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Abstract: The rank distance is a low-complexity and robust distance between
sequences, which has been used in computational linguistics and bioinformatics.
We tackle the problem of maximising rank distances; in particular, we solve the
problem of exhibiting sequences at largest rank distance from a given binary
sequence.

1. Introduction

Initially, rank distances between sequences were used in computa-
tional linguistics, cf. [5], [6]; later their use was extended to such appli-
cation domains as is bioinformatics, cf. [8], or authorship identification,
cf. [9]. The reasons for the practical success of the rank distance are
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basically two:

i) it is quite quick to compute

ii) it is robust with respect to small modifications of the sequences

As for the first point, the computational effort is only linear in the se-
quence length n, as happens with the unsophisticated Hamming distance,
but unlike what happens with the more sophisticated edit distance, whose
computational complexity is quadratic in n, cf. [1]. Problems which are
NP-complete (i.e. computationally intractable) for the edit distance, such
as the median problem, cf. [11], are quite tractable for the rank dis-
tance, [7]. As for the second point, think e.g. of a sequence x and “by
mistake” rotate it one position to the right to get y: if, say, x is 01 re-
peated n/2 times the Hamming distance between x and y is as high as
n, and so the percentage “error” scaled to the maximal possible value for
Hamming distances is as high as 100%. Instead, while the rank distance
is still linear in n, the percentage error goes to zero with the sequence
length n, and so is practically negligible for very long sequences as are,
say, DNA strings; cf. below Prop. 1 in Sec. 2, where we show that max-
imal rank distances are quadratic in n. In this paper we cope precisely
with the problem of finding maximal values for the rank distance, con-
centrating on the binary case.

We move to formal definitions. Let A be an alphabet of size |A| ≥ 2.
The elements of An are the sequences of length n. If x is such a sequence,
na denotes the number of occurrences of letter a in x; a composition

class C = Cx comprises a sequence x with all its permutations, and it is
uniquely identified by its composition vector, i.e. by the |A| non-negative
integers na,

∑

a na = n. The combinatorics of composition classes is
extensively dealt with e.g. in [2], part 1, Ch. 2. We find it convenient to
index sequences: the first1 letter a which occurs in x will have index 1, the
second letter a will have index 2, and so on for all of its na occurrences,
and for all letters a ∈ A. For example, the ternary sequence x = ababbca
of length 7 will be indexed to a1b1a2b2b3c1a3. Once x has been indexed
the rank of the indexed letter ai is the position j which ai occupies in
x, numbering subsequent positions from 1 to n; this rank is denoted by
ord(ai|x). With the same sequence x = ababbca one has ord(a1|x) = 1,
ord(b1|x) = 2, ord(a2|x) = 3, . . . , ord(a3|x) = 7.

Definition 1. Given two sequences x and y in the same composition

1Needless to say, we “read” sequences left to right.
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class C ⊂ A
n their rank distance is defined as:

d(x, y) =
∑

a∈A

∑

1≤i≤na

∣

∣ord(ai|x) − ord(ai|y)
∣

∣.

The double sum has n terms.2 For example

d(aabc, caba) = |ord(a1|x) − ord(a1|y)|+ |ord(a2|x) − ord(a2|y)|+

+ |ord(b1|x) − ord(b1|y)|+ |ord(c1|x) − ord(c1|y)| =

= |1 − 2| + |2 − 4| + |3 − 3| + |4 − 1| = 6.

We stress that the rank distance is defined only for sequences which have
the same composition. The rank distance is a metric distance over C =
= Cx, in particular the triangle inequality d(x, z) + d(z, y) ≥ d(x, y)
holds; for a proof cf. [4]. The rank distance is an even integer; if two
sequences differ by a single twiddle (i.e. by a single exchange between
consecutive positions) their rank distance is equal to 2.

Once An is chosen, three problems arise: given x ∈ C maximise
d(x, y) over C; given C maximise d(x, y) and so find the diameter δ(C)
of C; maximise the diameters over all the composition classes C, and so
find the absolute maximum for the rank distance over An.

In Sec. 2, after pointing out that we are dealing with a “con-
strained” version of a situation already dealt with in the literature, we
solve straightaway the third problem. In Sec. 3 we solve the remaining
problems in the case when A is binary. In the concluding Sec. 4 we tackle
the general case; as for the first of the three problems, we shall have to
be contented with a conjecture.

2. Preliminaries

It will turn out that a special role is played by compact sequences,
as now defined:

Definition 2. A compact sequence x is one where patterns like ab . . . a
are prohibited (a 6= b), i.e. all the occurrences of each letter a must occupy
consecutive positions. A run of a compact sequence is a substring (i.e.
an infix) made up by all the occurrences of a given letter.

Compact sequence will be denoted in boldface like bca, meaning
that one has a run of nb letters b, followed by a run of nc letters c, and

2We agree that a sum with zero terms is equal to zero: in practice, letters a with
na = 0 are omitted from the expression at the right.
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by a run of na letters a.

