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Abstract: Inspired by recent results on representing topological spaces as sets
of maximal elements in ordered structures, we use hyperspace constructions to
show how some classes of quasi-uniform spaces, and, more generally bitopolical
spaces, can be characterized as the sets of prime elements of ordered structures.

0. Introduction

Much progress has been made in recent years in characterizing var-
ious classes of spaces as the sets of maximal points of one or another
variety of ordered structure. Such considerations have their motivation
in computer science, but they have taken on a life of their own as topo-
logical questions.

A survey of these results shows that completeness, in many of its
variations, is frequently a theme. Since the theory of uniform spaces
includes a notion of completeness that generalizes the complete metric
spaces, it seems only natural that some sort of maximal point results
should exist for that theory.

The natural ordered structures for such a study are the quasi-
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uniform spaces, both because the set of maximal points would inherit
a quasi-uniform (and possibly uniform) structure and because the inter-
section of a T0 quasi-uniformity is a partial order relation. If, out of
a desire for generality, we allow all the spaces of interest to be quasi-
uniform but not always uniform, then we see that the set of maximal
points is no longer the right set to look at, since it is not general enough,
but that the set of prime elements will take its place.

There is already a prime element theorem in the literature. From
the standard reference book for domain theory, [6], we can take the fol-
lowing theorem. We state all the relevant definitions here since many
of them will be used later. We remind the reader that, in general, no
separation axioms should be assumed.

Definition. A closed subset of a space is irreducible if it is not the union
of two proper closed subsets. A space is quasisober if every irreducible
subset is the closure of a point, and it is sober if it is T0 and quasisober.

Definition. A space is locally compact if every neighborhood of every
point contains a compact neighborhood of the point.

Definition. A lattice is distributive if it satisfies the distributive laws,
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Definition. On any partially ordered set (X,≤) define the “way below”
relation ≪ by x ≪ y iff for any directed subset D of X, if sup D exists
and y ≤ sup D then D∩ ↑ x 6= φ. The poset (X,≤) is continuous if
for any x ∈ X, the set {y ∈ X | y ≪ x} is directed and its supremum
is x. The term continuous lattice refers to a complete lattice which is
continuous as a poset.

Definition. For any semilattice (X,≤), an element p is prime if for
any x, y ∈ X, inf{x, y} ≤ p implies that either x ≤ p or y ≤ p. Define
Prime(X,≤) to be the set of all primes. Spec(X,≤) is Prime(X,≤) minus
the greatest element of (X,≤), if there is one.

Definition. The hull-kernel topology on Spec(X,≤) is the topology gen-
erated by sets of the form Spec(X,≤)− ↑ x for all x ∈ X.

The following theorem is a combination of Thms. V-4.4, V-5.5, and
V-5.6 from [6].

Theorem 0.1. A topological space is sober if and only if it is homeomor-
phic to Spec L with the hull-kernel topology for some complete lattice L.
A topological space is sober and locally compact if and only if it is home-
omorphic to Spec L with the hull-kernel topology for some distributive
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continuous lattice L.

We concentrate in this paper on characterizations whose proofs
make use of hyperspaces. Indeed, the last theorem can be classified as
a hyperspace theorem – while the standard proof considers the lattice
of open sets under inclusion, it is obviously equivalent to consider the
lattice of closed sets under reverse inclusion. Our results may not be as
elegant as the last theorem, but they are steps in a direction that we
believe will lead to even better things.

Definition. Given a quasi-uniform space (X,U), let exp(X,U−1) be the
set of non-empty U−1-closed subsets of X and define a quasi-uniformity
H(U) on exp(X,U−1) in the following way: If R is a relation on X let
H(R) be the set of pairs (A, B) ∈ exp(X,U−1) × exp(X,U−1) such that
B ⊆ R[A]. Let H(U) be the quasiuniformity generated by the basis
consisting of relations H(U) for U ∈ U . Then the hyperspace of (X,U)
is (exp(X,U−1),H(U)).

We note that the mapping from X to exp(X,U−1) which takes each
point to its U−1-closure is an embedding of quasi-uniform spaces if and
only if (X,U) is T0.

It is crucial to point out that this is not the quasi-uniform hyper-
space of Levine and Stager [12]. Their motive was to have a construction
which, in the case that the base space was a uniformity, yielded the usual
hyperspace uniformity. We have no such desire. Instead it is important
here that H(U) is usually not a uniformity even when U is. This is a
consequence of our desire here that the partial order given by ∩H(U)
is just reverse inclusion on exp(X,U−1), and that is not, in general, a
property of the Levine–Stager hyperspace.

This definition is somewhat at odds with how we have defined the
quasi-uniform hyperspace in earlier papers, but there is an underlying
consistency. In [2], out of a (possibly misplaced) desire for generality,
we introduced bi-quasi-uniform spaces (X,U ,U∗), where U and U∗ are
quasi-uniformities on X. We proposed there that such a space should
have a bi-quasi-uniform hyperspace (exp(X,U),H(U−1)−1,H(U∗)), where
exp(X,U) is the set of non-empty U-closed subsets of X (except that the
H operator was defined differently there, so the inverses were in different
places).

When the bi-quasi-uniform space (X,U ,U∗) satisfied U∗ = U−1,
we called that space self-adjoint, and noted that self-adjoint spaces had
self-adjoint hyperspaces, i. e., the hyperspace of (X, U , U−1) is
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(exp(X,U),H(U−1)−1,H(U−1)).
Here our “hyperspace” is, in a way, the “dual of the hyperspace

of the dual” from the other paper. Given a quasi-uniform space (X,U),
expand it to a bi-quasi-uniform space (X,U ,U−1). The dual of that is
(X,U−1,U), and the hyperspace of that is (exp(X,U−1),H(U)−1,H(U)).
The dual of the hyperspace of the dual is then (exp(X,U−1),H(U),H(U)−1),
which is the bispace version of our hyperspace (exp(X,U−1),H(U)) in the
definition above.

