UNIFORM TYPE HYPERSPACES

Teresa Abreu
Escola Superior de Gestão, Instituto Politécnico do Cávado e do Ave. Barcelos. Portugal

Eusebio Corbacho
Departamento de Matematica Aplicada 1, E. T. S. E. de Telecomunicacion, Universidad de Vigo, Vigo, Spain

Vaja Tarieladze
Niko Muskhelishvili Institute of Computational Mathematics, Tbilisi–0193, Georgia

Received: October 2007

MSC 2000: Primary 22 A 10; secondary 46 A 99

Keywords: Local quasi-uniform conoid, quasi-uniform conoid, quasi-uniform hyperspace.

Abstract: If \((X, \mathcal{Q})\) is a quasi-uniform space, then in the hyperspace \(\mathcal{P}_0(X)\) of all non-empty subsets of \(X\) we investigate the several quasi-uniformities related with the Bourbaki–Hausdorff quasi-uniformity ([5], [10], [11], [12]). We show that if \((X, \mathcal{Q})\) is a quasi-uniform monoid (conoid), then \(\mathcal{P}_0(X)\) with respect to the corresponding algebraic operations and quasi-uniformities is again a quasi-uniform monoid (conoid). Moreover, it is demonstrated that if \((X, \mathcal{Q})\) is a quasi-uniform conoid, then in case of the hyperspace \(\mathcal{P}_c(X)\) of all non-empty convex subsets of \(X\) the scalar multiplication on positive real numbers has some nice continuity properties.

The authors are partially supported by PAI project (Junta de Andalucia, SPAIN, 2008) and by the MEC-FEDER grants MTM 2007-61284 and MTM 2007-65726 (MEC, Spain, 2007).

E-mail addresses: tabreu@ipca.pt, corbacho@uvigo.es, tar@gw.acnet.ge, visit01@uvigo.es
1. Preliminary concepts

1.1. Uniform type spaces

\(\mathbb{R} \) will denote the set of real numbers and \(\mathbb{R}_+ := [0, \infty[\). The set \(\mathbb{R} \) and its subsets (including \(\mathbb{R}_+ \) and the unit segment \([0,1] \)) will be supposed to be endowed with the usual topology \(\varepsilon \). For a topological space \((X, \tau)\) we denote by \(N_\tau(x) \) the collection of all neighborhoods of a point \(x \in X \). For the considered topologies and topological spaces no separation axioms are required in advance.

Fix a non-empty set \(X \), a subset of \(X \times X \) is called a \emph{(binary)} relation on \(X \). The relations will be denoted by \(P, Q, R \), etc. We write:

\[
\Delta_X := \{ (x,x) \in X \times X \mid x \in X \},
\]

\[
\top(P) := \{ (y,x) \in X \times X \mid (x,y) \in P \},
\]

\[
P \circ Q := \{ (x,y) \in X \times X \mid \exists z \in X \text{ such that } (x,z) \in Q, (z,y) \in P \}.
\]

The relation \(\top(P) \) is called the \emph{converse relation} of \(P \). Instead of \(\top(P) \) the notation \(P^{-1} \) also is used. A relation \(P \) is called reflexive if \(\Delta_X \subset P \) and symmetric if \(\top(P) = P \).

For a collection \(Q \) of relations on \(X \), we write \(Q^\top := \{ \top(Q) \mid Q \in \mathcal{Q} \} \) and we say that \(Q \) is \emph{symmetric} if \(Q = Q^\top \). The relation \(P \circ Q \) is called the \emph{composition} of relations \(P \) and \(Q \).

For \(x \in X \) and \(E \subset X \) we set \(P[x] := \{ y \in X \mid (x,y) \in P \} \) and \(P[E] := \bigcup_{x \in E} P[x] \).

We recall the usual terminology from the theory of quasi-uniform spaces (see, e.g.,[6], [14], [13]):

- A filter \(Q \) consisting of reflexive relations on \(X \) is a
 - Local Quasi-uniformity if \(\forall x \in X, \forall Q \in \mathcal{Q}, \exists P \in \mathcal{Q} \text{ such that } P \circ P[x] \subset Q[x] \).
 - Local Uniformity if \(Q \) is a symmetric local quasi-uniformity.
 - Quasi-Uniformity if \(\forall Q \in \mathcal{Q}, \exists P \in \mathcal{Q} \text{ such that } P \circ P \subset Q \).
 - Uniformity if \(Q \) is a symmetric quasi-uniformity.

If \(Q \) is a quasi-uniformity, the filter \(Q^\top \) is a quasi-uniformity too. However, if \(Q \) is a local quasi-uniformity, then \(Q^\top \) may not be a local quasi-uniformity. A local quasi-uniformity \(Q \) is called \emph{bilocal quasi-uniformity} if \(Q^\top \) is a local quasi-uniformity as well (cf. [2]).

The pair \((X, Q)\) is called a local quasi-uniform space (a local uniform space, a quasi-uniform space, a uniform space) when \(Q \) is a local
quasi-uniformity (a local uniformity, a quasi-uniformity, a uniformity) and the members of \(\mathcal{Q} \) are called entourages.\(^1\)

Every uniform type structure \(\mathcal{Q} \) induces in \(X \) the topology \(\tau_{\mathcal{Q}} \) for which
\[
\{ \mathcal{Q}[x] \mid \mathcal{Q} \in \mathcal{Q} \} = \mathcal{N}_{\tau_{\mathcal{Q}}}(x), \ \forall x \in X.
\]
For a quasi-uniformity \(\mathcal{Q} \) the topologies \(\tau_{\mathcal{Q}} \) and \(\tau_{\mathcal{Q}^T} \) may be distinct.

A uniform type structure \(\mathcal{Q} \) is called compatible with a topology \(\tau \) if \(\tau_{\mathcal{Q}} = \tau \).

We say that a (local) quasi-uniformity \(\mathcal{Q} \) is
1. weakly locally symmetric at \(x \in X \) if for every \(\mathcal{Q} \in \mathcal{Q} \) there is a symmetric entourage \(S \in \mathcal{Q} \) such that \(S[x] \subset \mathcal{Q}[x] \);
2. weakly locally symmetric or point-symmetric if \(\mathcal{Q} \) is weakly locally symmetric at \(x \) for every \(x \in X \);
3. locally symmetric at \(x \in X \) if for every \(\mathcal{Q} \in \mathcal{Q} \) there is a symmetric entourage \(S \in \mathcal{Q} \) such that \(S \circ S[x] \subset \mathcal{Q}[x] \);
4. locally symmetric if \(\mathcal{Q} \in \mathcal{Q} \) is locally symmetric at \(x \) for every \(x \in X \).

