such
that V' N L € 75(L) for every finite dimensional L C X. This is shown in
following
Example 4.1. Let {b, : n € N} be a Hamel base of X. For m €
€ N\ {1} we introduce L,, = Lin{by,b,,}, X,, = Lin{b, : n < m},
Er o= {ribi+rpby i r2, <|r| <42}, Fo=FL+2b, G=X\ U Fn,

m=2

H=GU{Ab :neN}and G, = (XpnNH)\ {50 :n=1,2,...,m—
— 1}. It is clear that G,, is open in X,, in the Euclidean topology. We
will show that H N X,, € 13(X,,). To do it we put J; = (]Rbk U {rlbl +
+ by c || > 57’,%}) +Lin{bn :n=2,3,...,mand n # k} It is easy to
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see that J; is closed in the Euclidean topology in X,, and 0 € Cory,, J;
for every k =2,3,...,m. For k =2,3,...,m we put J, = (Jg+%bl) N
N By, where Bj denotes the closed ball in X,, with the center at %bl
and the radius m Now, we notice that J is closed in the Euclidean
topology and %bl € Cory,, Ji. Moreover, J \ {%bl} c G, C HNX,,.
Since Gy, € 10(X,,) and %bl € Cory, Ji, S0 (Gm,Jk \ {%bl}) is a Klee
pair for the point %bl in the space X,,. It implies that H N X,,, € 13| X,,.
In consequence, the set H N L, where L is a finite dimensional space, is
3-open in L.

At last we show that H ¢ 75. In this aim we notice that IntgH C
C G. Therefore {%Hbl :n € N} NIntoH = (). Hence 0 ¢ CorG and,
consequently, 0 ¢ IntsH and it states that H ¢ 3.

Now we can give the announced result which is analogous to Th. 4.1.
Theorem 4.2. t3(X) = No.
Proof. From Fact 4.1 it is enough to consider ¢3(0, X).

Let A C X \ {0}, 0 € Cl3A and B = ClyA. Since Cl3A C B, so
0 e B.

Let’s consider the case when there exists x € X \ {0} such that
there exists a sequence (z,,) C BNRx convergent to 0. Then, by Th. 4.1
and Fact 4.1, there exist countable sets A, C A for n € N such that

x, € ClgA,. It implies that 0 € C10< U An) and, consequently, there
n=1

does not exist an O-open set G and an element z € G \ {0} such that
GNn U A, =0and (0,2z) C GNRzx. Therefore t3(0, A) = N,.

n=1

In the next we investigate the case when for every x € X'\ {0} there
exists 7, > 0 such that (r,z,0) C (X \ B) N Rx. This investigation is
made below in two parts: I) if dim X < Ny and II) if dim X > N,.

Part I (dim X < Ng). In this part the closure, the interior, the
convergence etc. are in the Euclidean topology, if any other topology is
not indicated. In the same manner we write, e.g., Cl A and Int A instead
of ClgA and IntgA, resp. Moreover, in this part of this proof we denote
& = g for v € X\ {0}.

Let’s denote K = K(0,1), K = C1K and S = K\ K. Foraset H C
C X such that 0 € Cor (H U{0}) we define the function wgy : S — (0,1)
as follows: for every x € S the segment (0,wy(x)z) is a component of
Intg.(H N (0,1)x).

Now, for a certain ordinal number [ we construct the families
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{C¢r neN1<a<gh{D*:1<a<pfland{E*: 1< a<
< (3}, of sets such that

(a) Ci =D'= 8,
D% and C¢ are non-empty sets, for a < 3 and every n € N,
Co=Cl{z € CY:wx\p(x) <1},

)
)
) D= )
)
)

D™= (N C if o is a limit number,
o' <a
D* = Cf U E“, where the set C% is perfect and the set E* is
countable,
a+1

(g) for every o < 3 the set C{™ is boundary in the space (C¢,7),
where 7 denotes the Euclidean topology in Cf, except for the case
when a + 1 = § and the condition (h2) holds,

(h) there holds true one of following conditions
1) card DP < N,
2) Int o Cy # 0 for ' +1= 3,
1

3) CP =0 for any n € N.
In the next the set Cf is denoted by C*.

Let’s assume that for an ordinal number o < 3 and for every o/ < «
there are already constructed sets C*, D%, B and C¢ with n € N
satisfying conditions (a)—(g).

