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1. Preliminary concepts
1.1. Uniform type spaces

R will denote the set of real numbers and Ry := [0, 00[. The set
R and its subsets (including R; and the unit segment [0,1]) will be
supposed to be endowed with the usual topology e.

For a topological space (X, 7) we denote by N, (x) the collection of
all neighborhoods of a point # € X. For the considered topologies and
topological spaces no separation axioms are required in advance.

Fix a non-empty set X, a subset of X x X is called a (binary)
relation on X. The relations will be denoted by P, @), R, etc. We write:

Ax :={(zr,z) e X x X |z € X},
T(P):={(y,x) € X x X|(z,y) € P},

Po@ :={(z,y) € X x X |3z € X such that (z,2) € Q,(z,y) € P}.
The relation T(P) is called the converse relation of P. Instead of T(P)
the notation P~! also is used. A relation P is called reflexive if Ay C P
and symmetric if T(P) = P.

For a collection Q of relations on X, we write Q' := {T(Q)|Q €
€ Q} and we say that Q is symmetric if @ = Q. The relation P o Q is
called the composition of relations P and Q.

For z € X and £ C X we set Plz] :={y € X|(z,y) € P} and
P[E] = |J Pl[z].

zeE
We recall the usual terminology from the theory of quasi-uniform

spaces (see, e.g.,[6], [14], [13]):

A filter Q consisting of reflexive relations on X is a

e Local Quasi-uniformity if Ve € X, VQ € Q, P € Q such that
Po Plz] C Q[x].

e Local Uniformity if Q is a symmetric local quasi-uniformity.

e Quasi-Uniformity if VQQ € Q@ 4P € Q such that Po P C Q.

e Uniformity if Q is a symmetric quasi-uniformity:.
If Q is a quasi-uniformity, the filter Q' is a quasi-uniformity too. How-
ever, if Q is a local quasi-uniformity, then Q" may not be a local quasi-
uniformity. A local quasi-uniformity Q is called bilocal quasi-uniformity
if @ is a local quasi-uniformity as well (cf. [2]).

The pair (X, Q) is called a local quasi-uniform space (a local uni-
form space, a quasi-uniform space, a uniform space) when Q is a local
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quasi-uniformity (a local uniformity, a quasi-uniformity, a uniformity)
and the members of Q are called entourages.!

Every uniform type structure Q induces in X the topology 7¢ for
which

{Qz]1Q € Q} =N, (z), Yz € X.
For a quasi-uniformity Q the topologies 7¢ and 7ot may be distinct.

A uniform type structure Q is called compatible with a topology T
if g =T.

We say that a (local) quasi-uniformity Q is

(1) weakly locally symmetric at x € X if for every @ € Q there is a
symmetric entourage S € Q such that S[z] C Q|x];

(2) weakly locally symmetric or point-symmetric if Q is weakly lo-
cally symmetric at x for every = € X;

(3) locally symmetric at x € X if for every ) € Q there is a
symmetric entourage S € Q such that S o S[z] C Q[z];

(4) locally symmetric if Q@ € Q is locally symmetric at = for every
reX.

Let X be a set and (Q;);e; be a non-empty family of uniform type
structures in X. For this family, in the partially ordered set of all filters
over X x X, always exist the least upper bound V;c;Q; and the greatest
lower bound A;c;Q;. They are uniform type structures of the same type
of Q; (see [1] or [3]). Moreover {N;esQ; | Qi € Q;, J finite C I} is a base
of VierQ;.

For a given bilocal quasi-uniformity @ we denote Q¥ = QV QT
and Q) = QA QT. It is known that QV is the coarsest local uniformity
containing Q and Q, is the finest local uniformity contained into O.

A local quasi-uniform space (X, Q) is called precompact if VQ) € Q
3F finite C X such that X = Q[F].

If (X,P) and (Y, Q) are local quasi-uniform spaces and F C Y~
is a non-empty family of mappings, then F is called (P, Q)-uniformly
equicontinuous if
V@ € Q, P € P such that (f(z1), f(x2)) € Q, Y(x1,20) € P, Vf € F.
Proposition 1.1. Let X and Y be nonempty sets, F C YX a nonempty
family of mappings, (P;)icr a nonempty family of local quasi-uniformities
on X and (Q;)icr a nonempty family of local quasi-uniformities on Y.
Assume that Vi € I, F is (P;, Q;)-uniformly equicontinuous. Then:

!Some authors use the term “vicinity” instead of entourage.
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a) F is (VierPi, Vier Qi)-uniformly equicontinuous.
b) F is (NierPi, Nier Qi) -uniformly equicontinuous.