In the special case of sequences without repeated letters, the rank
distance is tightly related to a measure of disarray between permutations
of the integers from 1 to n called Spearman footrule; cf. [3], which is
a standard reference on “ordinal” distances. More precisely, the rank
distance and Spearman footrule have the same value when the sequence
x is made up of those integers written in their natural order, and y is
a permutation thereof. This overlapping is enough to quickly “re-cycle”
results of [3] to the case of sequences without repeated letters, i.e. |A| = n,
na = 1 for all the n letters a ∈ A; below, in Th. 1, we mention a few
facts which we need.

In the sequel the prefix of length ⌊n
2
⌋ of a sequence x and the suffix

of the same length will be called the first half and the second half of x,
respectively; if n is odd, to “cover” the whole of x one still needs an infix
of length 1 corresponding to the central position. In Th. 1 below, the
logical value 〈P 〉 is 1 when proposition P is true, else is 0; by saying that
a substring x′ of x is positioned on the left or on the right of another
substring y′ of y, we mean that either the last position of the letters
in x′ is smaller or equal to the first position of the letters in y′, or the
first position of the letters in x′ is greater or equal to the last position of
letters in y′, respectively.

Theorem 1 ([3], 1977). Given an n-length sequence x without repeated

letters, the maximum value for the rank distance is achieved e.g. by its

mirror image x∗:

max
y

d(x, y) = d(x, x∗) = 2
⌊n

2

⌋⌈n

2

⌉

=
n2 − 〈n odd〉

2
.(1)

A sequence y which achieves maximum rank distance d(x, y) is necessarily

obtained from x∗ in the following way: permute letters inside the first

half of x∗ and permute letters inside its second half; if n is odd, one may

further permute the letter which occupies the central position with any

letter in any other position. More generally, for any two sequences x and

y, if a substring of x, x′ say, has all its correspondents in a substring y′

of y which is positioned either to the left or to the right of x′, then one

can freely permute the letters in x′ and in y′ without changing the value

of d(x, y).

As an example, take n = 4, x = abcd, x∗ = dcba; one has d(x, y) ≤
≤ d(x, x∗) = 8 = d(x, cdab). With respect to sequences where letters
appear only once, our problem is constrained: certain permutations are
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not allowed because they involve equal letters. This implies that the new
distances can never exceed the value given in (1). To better see how
the constraints work, observe that indexing as in Def. 1 does take the
“new” rank distance back to the “old” case of non-repeated letters, just
think of a larger letter alphabet whose elements are the indexed letters:
the problem, however, is that not all sequences over the larger alphabet
are allowed, because an indexed letter is constrained to have a position
in the sequence which precedes any occurrence of the same letter with a
higher index. In other words: in a way we are still dealing with sequences
without repeated letters, but now our workspace does not include all of
them.

Actually, in spite of the constraints which we have imposed, the
value in (1) is also the absolute maximum of d(x, y) over An, as we now
show. Take a composition class which is balanced, in the sense of the
following definition:

Definition 3. A composition class C is balanced when it contains com-
pact sequences x with the following property: letters a which appear in
any of the two halves of x do not appear in the other half, a ∈ A.

In practice, the composition {n1, n2, . . . , n|A|} of a balanced com-
position class3 corresponds to a YES-instance of PARTITION; this is a
famous NP-complete problem, but in our case the alphabet size |A| can
be thought of as fixed, and so its computational complexity evaporates;
cf. e.g. [10]. Now, if one takes a compact sequence x as in the definition
of balanced classes, one soon checks that d(x, x∗) is equal to the value
given in (1). Clearly, balanced classes are always to be found, whatever
n and whatever the size of A, and so one can always find in A

n two
sequences x and y with d(x, y) equal to the unconstrained maximum as
in (1):

Proposition 1.

max
C∈An

max
x,y∈C

d(x, y) =
n2 − 〈n odd〉

2
.

3With an obvious trick if n is odd: just add a dummy 1 to the composition vector.



130 L. P. Dinu and A. Sgarro

3. Binary sequences

In this section A = {0, 1}. By Ci we denote the composition class
where 1 occurs i times, 0 ≤ i ≤ n. In Ci there are two compact sequences4

denoted by 01 and 10, respectively. We begin by three lemmas. The first
shows that the contribution of 1’s to the rank distance is exactly equal
to the contribution of 0’s.

Lemma 1. d(x, y) = 2
∑

1≤j≤i

∣

∣ord(1j|x) − ord(1j|y)
∣

∣.