Our guiding principle in the discussion of bitopological spaces
(X, T , T ∗) is that there is always a preorder on the set X that is some-
how involved in the discussion, and that the members of T should always
be closed upward in the preorder and the members of T ∗ should always
be closed downward in the preorder. Likewise, we expect that a bi-
quasi-uniform space (X,U ,U∗) should be discussed in a context where
there is a preorder on X, and that the associated bitopological space
(X, T (U), T (U∗)) should satisfy the same property with respect to this
preorder. A special case of this is when the space is self-adjoint, i.e.,
(X,U ,U−1), and the preorder ≤, regarded as a subset of X × X, is ∩U .

This special case is consistent with both of the hyperspaces we
have just discussed. In [2], the most significant partial order on the
hyperspace (exp(X,U),H(U−1)−1,H(U−1)) was inclusion, which, indeed
is the intersection of H(U−1)−1. In this paper, the emphasis shifts to
the partial order of reverse inclusion, and that order on the set of points
exp(X,U−1) is, indeed, ∩H(U). Because of this shift of emphasis, it is
appropriate that the hyperspace we deal with here is the dual of the
hyperspace of the dual from the other paper.

We also use a hyperspace which is purely topological construction.
Two topologies can be defined on the hyperspace which depend only on
the two topologies of the base space. For greatest generality, we will
put all the results in the language of bitopological spaces, noting that
a quasi-uniformity generates a bitopological structure because there is a
front topology and there is a back topology.

Definition. For a bitopological space (X, T , T ∗), let exp(X, T ∗) be the
collection of non-empty, T ∗-closed subsets of X. For subsets A1, A2, ..., An

of X, 〈A1, A2, . . . , An〉 will denote the collection of all members F of
exp(X, T ∗) such that F ⊆ ∪n

i=1Ai and for each i = 1, 2, . . . , n, F∩Ai 6= φ.
The topology U(T ) on exp(X, T ∗), the upper Vietoris topology, is gener-
ated by the basis consisting of all 〈O〉 for O ∈ T , and the topology L(T ∗)
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on exp(X, T ∗), the lower Vietoris topology, is generated by the subbasis
consisting of all 〈X, O〉 for O ∈ T ∗. Then (exp(X, T ∗), U(T ), L(T ∗)) is
the hyperspace of (X, T , T ∗).

As with our quasi-uniform hyperspace defined above, this definition
is the dual of the hyperspace of the dual from our other papers on this
topic.

Definition. A bitopological space (X, T , T ∗) is R0 if for any x ∈ X and
any O ∈ T , if x ∈ O then c∗{x} ⊆ O.

Definition. For any bitopological property P that a space (X, T , T ∗)
could have, we say the space (X, T , T ∗) has property P ∗ when the dual
space (X, T ∗, T ) has property P .

We note that the mapping from X to exp(X, T ∗) which takes each
point to its T ∗-closure is an embedding of quasi-uniform spaces if and
only if (X, T , T ∗) is T0 and R∗

0.

Definition. For a topology T on a set X, the specialization order ≤ on
X is defined by x ≤ y iff x ∈ c{y}. A bitopological space (X, T , T ∗) has
two such orders, ≤ and ≤ ∗ for T and T ∗, respectively.

Note that a bitopological space (X, T , T ∗) is R0 iff y ≤ ∗x implies
x ≤ y, for any x, y ∈ X. Since the dual statement is true, too, it follows
that a bispace is R0 and R∗

0 iff the two orders are reverses of each other.
Two properties of orderings will be used throughout this paper.

Definition. A preorder (X,≤) is bounded-complete if every subset with
an upper bound has a least upper bound, or, alternatively, if every non-
empty subset has a greatest lower bound. (X,≤) is directed-complete if
every directed subset has a least upper bound.

Most of our terminology not dealing with bitopological spaces is
consistent with [6]. Most of our bitopological terminology was used in
the papers [1], [2], [3], and those papers, in turn, show the mixed influence
of [4], [5], [7], and [10].

1. Some maximal element and prime element

Applications of the hyperspace

Our first result considers how uniform spaces can be maximal point
sets of some ordered structures. It is natural to make the larger struc-
tures be quasi-uniform spaces and to set the order to be given by the
intersection of the quasi-uniformity.
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Proposition 1.1. For a uniform space to be T2 it is necessary and suf-
ficient for it to be unimorphic to the set of maximal points of a T0 quasi-
uniform space (X,U), with order ≤ generated by the quasi-uniformity,
such that (1) for any U ∈ U there is a V ∈ U such that for any x ∈ X,
if x is maximal then V [x] ⊆ U−1[x].

Furthermore, any combination of the following properties of (X,U)
could be added above and the equivalence would still hold.

(2) (X,≤) is bounded-complete.
(3) For any U ∈ U there is a V ∈ U such that for any x ∈ X,

inf(V [x]) ∈ U [x].
(4) Every x ∈ X is bounded above by a maximal element.
(5) For any U ∈ U and any subset S ⊆ X and any x ∈ X, if x is

maximal and inf S ≤ x then x ∈ U [S].

Proof. Necessity. Suppose that (Y,V) is a T2 uniform space. Let (X,U)
be (exp(Y,V),H(V)). (Since there is only one topology on Y it will not
be necessary to specify whether we are using V or V−1.) (X,U) will be
T0 and the order ∩U will be reverse inclusion. The mapping f : Y → X
which takes each x to {x} will embed (Y,V) unimorphically into (X,U),
and its image will be Max(X).