Let \(X \) be a set and \((\mathcal{Q}_i)_{i \in I} \) be a non-empty family of uniform type structures in \(X \). For this family, in the partially ordered set of all filters over \(X \times X \), always exist the least upper bound \(\vee_{i \in I} \mathcal{Q}_i \) and the greatest lower bound \(\wedge_{i \in I} \mathcal{Q}_i \). They are uniform type structures of the same type of \(\mathcal{Q}_i \) (see [1] or [3]). Moreover \(\{ \cap_{i \in J} \mathcal{Q}_i \mid \mathcal{Q}_i \in \mathcal{Q}_i, J \) finite \(\subset I \} \) is a base of \(\vee_{i \in I} \mathcal{Q}_i \).

For a given bilocal quasi-uniformity \(\mathcal{Q} \) we denote \(\mathcal{Q}^V = \mathcal{Q} \vee \mathcal{Q}^T \) and \(\mathcal{Q}^\wedge = \mathcal{Q} \wedge \mathcal{Q}^T \). It is known that \(\mathcal{Q}^V \) is the coarsest local uniformity containing \(\mathcal{Q} \) and \(\mathcal{Q}^\wedge \) is the finest local uniformity contained into \(\mathcal{Q} \).

A local quasi-uniform space \((X, \mathcal{Q}) \) is called precompact if \(\forall \mathcal{Q} \in \mathcal{Q} \exists F \) finite \(\subset X \) such that \(X = \mathcal{Q}[F] \).

If \((X, \mathcal{P}) \) and \((Y, \mathcal{Q}) \) are local quasi-uniform spaces and \(\mathcal{F} \subset Y^X \) is a non-empty family of mappings, then \(\mathcal{F} \) is called \((\mathcal{P}, \mathcal{Q})\)-uniformly equicontinuous if
\[
\forall \mathcal{Q} \in \mathcal{Q}, \exists \mathcal{P} \in \mathcal{P} \text{ such that } (f(x_1), f(x_2)) \in \mathcal{Q}, \ \forall (x_1, x_2) \in \mathcal{P}, \ \forall f \in \mathcal{F}.
\]

Proposition 1.1. Let \(X \) and \(Y \) be nonempty sets, \(\mathcal{F} \subset Y^X \) a nonempty family of mappings, \((\mathcal{P}_i)_{i \in I} \) a nonempty family of local quasi-uniformities on \(X \) and \((\mathcal{Q}_i)_{i \in I} \) a nonempty family of local quasi-uniformities on \(Y \). Assume that \(\forall i \in I, \mathcal{F} \) is \((\mathcal{P}_i, \mathcal{Q}_i)\)-uniformly equicontinuous. Then:

\(^1\)Some authors use the term “vicinity” instead of entourage.
1.2. Uniform type semigroups and monoids

A semigroup is a pair \((X, +)\), where \(X\) is a non-empty set and \(+ : X \times X \to X\) is an associative binary operation. A **monoid** is a triplet \((X, +, \theta)\), where \((X, +)\) is a semigroup which has the neutral element \(\theta\). If \((X, +)\) is a semigroup (monoid) in \(X \times X\) we define a semigroup operation componentwise.

As usual, for non-empty subsets \(A, B\) of a semigroup \(A + B\) will stand for their algebraic or Minkowski sum \(\{a + b | a \in A, b \in B\}\).

A monoid (semigroup) \(X\) which is also a topological space is called a **topological monoid** if \(+\) is continuous with respect to the product topology in \(X \times X\) and the topology of \(X\).

A monoid (semigroup) \(X\) equipped with a local quasi-uniformity (bilocal quasi-uniformity, quasi-uniformity, local uniformity, uniformity) \(Q\) is called a **local quasi-uniform** (bilocal quasi-uniform, quasi-uniform, local uniform, uniformity) **monoid** (semigroup) if \(+\) is uniformly continuous with respect to the product quasi-uniformity \(Q \otimes Q\) and \(Q\).

Lemma 1.2. Let \((X, +, \theta)\) be a monoid, \(Q\) be a local quasi-uniformity.

a) The following statements are equivalent:
 (i) \((X, Q)\) is a local quasi-uniform monoid.
 (ii) \(\forall Q \in Q \exists P \in Q\) such that \(P + P \subset Q\).

b) If \((X, Q)\) is a bilocal quasi-uniform monoid, then \((X, Q^\top)\) also is.

c) If \((X, Q)\) is a (bilocal) quasi-uniform monoid, then \((X, Q^\lor)\) is a (local) uniform monoid.

1.3. Uniform type conoids

A **conoid** is an Abelian monoid \((X, +, \theta)\) for which an external operation
\[
m : X \times \mathbb{R}_+ \to X, \ m(x, \alpha) = x \cdot \alpha
\]
is defined with the properties:
\[
A.1 \quad (x_1 + x_2) \cdot \alpha = x_1 \cdot \alpha + x_2 \cdot \alpha \quad \forall x_1, x_2 \in X, \ \forall \alpha \in \mathbb{R}_+;
A.2 \quad (x \cdot \alpha_1) \cdot \alpha_2 = x \cdot (\alpha_1 \cdot \alpha_2) \quad \forall x \in X, \ \forall \alpha_1, \alpha_2 \in \mathbb{R}_+;
A.3 \quad x \cdot (\alpha_1 + \alpha_2) = x \cdot \alpha_1 + x \cdot \alpha_2 \quad \forall x \in X, \ \forall \alpha_1, \alpha_2 \in \mathbb{R}_+;
A.4 \quad x \cdot 1 = x \quad \forall x \in X.
\]
In the literature a conoid is also called an abstract convex cone [16], a cone [9], a semi-vector space [15], or a semilinear space [7], [8], [17], etc. In [1] the conoids were introduced to develop a integration scheme in quasi-uniform spaces, these structures also have been studies in [4].

If \((X, +, \theta, m)\) is a conoid then in \(X \times X\) we define a conoid structure componentwise.