1.2. Uniform type semigroups and monoids

A semigroup is a pair (X,+), where X is a non-empty set and
+: X x X — X is an associative binary operation. A monoid is a triplet
(X, +,0), where (X, +) is a semigroup which has the neutral element . If
(X, +) is a semigroup (monoid) in X x X we define a semigroup operation
componentwise.

As usual, for non-empty subsets A, B of a semigroup A + B will
stand for their algebraic or Minkowski sum {a +b|a € A, b € B}.

A monoid (semigroup) X which is also a topological space is called
a topological monoid if + is continuous with respect to the product topol-
ogy in X x X and the topology of X.

A monoid (semigroup) X equipped with a local quasi-uniformity
(bilocal quasi-uniformity, quasi-uniformity, local uniformity, uniformity)
Q is called a local quasi-uniform (bilocal quasi-uniform, quasi-uniform,
local uniform, uniformity) monoid (semigroup) if + is uniformly contin-
uous with respect to the product quasi-uniformity @ ® Q and Q.
Lemma 1.2. Let (X, +,0) be a monoid, Q be a local quasi-uniformity.

a) The following statements are equivalent:
(i) (X, Q) is a local quasi-uniform monoid.
(ii) VQ € Q 3P € Q such that P+ P C Q.
b) If (X, Q) is a bilocal quasi-uniform monoid, then (X, Q") also is.
c) If (X, Q) is a (bilocal) quasi-uniform monoid, then (X, Q) is a
(local) uniform monoid.

1.3. Uniform type conoids

A conoid is an Abelian monoid (X, 4+, 8) for which an external op-

eration
m: X xRy = X, m(z,a) =z«

is defined with the properties:

Al (r14+ ) - a=x-a+x9-a Vo, € X, VaeRy;

A2 (z-ag)-as=z-(a;-a) VreX, Va,ay €Ry;

A3 z-(+ay)=x-a1+x-ay VreX, Va,a €Ry;

A4 z-1=z VrelX.
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In the literature a conoid is also called an abstract convex cone [16], a
cone [9], a semi-vector space [15], or a semilinear space [7], [8], [17], etc.
In [1] the conoids were introduced to develop a integration scheme in
quasi-uniform spaces, these structures also have been studies in [4].

If (X, +, 6, m) is a conoid then in X x X we define a conoid structure
componentwise.

Let (X, 4,0, m) be a conoid, K be a non-empty subset of X, « €R,.
and A non-empty subset of R,. We write

K-a={r-a— r€eK} and K-A:={r-a—zr€ K, a€ A}
Let (X,+,0,m) be a conoid, K be a subset of X and b be an element of
X. K is called:

(1) Conwvez if either K is empty, or K -a+ K - (1 — a) C K, for
every a € [0,1].

(2) Balanced if either K is empty, or K - [0,1] C K.

Remark 1.3. Let (X, +,6,m) be a conoid.

(1) X itself is convex, balanced and radial.

(2) If K is a non-empty convex subset of X, then K - (o + ) =
=K-a+ K- -0,a,f€eR,.

(3) The intersection of any non-empty family of convex (balanced)
subsets of a conoid is convex (balanced).

As usual, we denote co(K) the convex hull of a subset K C X.
Definition 1.4. A conoid (X, +,60,m) equipped with a local quasi-
uniformity (bilocal quasi-uniformity, quasi-uniformity, local uniformity,
uniformity) Q is called a local quasi-uniform (bilocal quasi-uniform, quasi-
uniform, local uniform, uniform) conoid if (X, +,60, Q) is a local quasi-
uniform monoid. It is denoted by (X, +,0,m, Q).

Therefore a local quasi-uniform conoid is simply a local quasi-
uniform monoid which algebraically is a conoid.

We shall say that a local quasi-uniform conoid (X, +,6,m, Q) is

e [ocally convex if Q admits a base consisting of convex entourages;

e [ocally balanced if Q admits a base consisting of balanced en-
tourages.