Now, according to (d) and (e), we construct the set D% If card D* <
< Ny then @ = § and we put C* = C%» = () for n € N. In the opposite
case, since D is closed, so by Cantor-Bendixson Theorem [2, p. 84] we
have the decomposition D = C*U E%, where C'“ is perfect in the space
(D%, 19|D*) and card E* < Ny. If @ = a1 + 1 and Intge, C* # ) then
a = B, If C%is boundary in C° or « is a limit number then the sets
C are constructed by (c). If there exists m € N such that C* = () for
all n > m then we have o = 3. But if C% # () for every n € N then the
sets C%, D and C; are already constructed and o < 3. This way we
inductively constructed the families of sets satisfying conditions (a)—(h)
for a certain ordinal number [3.

Since every C“ is closed and there holds the implication oy < g <
< fB=C*CC* socard {C*: a < } <Ny and this way card f < N,.

Now our proceeding is depending on which case of (h1)—(h3) takes
place.
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In case (h2), i.e., when Int s C? # @) for 3 + 1 = 3, we take a set
U open in 75|C?" and such that C1U C C?, and we take a subset W C U
such that card W = Ry and C1W = C1U.

Since C% ¢ N CY, s0o W c U C C? for every n € N. In conse-
n=1

quence, for every w € W there exists a sequence (zﬁw)) C (BNConU)\

\ {0} such that z{) — 0 and 28’ — w. Let’s denote Z = {zﬁw) 'n €
eNywe W} Since Z C B, so for every z € Z there exists a sequence
(:cgf)) C A such that 27) — 2. Now we define the set A* = {xSf) 'n €
eNze” } Let’s assume that there exists a closed set F' such that
0 € Cor F and F\ {0} C X \ Cl1A*. For every m € N the set F,,, = {y €
e ClU % < wF(y)} is closed because for every convergent sequence

(yn) C Fn, where m € N, the segments (ty,,0) C FN LK and it
implies that <%y0,0> ccCly <%yn,0>, so the segment <%y0,0> C Fn
n=1

N %f( , where yq denotes the limit of (yn). Since ClU is a Baire set of
the 2nd category in C? i.e., it is not a countable sum of nowhere dense
sets and |J F,, = ClU, so there exists ng € N such that Int s F,,, # 0.
n=1

Let V € 7|C” and V C F,,,. Since VW # 0,50 LK NConVNZ # ()
for every n € N. Since %Kﬁ ConV C F for every n > ng, so FNZ # .
Therefore (F\ {0}) N C1A* # ), so there does not exists a closed set
F such that 0 € Cor F' and (F'\ {0}) € X \ Cl1A*. It means that the
sets F7\ {0} and X \ Cl A* do not form a Klee pair for 0. It follows that
there does not exist a 3-neighbourhood of 0 disjoint with the set A*. It
implies that 0 € Cl3A*. Reassuming, we proved for a set A there exists
its countable subset A* such that 0 € ClzA*.

Now we consider cases (hl) and (h3). First we define a function ¢ :
S — (O, §> The definition of ¢ will be separately given on non-empty
sets £ and O\ Co,, forn € Nand o < 3.

Let §(c) denote the rank of the set D*. It is easy to see that
E*= |J E2, where E¢ = (D*)Y\ (D)™ and (D*)™ denotes

0<6<5(a)

the derived set of the order v of the set D*. Taking into account that
C® = (D*)*®) we define the family
D={(D)":a<fand 0<§<5(a)}U{C:a<BandneN\{1}}.
It’s easy to see that D is well-ordered by the inclusion D. Obviously,
pa, () < pa,(x) if Go C Gy and pg(x) > 0 if x ¢ G, where Gy, Go,
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G € D. For a < 3 we define
(z) = or(@)wx\p(x) if T= (D)) and z € Ef,
AT o) if T=0Cpy, and @ € 7\ Ci.
As the function ¢ on the sphere S is defined, we will show that the set
F = {J (0, ¢@z) is closed. Let’s denote F* = {¢(z)z : 2 € S} and let’s

z€S
take the sequence (z,) C F™* convergent to a point x.

If g = 0 then it’s obvious that o € F'. We will prove that xq € F
also when zy # 0. In this aim we denote by (G; the first set in the family
D such that 2o ¢ G;.