Let \((X, +, \theta, m)\) be a conoid, \(K\) be a non-empty subset of \(X\), \(\alpha \in \mathbb{R}_+\) and \(A\) be an element of \(\mathbb{R}_+\). We write
\[
K \cdot \alpha := \{ x \cdot \alpha — x \in K \} \quad \text{and} \quad K \cdot A := \{ x \cdot \alpha — x \in K, \alpha \in A \}.
\]
Let \((X, +, \theta, m)\) be a conoid, \(K\) be a subset of \(X\) and \(b\) be an element of \(X\). \(K\) is called:

1. Convex if either \(K\) is empty, or \(K \cdot \alpha + K \cdot (1 - \alpha) \subset K\), for every \(\alpha \in [0, 1]\).
2. Balanced if either \(K\) is empty, or \(K \cdot [0, 1] \subset K\).

Remark 1.3. Let \((X, +, \theta, m)\) be a conoid.

1. \(X\) itself is convex, balanced and radial.
2. If \(K\) is a non-empty convex subset of \(X\), then \(K \cdot (\alpha + \beta) = K \cdot \alpha + K \cdot \beta\), \(\alpha, \beta \in \mathbb{R}_+\).
3. The intersection of any non-empty family of convex (balanced) subsets of a conoid is convex (balanced).

As usual, we denote \(\text{co}(K)\) the convex hull of a subset \(K \subset X\).

Definition 1.4. A conoid \((X, +, \theta, m)\) equipped with a local quasi-uniformity (bilocal quasi-uniformity, quasi-uniformity, local uniformity, uniformity) \(Q\) is called a local quasi-uniform (bilocal quasi-uniform, quasi-uniform, local uniform, uniform) conoid if \((X, +, \theta, Q)\) is a local quasi-uniform monoid. It is denoted by \((X, +, \theta, m, Q)\).

Therefore a local quasi-uniform conoid is simply a local quasi-uniform monoid which algebraically is a conoid.

We shall say that a local quasi-uniform conoid \((X, +, \theta, m, Q)\) is

- **locally convex** if \(Q\) admits a base consisting of convex entourages;
- **locally balanced** if \(Q\) admits a base consisting of balanced entourages.

Remark 1.5. Let \((X, +, \theta, m, Q)\) a bilocal quasi-uniform conoid.

1. \((X, +, \theta, m, Q^\uparrow)\) is a bilocal quasi-uniform conoid (see 1.2).
2. \((X, +, \theta, m, Q^\wedge), (X, +, \theta, m, Q^\vee)\) are local uniform conoids (see 1.2).

For every \(x \in X\), and for every \(\alpha \in \mathbb{R}_+\) we will consider the mappings
Denoting by \mathcal{E}_+ the usual uniformity on \mathbb{R}_+, we say that the external operation of a local quasi-uniform conoid $(X, +, \theta, m, \mathcal{Q})$ is

- UC_{ℓ} if m_x is $(\mathcal{E}_+, \mathcal{Q})$-uniformly continuous $\forall x \in X$;
- UC_t if m_α is \mathcal{Q}-uniformly continuous $\forall \alpha \in \mathbb{R}_+$;
- $C_{\ell,0}$ if m_x is $(\mathbf{e}, \tau_\mathcal{Q})$-continuous at 0 $\forall x \in X$;
- C_ℓ if m_x is $(\mathbf{e}, \tau_\mathcal{Q})$-continuous on \mathbb{R}_+ $\forall x \in X$;
- $C_{t,\theta}$ if m_α is $\tau_\mathcal{Q}$-continuous at θ $\forall \alpha \in \mathbb{R}_+$;
- C_t if m_α is $\tau_\mathcal{Q}$-continuous on X $\forall \alpha \in \mathbb{R}_+$;
- $JC_{(\theta,0)}$ if m is $(\tau \otimes \mathbf{e}, \tau_\mathcal{Q})$-continuous at $(\theta, 0)$;
- JC if m is $(\tau_\mathcal{Q} \otimes \mathbf{e}, \tau_\mathcal{Q})$-continuous everywhere.

Let $(X, +, \theta, m)$ be a conoid. A local quasi-uniformity \mathcal{Q} on X is called homogeneous if $Q \cdot \alpha \in \mathcal{Q}$ $\forall Q \in \mathcal{Q}$, $\forall \alpha > 0$.

Proposition 1.6. Let $(X, +, \theta, m, \mathcal{Q})$ be a bilocal quasi-uniform conoid such that m is $C_{\ell,0}$. The following statements are valid:

a) m_x is $(\mathbf{e}, \tau_\mathcal{Q})$-right-continuous $\forall x \in X$.

b) If Q^\top is weakly locally symmetric at θ, then m_x is $(\mathbf{e}, \tau_\mathcal{Q}^\top)$-continuous at 0 $\forall x \in X$.

c) If m_x is $(\mathbf{e}, \tau_\mathcal{Q}^\top)$-continuous at 0 $\forall x \in X$, then m is UC_{ℓ}.

d) If Q^\top is weakly locally symmetric at θ, then m is UC_{ℓ}.

e) If Q is a uniformity, then m is $C_{\ell,0}$ if and only if m is UC_{ℓ}.

Proof.

a) Fix $x \in X$ and $\alpha \in \mathbb{R}_+$, $\alpha > 0$ and $Q \in \mathcal{Q}$. Since $+$ is $(\tau_\mathcal{Q} \otimes \tau_\mathcal{Q}, \tau_\mathcal{Q})$-continuous at $(x \cdot \alpha, \theta)$ and $x \cdot \alpha = x \cdot \alpha + \theta$, there exists $R \in \mathcal{Q}$ such that $R[x \cdot \alpha] + R[\theta] \subset Q[x \cdot \alpha]$.