Remark 1.5. Let (X, 4,60, m, Q) a bilocal quasi-uniform conoid.

(1) (X, +,0,m, Q") is a bilocal quasi-uniform conoid (see 1.2).

(2) (X, +,0,m,Qn), (X,+,0,m, Q") are local uniform conoids (see
1.2).

For every z € X, and for every a« € R, we will consider the map-
pings
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my: Ry — X and meg: X — X
a = T« r = T-a.

Denoting by £, the usual uniformity on R, we say that the external
operation of a local quasi-uniform conoid (X, +,6,m, Q) is
o UCy if m, is (€4, Q)-uniformly continuous Vz € X;
e UC, if m, is Q-uniformly continuous Vo € R
Cyo if m, is (e, 7g)-continuous at 0 Vz € X;
Cy if my, is (e, Tg)-continuous on R, Vx € X;
Cyp if m, is Tg-continuous at 0 Vo € Ry ;
C,. if m, is To-continuous on X Va € Ry;
JCp0) if mis (T ® e, 7g)-continuous at (6,0);
o JC if mis (1g ® e, Tg)-continuous everywhere.

Let (X,+,60,m) be a conoid. A local quasi-uniformity Q on X is

called homogeneous if

Q-aecQ VQ € Q, VYa>0.
Proposition 1.6. Let (X, +,0,m, Q) be a bilocal quasi-uniform conoid
such that m is Cpo. The following statements are valid:

a) my is (e, 7g)-right-continuous Vo € X.

b) If Q" is weakly locally symmetric at 0, then m, is (¢,7g7)-
continuous at 0 Vr € X.

c) If my is (e, 7g7)- continuous at 0 Vx € X, then m is UC,.

d) If QT is weakly locally symmetric at 0, then m is UC,.

e) If Q is a uniformity, then m is Cyp if and only if m is UC.
Proof. a) Fix x € X and « € Ry, @« > 0 and Q € Q. Since + is
(T ® Tg, Tg)-continuous at (z - «,0) and x - o = x - a + 0, there exists
R € Q such that Rz - a] + R[f] C Qx - a.

Since m, is (e, Tg)-continuous at 0 there exists ¢ > 0 such that
x-te R[f] Vtel0e. Then:

r-(a+t)=x-a+z-te€Rx-al+ R[] CQx-a] Vte|0e|
and the (e, 7g)-right-continuity of m, at « is proved.

b) Obvious.

¢) Fix z € X. Since (X, Q) is a bilocal quasi-uniform semigroup,
there exists R € Q such that R+ R C (. Since m, is (e, 79 V ToT)-
continuous at 0 there exists € > 0 such that

m.([0,]) C RO]NT(R)[0],

ie.,

(%) (0,x-t) € R and (z-t,0)€ R, Vt €[0,¢].
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Take a, 8 € Ry with | — 8] < € and let us show that (z -,z - () € Q.

If « < 3, then f = a+twitht:=pf—a € [0,e]. This and (x)
imply:
(x-a,z-0)=(r-a+b,z-at+z-t)=(x-a,xz-a)+(0,x-t) € R+ R C Q.
If > 3, then a =+t with t .=« — € [0,¢]. This and (*) imply:
(x-a,x-08) = (v-t+z-6,0+z-0) = (x-t,0)+(z-5,2- ) € R+ R C Q.
Consequently,

a,BeRY la—-f|<el=(r-a,z-6) €Q

and so, m, is (€1, Q)- uniformly continuous.

d) Follows from b) and c).

e) Follows from d). ¢

2. Uniform type hyperspaces

Let X be a nonempty set and Py(X) be the collection of all non-
empty subsets of X. For each relation () on X, set
Q" ={(4,B) € Po(X) x Po(X) | B C Q[A]},
Q™ ={(4,B) € Po(X) x Po(X)[ A C T(Q)[Bl},
Q" :=Q"NQ".
Remark 2.1. Let P, @ be relations on X, then:
(1) T(Q) = (T(Q))* and T(Q*) = (T(Q))".
(2) (PUQ)T =PTUQ™.
(3) (PUQ)” =P UQ".
(4) (PNQ)Fc P NQ™.
(B) (PNQ)-C P NQ™.
(6) (PNQ) C P NQ.
For a local quasi-uniformity Q on X let
e O be the filter generated by {Q|Q € Q},
e O~ be the filter generated by {Q~ | Q € Q},
e O =0tV O.
Remark 2.2. If (X, Q) is a local quasi-uniform space, then
(1) (@) =(Q")*, and (27)" =(Q")7;
(2) (@) =(Q")"
Proposition 2.3. Let (X, Q) be a quasi-uniform space. The following

statements are true:
(a) (cf. [5, 10]) QF, Q= and Q* are quasi-uniformities.