The properties (1)–(5) will be satisfied.
Sufficiency. Let (X,U) be T0 and satisfy (1), and let ≤ be ∩U . By

(1), Max(X) with the subspace quasi-uniformity will be a uniform space.
Since (X,U) is T0 then Max(X) is Hausdorff. ♦

Directed-completeness is often required for the computer science
applications of partial orders. If we are going to employ, as our ordered
structures, the quasi-uniform hyperspaces described in the introduction,
we cannot expect directed-completeness to hold in our ordered structures
unless we assume U−1-compactness in the base space. However, because
of the computer science motivations for this topic, some sort of complete-
ness, akin to directed-completeness, is desirable. The natural property
that suggests itself, in view of the presence of a quasi-uniformity, is that
Cauchy directed sets should have suprema.

Definition. For a quasi-uniform space (X,U) and a set D ⊆ X, where
D is upward-directed by the preorder ≤ given by ∩U , we say that D is
Cauchy if for any U ∈ U there is a d ∈ D such that for any d′ ∈ D we
have d ∈ U [d′].

Note that a Cauchy directed set as defined here is both a right K-
Cauchy net, as in [11], and a bi-Cauchy net, in that it is Cauchy for the
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uniformity U ∨ U−1. Since we will only be considering the Cauchy prop-
erty for these directed subsets of a space, we do not need to distinguish
between various Cauchy conditions, for quasi-uniform spaces, that exist
in the literature.

Definition. A uniform space is supercomplete if its uniform hyperspace
is complete.

Definition. For a quasi-uniform space (X,U), a filter F on X is stable
if for any U ∈ U there is an F ∈ F such that for any F ′ ∈ F , F ⊆ U [F ′].

The property of supercompleteness was treated at length by Isbell
in [8] and [9]. Stable filters were utilized there for the uniform setting,
and the definition was extended to the quasi-uniform spaces in [11]. An
important characterization of supercompleteness is that it is equivalent
to every stable filter having a cluster point. This was stated in the
discussion at the very end of [8].

Our next result, possibly our main one, is a maximal point charac-
terization of the Hausdorff, supercomplete uniform spaces.

Proposition 1.2. For a uniform space to be T2 and supercomplete it
is necessary and sufficient for it to be unimorphic to the set of maximal
points of a T0 quasi-uniform space (X,U), with order ≤ generated by the
quasi-uniformity, such that

(1) For any U ∈ U there is a V ∈ U such that for any x ∈ X, if x
is maximal then V [x] ⊆ U−1[x].

(2) (X,≤) is bounded-complete.
(3) For any U ∈ U there is a V ∈ U such that for any x ∈ X,

inf(V [x]) ∈ U [x].
(4) Any Cauchy upward-directed subset of X has a supremum inX.
(5) Every x ∈ X is bounded above by a maximal element.
(6) For any U ∈ U and any subset S ⊆ X and any x ∈ X, if x is

maximal and inf S ≤ x then x ∈ U [S].
Furthermore, property (4) could be augmented by saying that the

supremum of the Cauchy upward-directed set is a U-limit of the set, and
the equivalence will still hold.

Proof. Necessity. Suppose that (Y,V) is a supercomplete, T2 uniform
space. We proceed as in the last proof to let (X,U) be (exp(Y,V),H(V)).

If D is a Cauchy upward-directed subset of X then it will be a filter
base for a stable filter on Y . By supercompleteness, this filter will have
a non-empty set of cluster points and this set of cluster points will equal
∩D, since the members of D are closed. So (4) is satisfied.



204 B. S. Burdick

It further follows from supercompleteness that any V-uniform neigh-
borhood of ∩D contains a member of D. This makes ∩D a U limit of D.
So the modified form of (4) also follows.

Sufficiency. Let (X,U) have the stated properties. By (1), Max(X)
with the subspace quasi-uniformity will be a uniform space. Since (X,U)
is T0 then Max(X) is Hausdorff. It remains to show that Max(X) is
supercomplete.

Let F be a stable filter on Max(X). Then, by (2), we can define a
directed set D ⊆ X by D = {inf A | A ∈ F}. We show that D is Cauchy.

Given any U ∈ U , choose a V as in property (3) and then choose
a W ∈ U with W ◦ W ⊆ V . Since F is stable, there is an A ∈ F such
that for any B ∈ F , A ⊆ W [B]. Let a = inf A and we claim that for any
x ∈ D, a ∈ U [x].

To this end, given x ∈ D, x = inf B for some B ∈ F . A ⊆ W [B],
and, by definition of ≤, B ⊆ W [x]. So A ⊆ W ◦W [x] ⊆ V [x]. Therefore
inf(V [x]) ≤ a, and since inf(V [x]) ∈ U [x], so is a ∈ U [x].

So D is Cauchy. By (4), sup D exists in X. By (5), there is a
maximal element m above sup D. We note that for any A ∈ F , inf A ≤
≤ m. So, by (6), m ∈ U [A] for any A ∈ F and any U ∈ U . So m is a
cluster point for F . ♦

We suspect that the characterization given in Prop. 1.2 is not yet in
its best form. The proposition suggests, though, that supercompleteness
may be an important property for applications of maximal point ideas
to uniform spaces.

Since topological supercompleteness is the same as paracompact-
ness, we have the following corollary.

Corollary 1.3. A topological space is T3, paracompact iff it is homeo-
morphic to the set of maximal points of a T0 space admitting a quasi-
uniformity (X,U), with order ≤ generated by the quasi-uniformity, such
that

(1) For any U ∈ U there is a V ∈ U such that for any x ∈ X, if x
is maximal then V [x] ⊆ U−1[x].

(2) (X,≤) is bounded-complete.
(3) For any U ∈ U there is a V ∈ U such that for any x ∈ X,

inf(V [x]) ∈ U [x].
(4) Any Cauchy upward-directed subset of X has a supremum in X.
(5) Every x ∈ X is bounded above by a maximal element.
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(6) For any U ∈ U and any subset S ⊆ X and any x ∈ X, if x is
maximal and inf S ≤ x then x ∈ U [S].