Since m_x is $(\mathbf{e}, \tau_\mathcal{Q})$-continuous at 0 there exists $\varepsilon > 0$ such that $x \cdot t \in R[\theta]$ $\forall t \in [0, \varepsilon[$. Then:

$$x \cdot (\alpha + t) = x \cdot \alpha + x \cdot t \in R[x \cdot \alpha] + R[\theta] \subset Q[x \cdot \alpha] \quad \forall t \in [0, \varepsilon]$$

and the $(\mathbf{e}, \tau_\mathcal{Q})$-right-continuity of m_x at α is proved.

b) Obvious.

c) Fix $x \in X$. Since (X, \mathcal{Q}) is a bilocal quasi-uniform semigroup, there exists $R \in \mathcal{Q}$ such that $R + R \subset \mathcal{Q}$. Since m_x is $(\mathbf{e}, \tau_\mathcal{Q} \lor \tau_\mathcal{Q}^\top)$-continuous at 0 there exists $\varepsilon > 0$ such that $m_x([0, \varepsilon]) \subset R[\theta] \cap T(R)[\theta]$, i.e.,

\[(\theta, x \cdot t) \in R \quad \text{and} \quad (x \cdot t, \theta) \in R, \forall t \in [0, \varepsilon].\]
Take $\alpha, \beta \in \mathbb{R}_+$ with $|\alpha - \beta| < \varepsilon$ and let us show that $(x \cdot \alpha, x \cdot \beta) \in Q$.

If $\alpha < \beta$, then $\beta = \alpha + t$ with $t := \beta - \alpha \in [0, \varepsilon]$. This and (*) imply:

$$(x \cdot \alpha, x \cdot \beta) = (x \cdot \alpha + \theta, (x \cdot \alpha + x \cdot t))
= (x \cdot \alpha, x \cdot \alpha + (\theta, x \cdot t)) \in R + R \subset Q.$$

If $\alpha > \beta$, then $\alpha = \beta + t$ with $t := \alpha - \beta \in [0, \varepsilon]$. This and (*) imply:

$$(x \cdot \alpha, x \cdot \beta) = (x \cdot t + x \cdot \beta, (x \cdot \beta, x \cdot \beta))
= (x \cdot t, (x \cdot \beta, x \cdot \beta)) \in R + R \subset Q.$$

Consequently, $\alpha, \beta \in \mathbb{R}_+, |\alpha - \beta| < \varepsilon \Rightarrow (x \cdot \alpha, x \cdot \beta) \in Q$

and so, m_x is (\mathcal{E}^+, Q)- uniformly continuous.

d) Follows from b) and c).

e) Follows from d). \diamondsuit

2. Uniform type hyperspaces

Let X be a nonempty set and $\mathcal{P}_0(X)$ be the collection of all nonempty subsets of X. For each relation Q on X, set

$$Q^+ = \{(A, B) \in \mathcal{P}_0(X) \times \mathcal{P}_0(X) | B \subset Q[A]\},$$

$$Q^- = \{(A, B) \in \mathcal{P}_0(X) \times \mathcal{P}_0(X) | A \subset \top(Q)[B]\},$$

$$Q^* := Q^+ \cap Q^-.$$

Remark 2.1. Let P, Q be relations on X, then:

1. $\top(Q^-) = (\top(Q))^+$ and $\top(Q^+) = (\top(Q))^-$.
2. $(P \cup Q)^+ = P^+ \cup Q^+$.
3. $(P \cup Q)^- = P^- \cup Q^-.
4. (P \cap Q)^+ \subset P^+ \cap Q^+
5. (P \cap Q)^- \subset P^- \cap Q^-.
6. (P \cap Q)^* \subset P^* \cap Q^*.

For a local quasi-uniformity Q on X let

- Q^+ be the filter generated by $\{Q^+ | Q \in Q\},$
- Q^- be the filter generated by $\{Q^- | Q \in Q\},$
- $Q^* := Q^+ \lor Q^-.$

Remark 2.2. If (X, Q) is a local quasi-uniform space, then

1. $(Q^-)^\top = (Q^\top)^+$, and $(Q^+)^\top = (Q^\top)^-$;
2. $(Q^*)^\top = (Q^\top)^*.$

Proposition 2.3. Let (X, Q) be a quasi-uniform space. The following statements are true:

(a) (cf. [5, 10]) Q^+, Q^- and Q^* are quasi-uniformities.
(b) If \mathcal{Q} is a uniformity, then \mathcal{Q}^+ and \mathcal{Q}^- are conjugate quasi-uniformities, and \mathcal{Q}^* is a uniformity on $\mathcal{P}_0(X)$.

Proof. (a) Fix $\mathfrak{P} \in \mathcal{Q}^+$. There exists $P \in \mathcal{Q}$ such that $P^+ \subset \mathfrak{P}$. Since \mathcal{Q} is a quasi-uniformity there is $Q \in \mathcal{Q}$ such that $Q \circ Q \subset P$. Let us show that $Q^+ \circ Q^+ \subset P^+$:

Take $(A, B) \in Q^+ \circ Q^+$. There is a C such that $(A, C) \in Q^+$ and $(C, B) \in Q^+$. For each $b \in B$ there is $c \in C$ such that $(c, b) \in Q$ and there is $a \in A$ such that $(a, c) \in Q$. It follows that $(a, b) \in Q \circ Q \subset P$ and so, $b \in P[a] \subset P[A]$. Hence $B \subset P[A]$ and $(A, B) \in P^+$.

The other cases are analogous.

(b) Follows from Rem. 2.1(1). \Diamond

The quasi-uniformities \mathcal{Q}^+ and \mathcal{Q}^- are called, respectively, the *upper* and *lower Hausdorff quasi-uniformities* on $\mathcal{P}_0(X)$ associated with \mathcal{Q}.

The quasi-uniformity \mathcal{Q}^* is called *Hausdorff (or Bourbaki) quasi-uniformity* on $\mathcal{P}_0(X)$ associated with \mathcal{Q}.

The next proposition shows that an analogue of Prop. 2.3(a) is not true for bilocal quasi-uniformities.

Proposition 2.4. Let (X, \mathcal{Q}) be a bilocal quasi-uniform space. Then:

a) \mathcal{Q}^+ may not be a local quasi-uniformity on $\mathcal{P}_0(X)$.

b) \mathcal{Q}^- may not be a local quasi-uniformity on $\mathcal{P}_0(X)$.

c) \mathcal{Q}^* may not be a local quasi-uniformity on $\mathcal{P}_0(X)$.

Proof. Let $X = \{0, 1/2, 1, 1/3, 2, \ldots, 1/n, \ldots\}$ and

$$Q_n = \Delta \cup \left\{ \left(0, \frac{1}{i} \right) : i \geq n \right\} \cup \left\{ \left(\frac{1}{i+1}, \frac{1}{i} \right) : i \geq n \right\}.$$

First we will see that $Q_0 = \{Q_n : n \in \mathbb{N}\}$ is base of a bilocal quasi-uniformity \mathcal{Q} (cf. [1]).