3
4
3
6
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(b) If Q is a uniformity, then QF and Q™ are conjugate quasi-
uniformities, and Q* is a uniformity on Py(X).

Proof. (a) Fix P € Q. There exists P € Q such that Pt C . Since
Q is a quasi-uniformity there is ) € Q such that Q o Q C P. Let us
show that QT o Q* C P™:

Take (A, B) € QT o Q*. There is a C such that (A,C) € Q" and
(C,B) € QT. For each b € B there is ¢ € C such that (¢,b) € @ and
there is a € A such that (a,c) € Q. It follows that (a,b) € Qo Q C P
and so, b € Pla] C P[A]. Hence B C P[A] and (A, B) € P+.

The other cases are analogous.

(b) Follows from Rem. 2.1(1). {

The quasi-uniformities Q1 and Q~ are called, respectively, the up-
per and lower Hausdorff quasi-uniformities on Py(X) associated with Q.

The quasi-uniformity Q* is called Hausdorff (or Bourbaki) quasi-
uniformity on Py(X) associated with Q.

The next proposition shows that an analogue of Prop. 2.3(a) is not
true for bilocal quasi-uniformities.

Proposition 2.4. Let (X, Q) be a bilocal quasi-uniform space. Then:

a) Q1 may not be a local quasi-uniformity on Po(X).

b) @~ may not be a local quasi-uniformity on Py(X).

c) @* may not be a local quasi-uniformity on Py(X).

Proof. Let X ={0,1,3,...+,...} and

)92

aomso{(01) oo 2) o)

First we will see that Qy = {Q, : n € N} is base of a bilocal quasi-
uniformity Q (cf. [1]).

o (D1 C @y, for each n € N, therefore Q is a filter base on X x X.

e ACQ,, for every n € N.

e Observe that:

1 1 1 1
Qn[0] = {O’n’n+1”'} and Q,, 0 Q,[0] = {O’n’n+1”'}

hence @, o Q,[0] = Q,[0],n =1,2,.... Now, let n > 1 and k > 1, we
have that:

ool = {1} we oreail ca.l}
e Notice that:

T(Qn)ZAU{G,O) zzn}u{ezil) :z'zn}, n=123...
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Observe that: —T(Q,)[0] = {0} and T(Qn) o T(Q,)[0] = {0} hence

T(Qn) o T(Qn)[0] = T(Qn)[0], n=1,2,... and for n,k € N we have:
T(Qr41)0T (Qry1) [%] {%} ence T(Qr+1)0T (Qr+1) [%] CT(Qn) E}
a) Let A = {3,6,...,31 ...}, let us see that
Qo QnlA ] ¢ Q[A], Vm € N
with
QfM}:¢5<{;%,éé,.w§g%73%?”.})U@.
We have:

{(A,{gm—l_l}) € Q,
(st {mma)) €@

Therefore {;1—} € Qi 0 Qr[A] Vm € N, but {151} € Qf [4]

b) Let A = {3,6,...,3%,...},letweusseethat
Qo QA  Qr[A], Ym e N
with
B 1111 1 1
QI[A]_{§7§7g76,---,m,3—n,...}.
Consider
1 1
{3k = <m}u{3k—2 —m}
and

We have
(A, Cnm) € @y,
(Cs Bn) € Q-
hence B,, € Q. Q[]VmENbutB ¢ Q7 [A].
¢) Let A={3,¢,...,55, ...}, then by a) and b) we have
QT[A] = (@I NQ[A] C QT [A]N Q4] =
(1111 11
—{5’5’5’6""’737@_1’3?""}

Let C,, and B,, the sets defined in b). We have also
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Y

(Cim, Bm) € @, N Qp,
hence B,, € (QF NQ;,) o (QF NQ;,)[A], Ym € N, but B, € Qi[A]. O
Taking into account Rem. 2.1 it is easy to prove the following:

{(A, Cr) € QN Q5

Proposition 2.5. Let Q and P be quasi-uniformity on X. Then:

(1) P*vO*C (PV Q)"

(2) (PAQ)*CP* A Q.