In metric spaces, supercompleteness is equivalent to completeness.
This gives us another corollary.

Corollary 1.4. A topological space is completely metrizable iff it is
homeomorphic to the set of maximal points of a T0 space admitting a
quasi-uniformity (X,U), with order ≤ generated by the quasi-uniformity,
such that

(1) For any U ∈ U there is a V ∈ U such that for any x ∈ X, if x
is maximal then V [x] ⊆ U−1[x].

(2) (X,≤) is bounded-complete.
(3) For any U ∈ U there is a V ∈ U such that for any x ∈ X,

inf(V [x]) ∈ U [x].
(4) Any Cauchy upward-directed subset of X has a supremum in X.
(5) Every x ∈ X is bounded above by a maximal element.
(6) For any U ∈ U and any subset S ⊆ X and any x ∈ X, if x is

maximal and inf S ≤ x then x ∈ U [S].
(7) U has a countable basis.

We wish to transform Prop. 1.2 to characterize some class of quasi-
uniform spaces, such that the intersection of that class with the uniform
spaces is the supercomplete uniform spaces. A very nice generalization
of supercompleteness to the quasi-uniform setting is given in [11], where
it is shown that the Levine–Stager hyperspace of a quasi-uniform space
(X,U) is right K-complete iff every U-stable filter has a U-cluster point.

Unfortunately, we have failed to find any way to adapt that gener-
alization to the problem at hand. The obstacle is that the wrong kind
of cluster points are asserted to exist. The supremum of a U-Cauchy
directed set (under reverse inclusion) of U−1-closed sets should be its set
of U−1-cluster points.

Definition. A filter F on a quasi-uniform space (X,U) is round if for
any F ∈ F there is an F ′ ∈ F and a U ∈ U such that U [F ′] ⊆ F .

So, we seek a new generalization of supercompleteness. One prop-
erty that characterizes the supercomplete uniform spaces is that every
stable, round filter is the set of uniform neighborhoods of some (neces-
sarily non-empty) set. We propose the following definition.

Definition. A quasi-uniform space (X,U) is supercomplete if every sta-
ble, round filter is the set of U-uniform neighborhoods of some set. Note
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that the set in question must be non-empty and must be the set of U−1-
cluster points of the filter.

Now we have the following prime element version of Prop. 1.2.

Proposition 1.5. For a quasi-uniform space to be T0, sober∗, and su-
percomplete it is necessary and sufficient for it to be unimorphic to the
set of primes of a T0 quasi-uniform space (X,U), with order ≤ generated
by the quasi-uniformity, such that

(1) U−1 induces the hull-kernel topology on Prime(X,≤).
(2) (X,≤) is bounded-complete.
(3) For any U ∈ U there is a V ∈ U such that for any x ∈ X,

inf(V [x]) ∈ U [x].
(4) Any Cauchy upward-directed subset of X has a supremum in

X, which is the U-limit of the set.
(5) For any U ∈ U and any subset S ⊆ X and any x ∈ X, if x is

prime and inf S ≤ x then x ∈ U [S].
(6) For any U ∈ U there is a V ∈ U such that for any x ∈ X,

V [x] ∩ Prime(X,≤) ⊆ U [(↑ x) ∩ Prime(X,≤)].

Proof. Necessity. Suppose that (Y,V) is a T0, sober∗, supercomplete
quasi-uniform space. We let (X,U) be (exp(Y,V−1),H(V)). The map-
ping f : Y → X which takes each x to c∗{x} will embed (Y,V) unimor-
phically into (X,U), and its image will be Prime(X) since (Y,V) is sober
with the topology T (V−1).

If D is a Cauchy upward-directed subset of X then {U [d] | U ∈
V, d ∈ D} will be a round, stable filter on Y . By supercompleteness, this
filter will the set of V-uniform neighborhoods of ∩D, since the members
of D are V−1-closed. So (4) is satisfied.

The other properties follow routinely.
Sufficiency. Let (X,U) have the stated properties. To show that

(Y, T (V−1)) is sober, suppose that A ⊆ Prime(X,≤) is irreducible for
the topology induced on Prime(X,≤) by U−1. Let a = inf A.

We show a is prime. Suppose b, c ∈ X and inf{b, c} ≤ a. Then for
each p ∈ A we have either b ≤ p or a ≤ p. Hence A ⊆ c∗{b}∪ c∗{c}, and,
by irreducibility, either A ⊆ c∗{b} or A ⊆ c∗{c}. It follows that either
b ≤ a or c ≤ a.

By (1), the topology induced on Prime(X,≤) by U−1 is the hull-
kernel topology. It follows that a ∈ A. Since a = inf A, we have that the
U−1-closure of {a} within Prime(X,≤) is A.

It remains to show that U makes Prime(X,≤) supercomplete.
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Given a stable, round filter F on Prime(X,≤), let D = {inf F |
| F ∈ F}. D will be Cauchy, as in the proof of Prop. 1.2. By (4), sup D
exists and D is U-convergent to sup D.

Let A = (↑ sup D) ∩ Prime(X,≤). Given a U ∈ U choose V as
in (6). Then choose F ∈ F so that inf F ∈ V [sup D]. Since

F ⊆ V [sup D] ∩ Prime(X,≤) ⊆ U [(↑ sup D) ∩ Prime(X,≤)] = U [A],

we have shown that every uniform neighborhood of A in Prime(X,≤) is
a member of F . On the other hand, (4) and the fact that F is stable
imply that every F ∈ F is a uniform neighborhood of A. ♦

Property (6) in Prop. 1.5 stands out as stronger than what we
needed in Prop. 1.2. It is equivalent to the statement that the mapping
from (X,U) to the hyperspace of Prime(X,≤), which takes each x to
(↑ x) ∩ Prime(X,≤), is uniformly continuous. We needed something
stronger because our definition of supercomplete did not merely assert
the existence of a cluster point, but asserted a property of the set of
cluster points.