- $Q_{n+1} \subset Q_n$, for each $n \in \mathbb{N}$, therefore \mathcal{Q} is a filter base on $X \times X$.
- $\Delta \subset Q_n$, for every $n \in \mathbb{N}$.
- Observe that:

$$Q_n[0] = \left\{ 0, \frac{1}{n}, \frac{1}{n+1}, \ldots \right\} \text{ and } Q_n \circ Q_n[0] = \left\{ 0, \frac{1}{n}, \frac{1}{n+1}, \ldots \right\}$$

hence $Q_n \circ Q_n[0] = Q_n[0]$. Now, let $n \geq 1$ and $k \geq 1$, we have that:

$$Q_k \circ Q_k \left[\frac{1}{k} \right] = \left\{ \frac{1}{k} \right\} \text{ hence } Q_k \circ Q_k \left[\frac{1}{k} \right] \subset Q_n \left[\frac{1}{k} \right].$$

- Notice that:

$$\top(Q_n) = \Delta \cup \left\{ \left(\frac{1}{i}, 0 \right) : i \geq n \right\} \cup \left\{ \left(\frac{1}{i+1}, \frac{1}{i} \right) : i \geq n \right\}, \quad n = 1, 2, 3 \ldots$$
Observe that: $-\top(Q_n)[0] = \{0\}$ and $\top(Q_n) \circ \top(Q_n)[0] = \{0\}$ hence $\top(Q_n) \circ \top(Q_n)[0] = \top(Q_n)[0]$, $n = 1, 2, \ldots$ and for $n, k \in \mathbb{N}$ we have:

\[
\top(Q_{k+1}) \circ \top(Q_{k+1}) \left[\frac{1}{k} \right] = \left[\frac{1}{k} \right]
\]

hence $\top(Q_{k+1}) \circ \top(Q_{k+1}) \left[\frac{1}{k} \right] \subset \top(Q_n) \left[\frac{1}{k} \right]$.

a) Let $A = \{\frac{1}{3}, \frac{1}{6}, \ldots, \frac{1}{3n}, \ldots\}$, let us see that

\[
Q^+_m \circ Q^+_m[A] \not\subset Q^+_1[A], \forall m \in \mathbb{N}
\]

with

\[
Q^+_1[A] = P_0 \left(\left\{ \frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \ldots, \frac{1}{3n-1}, \frac{1}{3n}, \ldots \right\} \right) \cup \emptyset.
\]

We have:

\[
\left\{ (A, \left\{ \frac{1}{3m-1} \right\}) \in Q^+_m \right. \\
\left. \left\{ \left\{ \frac{1}{3m-1} \right\}, \left\{ \frac{1}{3m-2} \right\} \right\} \in Q^+_m \right. \\
\]

Therefore $\left\{ \frac{1}{3m-2} \right\} \in Q^+_m \circ Q^+_m[A] \forall m \in \mathbb{N}$, but $\left\{ \frac{1}{3m-2} \right\} \not\in Q^+_1[A]$.

b) Let $A = \{\frac{1}{3}, \frac{1}{6}, \ldots, \frac{1}{3n}, \ldots\}$, let we us see that

\[
Q^-_m \circ Q^-_m[A] \not\subset Q^-_1[A], \forall m \in \mathbb{N}
\]

with

\[
Q^-_1[A] = \left\{ \frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{6}, \ldots, \frac{1}{3n-1}, \frac{1}{3n}, \ldots \right\}.
\]

Consider

\[
B_m = \left\{ \frac{1}{3k} : 1 \leq k < m \right\} \cup \left\{ \frac{1}{3k-2} : k \geq m \right\}
\]

and

\[
C_m = \left\{ \frac{1}{3k} : 1 \leq k < m \right\} \cup \left\{ \frac{1}{3m-1}, \frac{1}{3m+2}, \frac{1}{3m+5}, \ldots \right\}.
\]

We have

\[
\left\{ (A, C_m) \in Q^-_m \right. \\
\left. \left\{ (C_m, B_m) \in Q^-_m \right. \\
\right.
\]

hence $B_m \in Q^-_m \circ Q^-_m[A], \forall m \in \mathbb{N}$, but $B_m \not\in Q^-_1[A]$.

c) Let $A = \{\frac{1}{3}, \frac{1}{6}, \ldots, \frac{1}{3n}, \ldots\}$, then by a) and b) we have

\[
Q^+_1[A] = (Q^+_1 \cap Q^-_1)[A] \subset Q^+_1[A] \cap Q^-_1[A] =
\]

\[
= \left\{ \frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{6}, \ldots, \frac{1}{3n-1}, \frac{1}{3n}, \ldots \right\}
\]

Let C_m and B_m the sets defined in b). We have also
Proposition 2.5. Let \(T \). Abreu, E. Corbacho and V. Tarieladze \(B \) hence \(Q \land P \), then

\[
\left\{ \begin{array}{l}
(A, C_m) \in Q_m^+ \cap Q_m^- \\
(C_m, B_m) \in Q_m^+ \cap Q_m^- ,
\end{array} \right.
\]

hence \(B_m \in (Q_m^+ \cap Q_m^-) \circ (Q_m^+ \cap Q_m^-)[A], \ \forall m \in \mathbb{N}, \) but \(B_m \notin Q_1^+[A]. \) %

Taking into account Rem. 2.1 it is easy to prove the following:

Proposition 2.6. Let \(Q \) and \(P \) be quasi-uniformity on \(X \). Then:

1. \(P^* \lor Q^* \subset (P \lor Q)^* . \)
2. \((P \land Q)^* \subset P^* \land Q^* . \)
3. If the set \(\{ P \lor Q \mid P \in \mathcal{P}, \ Q \in \mathcal{Q} \} \) is a quasi-uniform base of \(Q \land \mathcal{P} \), then
 a) \(\{ (P \lor Q)^+ \mid P^+ \in \mathcal{P}^+, \ Q^+ \in \mathcal{Q}^+ \} = \{ P^+ \cup Q^+ \mid P^+ \in \mathcal{P}^+ , \ Q^+ \in \mathcal{Q}^+ \} \) and both are quasi-uniform bases. Consequently, \(Q^+ \land P^+ = (Q \land \mathcal{P})^+ . \)
 b) \(\{ (P \lor Q)^- \mid P^- \in \mathcal{P}^-, \ Q^- \in \mathcal{Q}^- \} = \{ P^- \cup Q^- \mid P^- \in \mathcal{P}^-, \ Q^- \in \mathcal{Q}^- \} \) and both are quasi-uniform bases. Consequently, \(Q^- \land P^- = (Q \land \mathcal{P})^- . \)
 c) \(\{ (P \lor Q)^* \mid P^* \in \mathcal{P}^*, \ Q^* \in \mathcal{Q}^* \} = \{ P^* \cup Q^* \mid P^* \in \mathcal{P}^*, \ Q^* \in \mathcal{Q}^* \} \) are quasi-uniform bases and \(Q^* \land P^* = (Q \land \mathcal{P})^* . \)
4. In particular, we have
 a) \((Q^*)^\lor \subset (Q^\lor)^* . \)
 b) \((Q_\land)^* \subset (Q^\land)^* . \)
 c) When \(\{ \top (Q) \lor Q \mid Q \in \mathcal{Q} \} \) is base of \(Q_\land \) then \((Q^*)_\land = (Q_\land)^* . \)

The following proposition shows that the local symmetry is preserved for singletons.

Proposition 2.6. Let \((X, \mathcal{Q}) \) be a weakly locally symmetric quasi-uniform space. Then:

a) \((\mathcal{P}_0(X), \mathcal{Q}^-) \) is weakly locally symmetric at \(\{ x \} \), \(\forall x \in X ; \)

b) \((\mathcal{P}_0(X), \mathcal{Q}^+) \) is weakly locally symmetric at \(\{ x \} \), \(\forall x \in X ; \)

c) \((\mathcal{P}_0(X), \mathcal{Q}^*) \) is weakly locally symmetric at \(\{ x \} \), \(\forall x \in X . \)

Proof. a) Fix \(\Omega \in \mathcal{Q}^- . \) There exists \(Q \in \mathcal{Q} \) such that \(Q^- \subset \Omega . \) For a \(x \in X \) there is a symmetric entourage \(S \in \mathcal{Q} \) such that \(S[x] \subset Q[x] . \)

Let \(B \in S^-[\{ x \}] , \) then there is a \(b \in B \) such that

\[
(x, b) \in S \text{ hence } (x, b) \in Q.
\]

Therefore \(\{ x \}, B \in \mathcal{Q}^- \) and so \(B \in \mathcal{Q}^-[\{ x \}] . \)

b) Is analogous to a).

c) Follows from a) and b) because the supremum of a family of weakly locally symmetric quasi-uniformities is weakly locally symmetric. %
Proposition 2.7. Let \((X, \mathcal{Q})\) be a locally symmetric quasi-uniform space. We have:

a) \((\mathcal{P}_0(X), \mathcal{Q}^-)\) is locally symmetric at \(\{x\}\), \(\forall x \in X\).

b) \((\mathcal{P}_0(X), \mathcal{Q}^+)\) is locally symmetric at \(\{x\}\), \(\forall x \in X\).

c) \((\mathcal{P}_0(X), \mathcal{Q}^*)\) is locally symmetric at \(\{x\}\), \(\forall x \in X\).

Proof. a) Fix \(Q \in \mathcal{Q}^-.\) There exists \(Q \in \mathcal{Q}^-\) such that \(Q^- \subset Q^-.\) For a \(x \in X\) there is a symmetric entourage \(S \in \mathcal{Q}^-\) such that \(S \circ S[\{x\}] \subset Q[\{x\}].\)

Let \(B \in S^- \circ S^-[\{x\}],\) then there is a \(C \subset X\) such that \((\{x\}, C) \in S^-\) and \((C, B) \in S^-\).

Then for each \(c \in C\) there is a \(b \in B\) such that \((x, c) \in S\) and \((c, b) \in S\).

Hence, there is \(b \in B\) such that \((x, b) \in S \circ S^-\) then \((x, b) \in Q^-\).

b) Is analogous to a).

c) Follows from a) and b) because the supremum of family of locally symmetric quasi-uniformities is weakly locally symmetric. \(\Box\)

2.1. Hyperspaces with algebraic structures

If \((X, +, \theta)\) is a monoid, then \(\mathcal{P}_0(X)\) is a monoid as well with respect to the internal operation

\[
+ : \mathcal{P}_0(X) \times \mathcal{P}_0(X) \to \mathcal{P}_0(X)
\]

\[
(A, B) \mapsto A + B
\]

and the neutral element \(\{\theta\}\).

Theorem 2.8. Let \((X, +, \theta, \mathcal{Q})\) be a quasi-uniform monoid, then \((\mathcal{P}_0(X), +, \{\theta\}, \mathcal{Q}^-), \quad (\mathcal{P}_0(X), +, \{\theta\}, \mathcal{Q}^+)\) and \((\mathcal{P}_0(X), +, \{\theta\}, \mathcal{Q}^*)\) are quasi-uniform monoids.

Proof. Fix \(Q \in \mathcal{Q}^+.\) There exists \(Q \in \mathcal{Q}\) such that \(Q^+ \subset \mathcal{Q}^+.\) Since + is uniformly continuous, there is a entourage \(P\) such that \(P + P \subset Q.\)

Observe that:

- if \((A_1, B_1) \in Q^+\) then \(B_1 \subset P[A_1];\)
- if \((A_2, B_2) \in Q^+\) then \(B_2 \subset P[A_2].\)

Then

\[
B_1 + B_2 \subset P[A_1] + P[A_2] \subset P[A_1 + A_2] \subset Q[B_1 + B_2].
\]

Hence

\[
P^+ + P^+ \subset Q^+.
\]
In the same way it is easy to see that $+$ is also uniformly continuous with respect to Q^-. Since $+$ is uniformly continuous with respect Q^+ and Q^-, by Prop. 1.1 it is also uniformly continuous with respect to Q^*. ♦

Let $(X, +, \theta, m)$ be a conoid. The external operation m can be extended to $\mathcal{P}_0(X)$ in a natural manner:

$$m : \mathcal{P}_0(X) \times \mathbb{R}_+ \to \mathcal{P}_0(X)$$

$$(A, \alpha) \mapsto A \cdot \alpha$$

The structure $(\mathcal{P}_0(X), +, \{\theta\}, m)$ may not be a conoid, because, in general, property A.3 may fail.