(3) If the set {PUQ|P € P, Q € Q} is a quasi-uniform base of
QO AP, then

(a) {(PUQ)T|PT € PT, QF € QT }={PTUQT|P" € P,
Q1 € 97} and both are quasi-uniform bases. Consequently,
QF NPT =(QAP)*.

(b) {(PUQ)" [P eP,Q € Q=P UQ [P~ € P,
Q- € Q7 } and both are quasi-uniform bases. Consequently,
Q- NP =(QAP)".

() {(PUQ)| P eP, QeQ}={P UQ| P eP, Q" €Q"}
are quasi-uniform bases and Q* AN P* = (Q AP)*.

(4) In particular, we have

(a) (Q)" C(QY).
(b) (Qn)" € (Q)a-
(c) When{T(Q)UQ|Q€ Q} is base of Qn then (Q*) = (Qn)*.

The following proposition shows that the local symmetry is pre-
served for singletons.

Proposition 2.6. Let (X, Q) be a weakly locally symmetric quasi-uniform
space. Then:

a) (Po(X), Q™) is weakly locally symmetric at {z}, Vo € X;

b) (Po(X), Q") is weakly locally symmetric at {x}, Vo € X;

c) (Po(X), Q) is weakly locally symmetric at {x}, Vo € X.
Proof. a) Fix Q € Q. There exists () € Q such that @~ C Q. For a
x € X there is a symmetric entourage S € Q such that S[z] C Q[z].

Let B € S™[{z}], then there is a b € B such that

(x,b) € S hence (x,b) € Q.
Therefore ({z}, B) € @~ and so B € Q~ [{z}].

b) Is analogous to a).

c¢) Follows from a) and b) because the supremum of a family of
weakly locally symmetric quasi-uniformities is weakly locally symmet-

ric. O
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Proposition 2.7. Let (X, Q) be a locally symmetric quasi-uniform
space. We have:

a) (Po(X), Q™) is locally symmetric at {x}, Vo € X.

b) (Po(X), QF) is locally symmetric at {z}, Vo € X.

c) (Po(X), Q") is locally symmetric at {z}, Vo € X.
Proof. a) Fix Q € Q~. There exists Q € Q such that @~ C Q. For a
x € X there is a symmetric entourage S € Q such that S o S[z] C Qx].

Let B € S~ oS~ [{z}], then there is a C' C X such that

({z},C) € S and (C,B) € S™.
Then for each ¢ € C there is a b € B such that
(x,c) € S and (c,b) € S.

Hence, there is b € B such that (z,b) € S o S then (z,b) € Q.

Therefore ({z}, B) € Q= and so B € Q™ [{z}].

b) Is analogous to a).

¢) Follows from a) and b) because the supremum of family of locally
symmetric quasi-uniformities is weakly locally symmetric. ¢

2.1. Hyperspaces with algebraic structures

If (X,+,60) is a monoid, then Py(X) is a monoide as well with
respect to the internal operation

+ PO(X)XPO(X) — PO(X)
(A, B) — A4+ B

and the neutral element {6}.
Theorem 2.8. Let (X, 4,0, Q) be a quasi-uniform monoid, then
(PO(X)a +, {9}, Q_), (PO(X)> -+, {9}7 Q+) and (PO(X)a +, {9}, Q*) are
quasi-uniform monoids.
Proof. Fix Q € Qt. There exists Q € Q such that Q* C Q. Since +
is uniformly continuous, there is a entourage P such that P + P C Q.
Observe that:

o if (Al,Bl) € Q+ then B; C P[A1]7

o if (AQ,BQ) € Q+ then By C P[Ag]
Then

By + By C P[Al] + P[AQ] C P[Al +A2] C Q[Bl + B2]
Hence
Pt + Pt CQT.



166 T. Abreu, E. Corbacho and V. Tarieladze

In the same way it is easy to see that + is also uniformly continuous with
respect to Q™.