We will show that G = (\{G' € D : Gy C G'} € D. First let’s
notice that G; # D for a < (3. Let’s suppose that it does not take
place. Then 2o € C for every o/ < o and n € N. From conditions (d)
and (e) we have that £y € D*, and it contradicts that G; = D*. If G| =
= (D*)¥ for some a < 3 and 1 < § < §(c) then § is not a limit number
(and one can check it as above), so 6 =+ 1 and G = (D). If G, =
= O for some o < B and n € N then or G = C¢_, either G = (D*)@(®)
depending on n is greater than or equal to 1, respectively.

The above constructed set G is the last set in D such that 7y € G.

It is enough to examine two cases:

(i) Z, ¢ G for all n € N,

(ii) &, € G for all n € N.

In Case (i), by definition of the function ¢ and from the equality
|zn|| = ¢ (Z,), we have ||z,|| < o¢ (Z,). Taking into account that 2o € G
we have ||x,|| — 0, so g = 0. It is in the contrary with the assumption
xo # 0, so Case (i) takes no place.

Now we consider Case (ii). Since the set Gy is closed, so if the
sequence (%,) C G is convergent to g then &, € G\ G for all but
finitely many natural n. There are two possibilities: either 2, € Ef
or 2o € C3 \ C4 .,y for any m € N, where a < fand 0 < § < (o).
Since E§ is composed of isolated points, so if o € Ef, then 2, = 2,
for all but finitely many n € N. Hence x,, = xy for all but finitely many
n € N and, furthermore, zy € F. If 2o € C2 \ C% ., then z,, € C% \
\ Cp 41 for almost all m € N. Since the function pce  is continuous, so
pce (&) — pce ., (Zo). From the definition of the function ¢ it fol-
lows that ¢ (Z,) — ¢ (%9). Hence, since (z,) C F*, i.e., , = o(Tn)Tn
for every n € N, and #, — g, so the sequence (z,) converges to
To = @(Zo)To € F*. This way we proved that z, € F if %y € Ef
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(0 <d < (o) and o < B) and also if 29 € C5\ CF; (n € Nya <
|

< f3). In view of the equality
@ U U mvUUea-s
1<a<f 0<6<d(a) 1<a<Bn=1

we have x¢o € F. This way we proved that F' is closed. Now we prove
that FF\ {0} Cc X\ B. If x € C3\ C%,,, where 1 < a < B and n € N,
then wx\p(x) > —5. Therefore (0, p(z)z) C (0, Zz) C (0,wx\p(2)x)
and, consequently, (0,z) NF C X \ B. If z € Ef, where 1 < o < [ and
0 <6 < §(a), then (0, p(z)z) C (0,wx\p(z)x) and, as above (0,z) N
NF C X \ B. This way, in view of (%), we have F'\ {0} C X \ B.
From 0 € CorF it follows that (X \ B, F'\ {0}) is a Klee pair for the
point 0. Hence there exists a 3-neighbourhood of 0 disjoint with B\ {0}
and therefore so it is disjoint with A. Consequently, 0 ¢ Cl3A and it
contradicts the assumption that 0 € Cl3A.

This statement completes the proof of Part I because we showed
that if 0 € Cl3A then there exists a countable subset of A such that its
3-closure contains 0.

Part IT (dim X > N;). Since 0 € Cl3 (B \ {0}), so, by Lemma 4.1,
it follows that there exists a finite dimensional space L such that 0 €
€ Cly (B {0}) N L).

Let B; C L be a countable and 0-dense set in B N L. Since B =
= ClpA, so, by Th. 4.1, for every x € B; there exists a countable set
A, C A such that z € ClgA,. We put A9 = |J A,. Then BN L =

rEBy
= ClyB; C ClyAy. Let’s assume that there exists V; € 7y such that

(k) V={0tuV,emn
and V1 N Ay = 0. Then Vi NCly4dy = 0, so Vi N ((BNL)\{0}) =
= () and, consequently, V N ((BN L)\ {0}) = . It implies that 0 ¢
Cl; (BN L)\ {0}). This way we obtained the contradiction. Therefore
V N Ay # 0 for an arbitrary set V' of the form (xx), where V; € 7.
Since every 3-neighbourhood G of the point 0 contains the set V' of the
form (xx), so G N Ay # (. In consequence, 0 € Cl3Ay and therefore
tg(O,A) == No. <>

What concerns the tightness of the directional topology, we obvi-
ously have Ry < #5(X) < sup{c,dim X}. It could be interesting to get
the answer to the following
Question 4.1. Is it possible to determine more precisely the valuets(X)?
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