Denote $\mathcal{P}_c(X)$ be the collection of all convex members of $\mathcal{P}_0(X)$. By Rem. 1.3(2) the structure $(\mathcal{P}_c(X), +, \{\theta\}, m)$ is a conoid. This is an important example of conoid. Observe that, since $X + X = X$, this conoid is not cancellative provided $X \neq \{\theta\}$.

Let \mathcal{Q} be a quasi-uniformity in a conoid $(X, +, \theta, m)$. We denote Q^+_c, Q^-_c and Q^*_c the induced quasi-uniformities on $\mathcal{P}_c(X)$ by the quasi-uniformities Q^+, Q^- and Q^*.

The following result is a particular case of Th. 2.8.

Corollary 2.9. Let $(X, +, \theta, m, \mathcal{Q})$ be a quasi-uniform conoid, then $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}^-), (\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}^+_c)$ and $(\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}^*_c)$ are quasi-uniform conoids.

Proposition 2.10. Let $(X, +, \theta, m)$ be a conoid, and \mathcal{Q} be a quasi-uniformity on X.

a) If \mathcal{Q} is locally convex, then Q^-_c, Q^+_c and Q^*_c are locally convex.

b) If \mathcal{Q} is locally balanced, then Q^-_c, Q^+_c and Q^*_c are locally balanced.

Proof. a) Fix $\mathfrak{P} \in Q^+_c$. There exists a convex $P \in \mathcal{Q}$ such that $P^+ \subset \mathfrak{P}$. Fix $(A_1, B_1), (A_2, B_2) \in P^+$, we have that $B_1 \subseteq P[A_1]$ and $B_2 \subseteq P[A_2]$.

For each $b_1 \in B_1, b_2 \in B_2$ there is a $a_1 \in A_1, a_2 \in A_2$ such that

$$(a_1, b_1) \in P \text{ and } (a_2, b_2) \in P,$$

since P is a convex entourage then

$$(a_1 \cdot \alpha + a_2 \cdot \beta, b_1 \cdot \alpha + b_2 \cdot \beta) \in P \text{ with } \alpha + \beta = 1.$$

Therefore $b_1 \cdot \alpha + b_2 \cdot \beta \in P[a_1 \cdot \alpha + a_2 \cdot \beta] \Rightarrow B_1 \cdot \alpha + B_2 \cdot \beta \in P[A_1 \cdot \alpha + A_2 \cdot \beta]$. Then

$$(A_1, B_1) \cdot \alpha + (A_2, B_2) \cdot \beta \in P^+ \text{ with } \alpha + \beta = 1.$$

In a similar way we can prove that the lower quasi-uniformity Q^-_c, is locally convex too.
Since $Q^*_c = Q^+_c \vee Q^-_c$, then Q^*_c has also a base consisting of convex sets.

b) Now we will prove that if P is a balanced entourage then P^+ is also balanced. Let $(A,B) \in P^+$, then

\[B \subset P[A] \Rightarrow \forall b \in B \exists a \in A \text{ such that} \]

\[(a,b) \in P \Rightarrow (a \cdot t, b \cdot t) \in P, \forall t \in [0,1], \]

hence $B \cdot t \subset P[A \cdot t]$ with $t \in [0,1]$.

In a similar way we can prove that the lower quasi-uniformity is locally balanced too.

Since $Q^*_c = Q^+_c \vee Q^-_c$, then Q^*_c has also a base consisting of balanced sets. \(\diamond\)

In the following propositions we study the stability of the partial continuity of the action on the hyperspace $P_r(X)$.

We begin with the maps $m_\alpha : P_r(X) \to P_r(X)$.

Proposition 2.11. Let $(X,+,\theta,m)$ be a conoid and Q be a quasi-uniformity for which m is $C_{r,\theta}$. Then m is $C_{r,\{\theta\}}$ in the conoids $(P_r(X),+,\{\theta\},m,Q^-_c)$, $(P_r(X),+,\{\theta\},m,Q^+_c)$ and $(P_r(X),+,\{\theta\},m,Q^*_c)$.

Proof. Fix $Q \in Q$ and $\alpha \in \mathbb{R}_+$. Since m_α is τ_{Q^-} continuous at θ, there is a $P \in Q$ such that $P[\theta] \cdot \alpha \subset Q[\theta]$. Let $B \subset P^{-\{\theta\}}$, then there is $b \in B$ such that

\[(\theta,b) \in P \Rightarrow (\theta,b \cdot \alpha) \in Q \Rightarrow \{\theta\} \subset \top(Q)[b \cdot \alpha]. \]

Thus $B \cdot \alpha \in Q^{-\{\theta\}}$.

In the same way we can prove that m_α is $\tau_{Q^+_c}$-continuous at $\{\theta\}$, and using the previous results and Prop. 1.1 we can conclude that m is also $C_{r,\{\theta\}}$ in $(P_r(X),+,\{\theta\},m,Q^*_c)$. \(\diamond\)

Proposition 2.12. Let $(X,+,\theta,m)$ be a conoid and Q be a quasi-uniformity for which m is UC_r. Then m is UC_r in the conoids $(P_r(X),+,\{\theta\},m,Q^-_c)$, $(P_r(X),+,\{\theta\},m,Q^+_c)$ and $(P_r(X),+,\{\theta\},m,Q^*_c)$.

Proof. Fix $Q \in Q$ and $\alpha \in \mathbb{R}_+$. Since m_α is Q-uniformly continuous, there is an entourage P such that $P \cdot \alpha \subset Q$.

If $B \subset P[A]$ then for each $b \in B$ there is a $a \in A$ such that

\[(a,b) \in P \Rightarrow (a \cdot \alpha,b \cdot \alpha) \in Q \Rightarrow b \cdot \alpha \subset Q[a \cdot \alpha], \]

then

\[b \cdot \alpha \subset \bigcup_{a \in A} Q[a \cdot \alpha] = Q[A \cdot \alpha]. \]

Hence $B \cdot \alpha \subset Q[A \cdot \alpha]$. Thus $P^+ \cdot \alpha \subset Q^+$.
The case \((\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^-)\) is analogous, and using the previous results and Prop. 1.1, we can prove that \(m\) is \(UC_r\) in
\((\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^-)\). ◊

Now we study the maps \(m_A : \mathbb{R}_+ \to \mathcal{P}_c(X), A \in \mathcal{P}_c(X)\).