Since + is uniformly continuous with respect Q@ and Q. by
Prop. 1.1 it is also uniformly continuous with respect to Q*. ¢

Let (X,+,0,m) be a conoid. The external operation m can be
extended to Py(X) in a natural manner:

m: ,PQ(X)X]R_,_ — P()(X)
(A, ) — A«

The structure (Po(X),+, {0}, m) may not be a conoid, because, in gen-
eral, property A.3 may fail.

Denote P.(X) be the collection of all convex members of Py(X).
By Rem. 1.3(2) the structure (P.(X),+, {0}, m) is a conoid. This is an
important example of conoid. Observe that, since X + X = X, this
conoid is not cancellative provided X # {6}.

Let Q be a quasi-uniformity in a conoid (X, +,60,m). We denote
QF, 9. and Q the induced quasi-uniformities on P.(X) by the quasi-
uniformities @*, O~ and Q*.

The following result is a particular case of Th. 2.8.
Corollary 2.9. Let (X, +, 0, m, Q) be a quasi-uniform conoid, then
(PC(X)>+’ {9}, m, Qc_)7 (PC(X)>+’ {9}, m, Qj) and (PC(X)a_l_a {9}, m, Q:)
are quasi-uniform conoids.
Proposition 2.10. Let (X,+,0,m) be a conoid, and Q be a quasi-
uniformity on X.

a) If Q is locally convex, then Q,, QF and QF are locally conver.

b) If Q is locally balanced, then Q. , QF and QF are locally bal-
anced.
Proof. a) Fix P € QF. There exists a convex P € Q such that PT C ‘B.
Fix (Al,Bl), (AQ,BQ) € P+, we have that B; C P[Al] and By C P[Ag]

For each by € By, by € By there is a a; € Ay, as € Ay such that

(al, bl) € P and (ag,bg) € P,
since P is a convex entourage then
(al-a—l—ag-ﬁ,bl-a—l—bg-/@) GPWIthOé—i—/@:l
Therefore by-a+by- € Play-a+ay-] = Bi-a+ By € P[A;-a+As-[].
Then
(AlaBl) 'Oé—l—(Ag,Bg) 'ﬁE P+ Wltha—}—/@: 1.

In a similar way we can prove that the lower quasi-uniformity Q7 is
locally convex too.
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Since QF = QF Vv Q- , then QF has also a base consisting of convex
sets.

b) Now we will prove that if P is a balanced entourage then P is
also balanced. Let (A4, B) € P*, then

B C P[A] = Vb€ B Ja € A such that
(a,b) e P= (a-t,b-t) € P, Vt € [0, 1],
hence B -t C P[A-t] with t € [0, 1].

In a similar way we can prove that the lower quasi-uniformity is
locally balanced too.

Since Qf = QT Vv Q_, then OF has also a base consisting of balanced
sets. ¢

In the following propositions we study the stability of the partial
continuity of the action on the hyperspace P.(X).

We begin with the maps m, : P.(X) — P.(X).

Proposition 2.11. Let (X,+,0,m) be a conoid and Q be a quasi-
uniformity for which m is C,g9. Then m is C,9y in the conoids
(Pe(X), 4, {0}, m, Q) (Pe(X),+,{0},m, Q) and (Pe(X),+,{0},m, Q7).
Proof. Fix ) € Q and a € R,. Since m,, is To- continuous at 6, there
is a P € Q such that P[f]-a C Q[f]. Let B C P~[{0}], then there is
b € B such that
0,) e P=(0,b-a) cQ={0} CT(Q)D-al.

Thus B - o € Q™ [{6}].

In the same way we can prove that m, is 75+- continuous at {6},
and using the previous results and Prop. 1.1 we can conclude that m is
also G g9y in (Pe(X),+,{0},m, Q). ¢
Proposition 2.12. Let (X,+,0,m) be a conoid and Q be a quasi-
uniformity for which m is UC,. Then m is UC, in the conoids
(Pe(X), 4, {0}, m, Q7), (Pe(X),+,{0}, m, Q) and (Po(X),+,{0}, m, Q)).
Proof. Fix Q € Q and a € R;. Since m, is Q-uniformly continuous,
there is a entourage P such that P-a C Q.