It is not at all clear that the property can be weakened. It may be
appropriate to propose the following problem.

Problem. Characterize the quasi-uniform spaces that can be repre-
sented as the prime set of a T0 quasi-uniform space satisfying properties
(1) through (5) of Prop. 1.5 plus the property that every element is
bounded above by a prime. Note that uniform spaces with this property
will be supercomplete.

It may be that supercompleteness as we have defined it for quasi-
uniform spaces does not have a characterization asserting that some class
of filters has some kind of cluster point, unlike the case for supercom-
plete uniform spaces, and unlike the generalization of supercompleteness
in [11].

Since we have introduced a property for quasi-uniform spaces, we
will try to offer further motivation for it by finding an even stronger
property that arises naturally.

Definition. A pair cover of a set X is a set C of pairs (A, B) ∈ P(X)×
× P(X) such that the set {A ∩ B | (A, B) ∈ C} is a cover of X. For a
bitopological space (X, T , T ∗), an open pair cover is a pair cover of X
such that for every (A, B) ∈ C, A ∈ T and B ∈ T ∗. A pair cover C1

refines a pair cover C2 if for any (A, B) ∈ C1 there is a (C, D) ∈ C2 with



208 B. S. Burdick

A ⊆ C and B ⊆ D. For a quasi-uniform space (X,U), a pair cover is said
to be a uniform pair cover if it is refined by the pair cover {(U [x], U−1[x]) |
| x ∈ X} for some U ∈ U . In such a quasi-uniform space, a pair cover is
open if it is open for the bitopological space (X, T (U), T (U−1)).

Proposition 1.6. Let (X,U) be a quasi-uniform space. Suppose that
every open pair-cover of X is uniform. Given a round, stable filter F
on X, if ∩F ⊆ O ∈ T (U) we then have O ∈ F . Consequently, (X,U) is
supercomplete.

Proof. Since F is round, ∩F = ∩{c∗F | F ∈ F}, where c∗ is closure
for U−1. So {(O, X)} ∪ {(X, X − c∗F ) | F ∈ F} is an open cover, since
∩{c∗F | F ∈ F} ⊆ O ∈ T (U). Choose U ∈ U with {(U [x], U−1[x]) | x ∈
∈ X} refining this cover. Since F is stable, there is an F ′ ∈ F such that
for any F ∈ F we have F ′ ⊆ U [F ]. For any x ∈ X, either U [x] ⊆ O
or x /∈ U [F ] for some F ∈ F . But the latter condition is impossible for
x ∈ F ′, by the choice of F ′. So we must have F ′ ⊆ O. Thus O ∈ F . ♦

A special case of Prop. 1.6 is the well-known fact that a paracom-
pact uniform space, with its fine uniformity, is supercomplete.

We now turn to the question of what can be done with the bitopo-
logical hyperspace.

Definition. A bispace (X, T , T ∗) is quasisober if for any T -irreducible
set A ⊆ X there is an element x ∈ A such that for any O ∈ T ∗ with
x ∈ O we have A ⊆ O. A bitopological space is sober if it is T0, R∗

0, and
quasisober. [1, 2]

Sober was defined in [1] in this way in order to set up the sobrifi-
cation, i.e., any T0, R∗

0 bispace can be embedded in a sober bispace.
Note that if (X, T ) is quasisober and (X, T , T ∗) is R∗

0, then (X, T , T ∗)
is quasisober. If, on the other hand, (X, T , T ∗) is quasisober and R0, then
(X, T ) is quasisober.

Definition. For any topological space, a set is saturated if it is the
intersection of its neighborhoods. For a topology T on X, the dual
topology T k is the topology on X generated by the complements of the
saturated compact sets for T .

Note that the specialization order of T k is always the reverse of the
specialization order for T .

Definition. When (X,≤) is a semilattice, the meaning of the term
distributive takes on a new form, which reduces to the one already given
for the case of a lattice. A semilattice (X,≤) is distributive if whenever
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inf{a, b} ≤ x then there are c, d ∈ X with a ≤ c, b ≤ d, and x = inf{c, d}
(see [6]).

Our next theorem is a sort of bitopological version of the first part
of Th. 0.1.

Proposition 1.7. For a bitopological space to be sober∗ and R∗

0 it is
necessary and sufficient for it to be homeomorphic to the set of primes
of a sober∗, R∗

0 bitopological space (X, T , T ∗), with the order given by the
specialization order of T .

Furthermore, any combination of the following properties of
(X, T , T ∗) may be added above and the equivalence will still hold.

(1) (X, T , T ∗) is a bounded-complete distributive semilattice.
(2) T ∗ induces the hull-kernel topology on Prime(X).
(3) T ∗ ⊆ T k.

Proof. Necessity. Given a sober∗, R∗

0 bispace (Y,S,S∗), let (X, T , T ∗)
be (exp(Y,S∗), U(S), L(S∗)). Since (Y,S,S∗) is R∗

0 and points of X are
S∗-closed, then the T -specialization order is reverse inclusion. By R0, the
mapping f : Y → X which takes each x to c∗{x} will embed (Y,S,S∗)
homeomorphically into (X, T , T ∗), and its image will be Prime(X) since
(Y,S∗) is quasisober.

The hyperspace (X, T , T ∗) will always be T0, R0, and quasisober∗

(Props. 2 and 4 in [1]). The fact that it is R∗

0 when (Y,S,S∗) is R0 and
R∗

0 was Cor. 1 in [1].
(1) follows from the consideration that the infimum of a collection

(under reverse inclusion) is just the S∗-closure of the union.
(2) follows from the fact that the subbassis element 〈Y, O〉 is the

same set as X− ↑ (Y − O).
(3) follows from the fact that L(S∗) is the weakest topology on

exp(Y,S∗) whose specialization order is inclusion, so it is coarser than
any other such topology, including U(S)k.