Proposition 2.13. Let \((X, +, \theta, m)\) be a conoid and \(Q\) a quasi-uniformity on \(X\). If \(m\) is \(C_{\ell,0}\) then

a) \(m\) is \(C_{\ell,0}\) in
\((\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^+)\).

b) If \((X, Q)\) is a locally balanced, precompact quasi-uniform space, then:

i) \(m\) is \(C_{\ell,0}\) in
\((\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^+)\).

ii) This item is a consequence of the last statements and Prop. 1.1.

Proof. a) Let \(A\) be a non-empty convex subset of \(X\), and fix \(Q \in \mathcal{Q}\). Let
\(x \in A\). As \(m_A\) is \(\tau_Q\)-continuous at 0, there is \(\varepsilon > 0\) such that
\((\theta, x \cdot t) \in Q\),
\(\forall t \in [0, \varepsilon]\). Then
\[\{\theta\} \subset T(Q)[A \cdot t], \forall t \in [0, \varepsilon],\]

hence
\[A \cdot t \in Q^{-\{\theta\}}, \forall t \in [0, \varepsilon].\]

b) i) Let \(A\) be a convex subset of \(X\). Fix \(P \in \mathcal{Q}\). There is a balanced entourage \(Q\) such that \(Q \circ Q \subset P\). Since \((X, Q)\) is precompact, there is a finite subset
\(F = \{x_1, x_2, \ldots, x_n\} \subset X\) such that
\(A \subset \bigcup_{i=1}^n Q[x_i]\).

Since for \(i \leq n\) the map \(m_{x_i}\) is continuous, there is \(\varepsilon_{x_i} \subset [0, 1]\) such that
\[\begin{align*}
(\theta, x_i \cdot t) & \in Q, \forall t \in [0, \varepsilon_{x_i}], \\
A \cdot t & \subset P[\{\theta\}]\end{align*}\]

Put \(\varepsilon = \min\{\varepsilon_{x_i} | 1 \leq i \leq n\}\).

For all \(x \in A\), there is \(i \leq n\) such that \((x_i, x) \in Q\). Since \(Q\) is balanced,
\[\begin{align*}
(x_i \cdot t, x \cdot t) & \in Q, \forall t \in [0, \varepsilon] \subset [0, 1], \\
\forall x \in A, (\theta, x \cdot t) & \in Q \circ Q \subset P, \forall t \in [0, \varepsilon],
\end{align*}\]

and so, \(A \cdot t \subset P[\{\theta\}]\) and \(A \cdot t \in P^+[\{\theta\}]\).

ii) This item is a consequence of the last statements and Prop. 1.1. ◊

Proposition 2.14. Let \((X, +, \theta, m, \mathcal{Q})\) be a uniform conoid.

a) \(m\) is \(C_{\ell,0}\) in
\((\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^-)\) if and only if \(m\) is \(UC_\ell\) in
\((\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^-)\).

b) \(m\) is \(C_{\ell,0}\) in
\((\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^+)\) if and only if \(m\) is \(UC_\ell\) in
\((\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^+)\).

c) \(m\) is \(C_{\ell,0}\) in
\((\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^+)\) if and only if \(m\) is \(UC_\ell\) in
\((\mathcal{P}_c(X), +, \{\theta\}, m, \mathcal{Q}_c^+)\).
Proof. The statements follow from Prop. 1.6(e). ♦

Corollary 2.15. Let \((X, +, \theta, m, Q)\) be a uniform conoid. If \(m\) is \(C_{\ell,0}\), then

a) \(m\) is \(UC_{\ell}\) in \((P_c(X), +, \{\theta\}, m, Q_c^-)\).

b) If \((X, Q)\) is a locally balanced, precompact quasi-uniform space, then:

i) \(m\) is \(UC_{\ell}\) in \((P_c(X), +, \{\theta\}, m, Q_c^+);\)

ii) \(m\) is \(UC_{\ell}\) in \((P_c(X), +, \{\theta\}, m, Q_c^*).\)

Proof. The statements follows from Props. 2.13 and 2.14. ♦

At last we study the joint continuity of the action \(m : P_c(X) \times \mathbb{R}_+ \to P_c(X)\).

Proposition 2.16. Let \((X, +, \theta, m)\) be a conoid and \(Q\) a quasi-uniformity on \(X\) for which \(m\) is \(JC(\theta, 0)\). Then \(m\) is \(JC(\{\theta\}, 0)\) in the conoids \((P_c(X), +, \{\theta\}, m, Q^{-*})\), \((P_c(X), +, \{\theta\}, m, Q_+^*)\) and \((P_c(X), +, \{\theta\}, m, Q^*).\)

Proof. Fix \(Q \in Q\). Since \(m\) is continuous at \((\theta, 0)\), there are \(P \in Q\) and \(\varepsilon > 0\) such that

\[P[\theta] \cdot t \subset Q[\theta], \quad \forall t \in [0, \varepsilon[.\]

Let \(B \subset P^{-*}[\{\theta\}].\) There is \(b \in B\) such that

\[(\theta, b) \in P \Rightarrow (\theta, b \cdot t) \in Q \Rightarrow \{\theta\} \subset T(Q)[b \cdot t], \forall t \in [0, \varepsilon[.\]

Thus

\[B \cdot t \subset Q^{-*}[\{\theta\}], \forall t \in [0, \varepsilon[.\]

The others cases are analogous. ♦

Open questions 2.17. Let \((X, +, m, Q)\) be a quasi-uniform conoid.

1) If \(m\) is \(C_r\) in \((X, +, m, Q)\) can we say that \(m\) is \(C_r\)

\[(P_c(X), +, m, Q_c^-), (P_c(X), +, m, Q_c^+)\) or \((P_c(X), +, m, Q_c^*)?\)

2) If \(m\) is \(JC\) in \((X, +, m, Q)\) can we say that \(m\) is \(JC\) in

\[(P_c(X), +, m, Q_c^-), (P_c(X), +, m, Q_c^+)\) or \((P_c(X), +, m, Q_c^*)?\)

References