If B C P[A] then for each b € B there is a a € A such that

(a,) e P=(a-a,b-a) e@Q=b-aCQa-al,
then
b-aC UQ[a-a] =Q[A - al.
acA

Hence B-a C Q[A-«a]. Thus P*-a C Q7.
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The case (P.(X),+,{0},m,Q,) is analogous, and using the
previous results and Prop. 1.1, we can prove that m is UC, in
(Pe(X), +,{0},m, Q7). ©

Now we study the maps my4 : Ry — P.(X), A € P.(X).
Proposition 2.13. Let (X, +,60,m) be a conoid and Q a quasi-uniformity
on X. If m is Cyq then

a) m is Cypo in (Pe(X),+,{0},m, Q).

b) If (X, Q) is a locally balanced, precompact quasi-uniform space,
then:

i) mis Copo in (Pe(X),+,{0},m, QF);

ii) m is Cpo in (P(X),+, {0}, m, QF).
Proof. a) Let A be a non-empty convex subset of X, and fix Q) € Q. Let
x € A. As m, is Tg-continuous at 0, there is € > 0 such that (0,z-t) € Q,
Vt € [0,e]. Then

{0} C T(Q)[A -], Vt € [0,¢],
hence
A-teQ[{0}], Yt €0,¢].

b) i) Let A be a convex subset of X. Fix P € Q. There is a balanced
entourage () such that Q) o ) C P. Since (X, Q) is precompact, there is
a finite subset F' = {x,z2,...,2,} C X such that A C |J_, Q[z;].

Since for i < n the map m,, is continuous, there is e, €]0, 1[ such
that

(0,2;-t) € Q,Vt € 0,4,
Put € = min{e,, | 1 <i < n}.
For all € A, there is ¢ < n such that (z;,x) € Q. Since Q is
balanced,
(;-t,x-t) € Q,Vt €[0,¢] C0,1].
Since m,, is continuous, (6, x; -t) € Q,Vt € [0,¢] C [0, e,,]. Thus
Vee A, Vte[0,e], (,z-t)eQoQ C P,
and so, A-t C P[{0}] and A-t € PT[{0}].

ii) This item is a consequence of the last statements and Prop. 1.1. {
Proposition 2.14. Let (X, +,0,m, Q) be a uniform conoid.

a) m is Cypo in (Po(X),+,{0},m, Q) if and only if m is UC, in
(Pe(X), +, {0}, m, Q7).

b) m is Coo in (P(X),+,{0}, m, QF) if and only if m is UCy in
(Pe(X), +, {0}, m, Q7).

c) m is Cpo in (P(X),+,{0},m, Q%) if and only if m is UC, in
(Pe(X), +.{0},m, Q7).
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Proof. The statements follow from Prop. 1.6(e). ¢
Corollary 2.15. Let (X, +,0,m, Q) be a uniform conoid. If m is Cy,
then
a) m is UCy in (P.(X),+,{0},m, Q).
b) If (X, Q) is a locally balanced, precompact quasi-uniform space,
then:
1) mis UCy in (P.(X),+,{0},m, QF);
ii) m is UC, in (P.(X),+, {0}, m, Q).
Proof. The statements follows from Props. 2.13 and 2.14.
At last we study the joint continuity of the action
m: Po(X) X Ry — P.(X).
Proposition 2.16. Let (X,+,0,m) be a conoid and Q a quasi-uni-
formity on X for which m is JC ). Then m is JCgy,0) in the conoids
(Pe(X),+,{0},m, Q7), (Pe(X),+,{0},m, Q) and (Pe(X),+,{0},m, ).
Proof. Fix Q € Q. Since m is continuous at (6,0), there are P € Q and
€ > 0 such that
Plo] -t C Q0], Vte|[0,¢e].
Let B C P~[{6}]. There is b € B such that
0,0 e P=(0,b-t) € Q={0} CT(Q)[b-1], Vt € [0,¢][.
Thus
B-tcC Q [{0}], Vt € [0,¢][.
The others cases are analogous. ¢
Open questions 2.17. Let (X, +,m, Q) be a quasi-uniform conoid.
(1) If m is C, in (X, +,m, Q) can we say that m is C,
(Pe(X), +.m, Q2), (Pe(X), +,m, QF) or (Pe(X), +,m, Q7)?
(2) If mis JC in (X, +,m, Q) can we say that m is JC' in
(Pe(X),+.m, Q2), (Pe(X),+,m, QF) or (Pe(X), +,m, Q7)?
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