Sufficiency. Given that (X, T , T ∗) has the stated properties, note
that T0, R0, and R∗

0 will all be inherited by the subspace Prime(X).
To show that Prime(X) is sober with the topology induced by T ∗,

suppose that A is an irreducible set in Prime(X) under that topology.
c∗A will be irreducible in (X, T ∗), so c∗A = c∗{a} for some a ∈ X.

We show a is prime. Suppose b, c ∈ X and inf{b, c} ≤ a. Then for
each p ∈ A we have either b ≤ p or a ≤ p. Hence A ⊆ c∗{b}∪ c∗{c}, and,
by irreducibility, either A ⊆ c∗{b} or A ⊆ c∗{c}. It follows that either
b ≤ a or c ≤ a.
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So cA = c{a}, i.e., A = c{a}, stills holds when restricted to
Prime(X). ♦

Definition. For a partial order (X,≤), consider the convergence struc-
ture given by saying that any upward-directed D ⊆ X, for which sup D
exists, converges to any member of ↓ sup D. The topology generated by
this convergence is the Scott topology.

Definition. A bitopological space (X, T , T ∗) is T3 if it is T0 and when-
ever x ∈ O ∈ T there is an O′ ∈ T such that x ∈ O′ ⊆ c∗O′ ⊆ O.

Proposition 1.8. For a bitopological space to be sober∗ and T ∗

3 , it is
necessary and sufficient for it to be homeomorphic to the set of primes
of a sober∗, T ∗

3 bitopological space (X, T , T ∗), with the order given by the
specialization order of T .

Furthermore, any combination of the following properties of
(X, T , T ∗) may be added above and the equivalence will still hold.

(1) (X,≤) is a bounded-complete distributive semilattice.
(2) T ∗ induces the hull-kernel topology on Prime(X).
(3) The Scott topology on (X,≤) is coarser than S.
(4) T ∗ ⊆ T k.
(5) T ∗k ⊆ T .

Proof. Compared to the first paragraph of the last theorem, the addi-
tional property of T ∗

3 has been added to both spaces. Necessity for this
follows from Cor. 2 of [1] and sufficiency is because T ∗

3 is hereditary.
For (3), suppose that O is a Scott open subset of X and that A ∈

∈ O. By regular∗, A is the intersection of a filterbase F of S∗-closed sets
such that for each F ∈ F , there is an O ∈ S such that A ⊆ O ⊆ F .
Since O is Scott open, there is some F ′ ∈ F with F ′ ∈ O. Then choose
O′ ∈ S with A ⊆ O′ ⊆ F ′. It follows that A ∈ 〈O′〉 ⊆ 〈F ′〉 ⊆ O.

(5) follows from R∗

1, which follows from T ∗

3 . ♦

2. Some applications of a modified hyperspace

In Sec. 1 the ordered structures were bounded-complete, and this
property played an important role in the proofs. In this section, a dif-
ferent kind of hyperspace allows a different property, that of directed-
completeness, to hold in place of bounded-completeness.

The hyperspace in question for this section will have points which
are closed in one topology and compact in the other.
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Definition. For a bitopological space (X, T , T ∗), let K(X, T ∗, T ) be
the collection of non-empty, T ∗-closed, T -compact subsets of X. In this
section we will let 〈A1, A2, . . . , An〉 stand for the collection of all members
K of K(X, T ∗, T ) such that K ⊆ ∪n

i=1Ai and for each i = 1, 2, . . . , n, K∩
∩Ai 6= φ. The topology U(T ) on (K(X, T ∗, T ) is generated by the basis
consisting of all 〈O〉 for O ∈ T , and the topology L(T ∗) on K(X, T ∗, T )
is generated by the subbasis consisting of all 〈X, O〉 for O ∈ T ∗.

Definition. A bitopological space is dually sober if it and its dual are
both sober.

Proposition 2.1. For a bitopological space to be dually sober it is nec-
essary and sufficient for it to be homeomorphic to the set of primes of
an R0, sober bitopological space (X, T , T ∗), with the order given by the
specialization order of T , such that

(1) For any x ∈ X, if O is a T -neighborhood of (↑ x) ∩ Prime(X)
then there is an O′ ∈ T with x ∈ O′ and O′ ∩ Prime(X) ⊆ O.

(2) Any T ∗|Prime(X)-irreducible subset A of Prime(X) has an infi-
mum in c∗A.

Furthermore, any combination of the following properties of
(X, T , T ∗) may be added above and the equivalence will still hold.

(3) Any upward-directed set in X is T -convergent to its supremum,
i.e., T is coarser than the Scott topology for (X,≤). (Note that (X,≤)
directed-complete follows from (X, T ) sober.)

(4) For any x ∈ X, (↑ x) ∩ Prime(X) is T -compact.
(5) (X,≤) is a distributive semilattice.
(6) T ∗ ⊆ T k.

Proof. Necessity. Given a dually sober bispace (Y,S,S∗), let (X, T , T ∗)
be (K(Y,S∗,S), U(S), L(S∗)). Many parts of the proof are identical to
the corresponding proof in the last section.

Showing that when (Y,S,S∗) is quasisober then (X, T , T ∗) is qua-
sisober is an easy modification of the proof of Prop. 2.5 in [2].

To show that (1) holds, assume that x = A ⊆ Y . (↑ x)∩Prime(X)
is just {c∗{y} | y ∈ A} and a T -open neighborhood of it can be given by
∪i∈J〈Oi〉. Let O = ∪i∈JOi. Then A ⊆ O, so x ∈ 〈O〉, any c∗{y} that is
a member of 〈O〉 will be a member of 〈Oi〉 for some i, by R0.

To show (2), suppose that A is a collection of S∗-closures of single-
tons which is irreducible in the space of all S∗-closures of singletons with
the topology induced by L(S∗). Then c∗ ∪A is S∗-irreducible, and so it
is itself the S∗-closure of a singleton, by quasisobriety of (Y,S∗). This
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makes c∗ ∪ A S-compact, by R0. So c∗ ∪ A is in X and it clearly is an
infimum for A. It is in the L(S∗)-closure of A because A is irreducible.

(3) follows from the bitopological Hofmann–Mislove Theorem,
Prop. 1.5 in [2].

To show (4), we note that any x ∈ X is a T -compact subset of Y ,
and, from the discussion above, (↑ x) ∩ Prime(X) is homeomorphic to x
itself.

(5) is obvious from the fact that the collection of S∗-closed, S-
compact sets is closed under finite unions.

Sufficiency. Given that (X, T , T ∗) has the stated properties, note
that T0, R0, and R∗

0 will all be inherited by the subspace Prime(X).
To show that Prime(X) is sober with the topology induced by T ,

suppose that A is an irreducible set in Prime(X) under that topology.
cA will be irreducible for (X, T ), so cA = c{a} for some a ∈ cA.

We show a is prime. Suppose b, c ∈ X and inf{b, c} ≤ a. Suppose
that no primes above inf{b, c} are in cA. Then, by (1), there is an O ∈ T
such that inf{b, c} ∈ O and none of the prime members of O are in A.
But since a ∈ O this contradicts a ∈ cA. So there is a prime p ∈ cA with
inf{b, c} ≤ p. Since p ≤ a, we have either b ≤ a or c ≤ a.

So cA = c{a}, i.e., A = c{a}, stills holds when restricted to
Prime(X).

To show that Prime(X) is sober with the topology induced by T ∗,
suppose that A is an irreducible set in Prime(X) under that topology.
By (2), A has an infimum a ∈ c∗A.

We show a is prime. Suppose b, c ∈ X and inf{b, c} ≤ a. Then for
each p ∈ A we have either b ≤ p or a ≤ p. Hence A ⊆ c∗{b}∪ c∗{c}, and,
by irreducibility, either A ⊆ c∗{b} or A ⊆ c∗{c}. It follows that either
b ≤ a or c ≤ a.

Since a ∈ c∗A and A ⊆ c∗{a} we have c∗A = c∗{a}, and within
Prime(X) that becomes A = c∗{a}. ♦

Definition. A bitopological space (X, T , T ∗) is R1 if whenever x ∈ O ∈
∈ T and y /∈ O there is an O′ ∈ T such that x ∈ O′ ⊆ c∗O′ ⊆ X − {y}.

Proposition 2.2. For a bitopological space to be dually sober and R∗

1, it
is necessary and sufficient for it to be homeomorphic to the set of primes
of an R0, R∗

1, sober bitopological space (X, T , T ∗), with the order given
by the specialization order of T , such that

(1) For any x ∈ X, if O is a T -neighborhood of (↑ x) ∩ Prime(X)
then there is an O′ ∈ T with x ∈ O′ and O′ ∩ Prime(X) ⊆ O.
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(2) Any T ∗|Prime(X)-irreducible subset A of Prime(X) has an infi-
mum in c∗A.

Furthermore, any combination of the following properties of
(X, T , T ∗) may be added above and the equivalence will still hold.

(3) Any upward-directed set in X is T -convergent to its supremum.
(4) For any x ∈ X, (↑ x) ∩ Prime(X) is T -compact.
(5) For any K ⊆ X, K non-empty and T -compact implies that

inf(K) exists.
(6) (X,≤) is a distributive semilattice.
(7) T ∗ ⊆ T k.
(8) T ∗k ⊆ T .

Proof. Compared to the first paragraph of the last theorem, the addi-
tional property of R∗

1 has been added to both spaces. For necessity, let
J , K ∈ K(Y,S∗,S) be given and suppose there is a basic L(S∗)-open set
which contains J but not K. This amounts to saying that there is an
O ∈ S∗ with J ∩ O 6= φ and K ∩ O = φ. By R∗

1, using S compactness
of K, we can find an O′ ∈ S∗ and an O′′ ∈ S with J ∩ O′ 6= φ, K ⊆ O′′,
and O′ ∩ O′′ = φ. Then J ∈ 〈X, O′〉, K ∈ 〈O′′〉, and 〈X, O′〉 ∩ 〈O′′〉 = φ.

Sufficiency for this is because R∗

1 is hereditary.
For (5), it is sufficient to show that the S∗-closure of the union of

a U(S)-compact collection of S-compact, S∗-closed sets is S-compact.
Suppose K is such a collection. First we show that c∗(∪K) = ∪K.

Given y ∈ c∗(∪K), every S∗ neighborhood of y intersects some K ∈ K.
Define a net s : D → K, where D is the set of S∗ neighborhoods of
y ordered by reverse inclusion, by choosing, for each O ∈ D, s(O) ∈ K
with O∩s(O) 6= φ. Since K is U(S)-compact, this net has a U(S)-cluster
point K ′ ∈ K. Then it follows that every S∗ neighborhood of y intersects
every S neighborhood of K ′.

Suppose y /∈ K ′. Then, since (Y,S∗,S) is regular and K ′ is S∗-
closed, there is an S∗-neighborhood of y whose S-closure is disjoint from
K ′. But this contradicts our conclusion above. So y ∈ K ′ ⊆ ∪K. This
shows that ∪K is S∗-closed.

Given C, an S-open cover of ∪K, let C′ be the collection of finite
unions of members of C. Then {〈O〉 | O ∈ C′} is a cover of K; let {〈O〉 |
| O ∈ C′′} be a subcover with C′′ finite. So C′′ covers ∪K, and from it a
finite subcover of C may be constructed. This completes the proof of (5).

(8) follows from R∗

1. ♦
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Proposition 2.3. For a bitopological space to be regular, dually sober it
is necessary and sufficient for it to be homeomorphic to the set of primes
of a regular, sober bitopological space (X, T , T ∗), with the order given by
the specialization order of T , such that

(1) For any x ∈ X, if O is a T -neighborhood of (↑ x) ∩ Prime(X)
then there is an O′ ∈ T with x ∈ O′ and O′ ∩ Prime(X) ⊆ O.

(2) Any T ∗|Prime(X)-irreducible subset A of Prime(X) has an infi-
mum in c∗A.

Furthermore, any combination of the following properties of
(X, T , T ∗) may be added above and the equivalence will still hold.

(3) Any upward-directed set in X is T -convergent to its supremum.
(4) For any x ∈ X, (↑ x) ∩ Prime(X) is T -compact.
(5) (X,≤) is a distributive semilattice.
(6) T ∗ = T k.

Proof. To show that regular carries from the base space to this hyper-
space, suppose K ∈ K(Y,S∗,S) and K ∈ 〈O〉 for some O ∈ S. Then by
regularity of (Y,S,S∗), and S-compactness of K, we can find an O′ ∈ S
with K ⊆ O′ ⊆ c∗O′ ⊆ O. Then K ∈ 〈O′〉 ⊆ 〈c∗O′〉 ⊆ 〈O〉, and 〈c∗O′〉 is
a L(S∗)-closed set.

(6) has been strengthened because regular implies R1, which implies
T k ⊆ T ∗. ♦

3. Further considerations

In Sec. 1 we saw ordered structures that were bounded-complete.
In Sec. 2, directed-complete was allowed, but bounded-complete was gen-
erally ruled out. Can we have both?

We can if the results in the last two sections are combined into
one, which will obviously apply to a more restricted class of spaces. For
spaces (Y,S,S∗) in which the S∗-closed sets are S-compact, the last two
types of hyperspaces we have employed become the same.

Definition. A bispace (X, T , T ∗) is symmetrically T2 if it is T0, R1, and
R∗

1. It is sup-compact if T ∨ T ∗ is a compact topology for X. In [2] we
introduced the term compact for bispaces where every T ∗-closed set is
T -compact.

Definition. A bitopological space (X, T , T ∗) is regularly locally compact
if for any x ∈ X and any O ∈ T with x ∈ O, there is an O′ ∈ T and a
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T ∗-closed, T -compact set K with x ∈ O′ ⊆ K ⊆ O.

Definition. A space (X, T ) is coherent if the intersection of any finitely
many saturated compact sets is compact. A space (X, T ) is stably com-
pact if it is compact, locally compact, coherent, and sober.

A space (X, T ) is stably compact iff there is another topology T ∗

such that (X, T , T ∗) is symmetrically T2 and sup-compact. When this
occurs, T and T ∗ are duals to each other. These facts are given as an
exercise in [6], and they cite the paper [10] as the source.

Proposition 3.1. For a bitopological space to be symmetrically T2 and
sup-compact it is necessary and sufficient for it to be homeomorphic to
the set of primes of a symmetrically T2, sup-compact bitopological space
(X, T , T ∗), with the order given by the specialization order of T .

Furthermore, any combination of the following properties of
(X, T , T ∗) may be added above and the equivalence will still hold.

(1) (X,≤) is a bounded complete domain, i.e., a bounded-complete,
directed-complete, continuous semilattice.

(2) T is the Scott topology for (X,≤).
(3) T ∗k = T .
(4) T ∗ = T k.
(5) (X, T , T ∗) and its dual are regularly locally compact.

Proof. Ingredients for most of this are in the other proofs. That sup-
compactness of the hyperspace (exp(Y,S∗), U(S), L(S∗)) is equivalent
to compactness of (Y,S∗,S) was Prop. 2.1 in [2]. To get equivalence
with sup-compactness of (Y,S,S∗) we note that compact and quasisober
implies sup-compact (Cor. 1.1 in [2]). We get (Y,S∗,S) quasisober as in
Sec. 1.

(1) and (2) have been covered in other proofs. (3) through (5) are
consequences of the combination of symmetrically T2, sup-compact. ♦

We obviously cannot ask for too many properties to hold in (X,U)
without severely restricting the spaces that could be represented as
Prime(X,≤). The following theorem shows that asking for bounded-
complete, directed-complete, and just a few other natural properties al-
ready starts to make the spaces resemble those of the last theorem.

Proposition 3.2. Suppose that (X, T , T ∗) is a bitopological space, with
the order given by the specialization order of T , satisfying the following:

(1) (X,≤) is bounded-complete.
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(2) (X,≤) is directed-complete.
(3) Maximal elements of (X,≤) are prime.
(4) For any S ⊆ X and any p ∈ Prime(X), if inf S ≤ p then

p ∈ c∗S. Then Prime(X,≤) is T ∗-compact.

Proof. Let α : D → Prime(X,≤) be a net. Since (X,≤) is both
bounded-complete and directed-complete, we can find limα. By directed-
completeness, there is a maximal element x with limα ≤ x. By (3), x ∈
∈ Prime(X,≤). By (4), x ∈ c∗α[↑ d] for any d ∈ D. So x is a T ∗-cluster
point of α. ♦

Note that (1), (3), and (4) in the theorem are properties of hy-
perspaces, as defined in this paper and used in Sec. 1, but (2) generally
isn’t. In Sec. 2, our modified hyperspaces satisfied (2), (3), and (4) but
generally not (1). In a future paper, we will introduce a quasi-uniform
construction that contains our hyperspace as a subspace, and satisfies
(1), (2), and (3) but, in general, fails to satisfy (4).
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