Proof. Let y and z differ by a single twiddle, i.e. by a single exchange
between consecutive positions.5 Then |d(x, y) − d(x, z)| = 2: to prove
this, we shall use the last statement in Th. 1. Say the twiddle involves a
couple of distinct bits at positions j and j +1 in y, and say the matching
for the corresponding indexed bits is with two bits in x at positions u <
< v. We shall check that neither v ≤ j nor j + 1 ≤ u can hold true,
which is precisely what we need to use the theorem. We rule out the
first case by an inverse argument. Assume that the bits 0 and 1 occur
in this order both in x and in y; let their ranks be r and s, which means
that the given 0 is preceded by r − 1 bits 0 both in x and in y, while the
given 1 is preceded by s − 1 bits 1. This gives v ≥ r + s thinking of x
(we did not write an equality sign, because there might be more 0’s in x
between positions u +1 and position v− 1) and j = r + s− 1 thinking of
y; however, this is incompatible with v ≤ j. All the other cases are dealt
with in the same way. Now, d(x, x) = 0 verifies the lemma and y can be
always obtained from x by successive twiddles. ♦

Since one can compute rank distances taking care only of 1’s, the
following Lemma 2 needs no proof:

Lemma 2. Let x, y ∈ Ci be two sequences. If every 1 in x is positioned

on the left of the corresponding 1 in y, then d(x, y) ≤ d(x, 01). Symmet-

4To avoid fastidious specifications, below we tacitly rule out C0 = {0} and Cn =
= {1}; clearly, Th. 2 is void on these one-element classes, while its Cor. 1 is trivially
true.

5Implicitly, we prove that the binary rank distance is exactly twice the (minimal)
number of twiddles needed to bring x to y. Already with ternary sequences this is
not the case, e.g. d(abc, cba) = 4 = 2× 2, while three twiddles are needed to bring abc

to cba. As proven in [3] (the proof soon extends to the case of repeated letters), the
rank distance is at most twice the number of twiddles needed to transform x into y;
actually, along the transformation, some twiddles contribute 2 to the rank distance,
while some others contribute 0: to see the reason why the latter fact happens, just
think of the last statement in Th. 1. In the binary case all twiddles contribute 2.
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rically, if every 1 in x is positioned on the right of the corresponding 1
in y, then d(x, y) ≤ d(x, 10).

Lemma 3. For any real numbers a0 ≤ a1 ≤ a2 ≤ . . . ≤ ak ≤ ak+1,

the function f(u) : [a0, ak+1] → R given by f(u) = |a1 − u| + |a2 − u| +
+ . . . + |ak − u| is convex-cup. More precisely, if k is even the function

is strictly decreasing up to u = ak

2

, constant on the interval
[

ak

2

, ak

2
+1

]

,

and strictly increasing starting from u = ak

2
+1

; if k is odd it is strictly

decreasing up to u = ⌊ak

2

⌋ and then strictly increasing.

Proof. Use elementary calculus: the continuous function f(u) is equal
to (2i − k)u + const on each open sub-interval ]ai, ai+1[, ai 6= ai+1, and
so its derivative there is negative, zero or positive, respectively, accord-
ing whether i is strictly smaller, equal to, or strictly greater than k/2,
respectively (the case f ′(u) = 0 occurs only when k is even and ak/2 6=
6=ak/2+1). ♦

We are ready to state our main result; in practice, one has to check
only two (compact) candidates to find a sequence at maximum rank
distance from x:

Theorem 2. Let x ∈ Ci be a binary sequence: then

d(x, y) ≤ max{d(x, 01), d(x, 10)}

for any sequence y ∈ Ci.

Proof. Given sequences x and y, one can find a parsing of x and y into
r corresponding infixes of lengths ℓ1, ℓ2, . . . , ℓr,

∑

1≤s≤r ℓs = n, such that
for each couple of corresponding infixes the conditions of Lemma 2 are
met. To see this, do as follows. Let the first position where x and y have
unequal bits be j, say one has xj = 1, yj = 0. We proceed until we find
a position h with xh = 0, yh = 1, with the latter 1 as yet unmatched (in
other words, if ι is the index of that 1 in sequence y, position h, one has
ord(1ι|y) < ord(1ι|x); cf. Def. 1). As for the first infix set ℓ1 = h− 1. As
for the second infix we proceed until we find a position h′ with xh′ = 1
as yet unmatched, yh′ = 0; we set ℓ1 + ℓ2 = h′ − 1; we proceed like this
until the parsing is completed. Clearly, corresponding infixes have the
same number of 1’s and each of them verifies Lemma 2; the overall rank
distance is additive over such infixes. We resort to an induction over the
number r of infixes. If r = 1 Lemma 2 will do. Else, use the inductive
assumption over the first r − 1 infixes and Lemma 2 on the last infix
to obtain d(x, z) ≥ d(x, y) where z has one of the four patterns 0101,
1010, 010 or 101 (a boldface digit denotes an infix of the corresponding
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bit). As for the first two patterns, just use once more Lemma 2. Due to
symmetry it will suffice to deal with the third pattern z = 010. Below
the unknown u is an integer between 1 and n − i.

For z = 010, we have:

d(x, z) = 2
[

|a1 − u| + |a2 − (u + 1)| + . . . + |ai − (u + i)|
]

(2)

where the ai are the positions occupied by the i bits 1 in x. Because of
Lemma 3, the second side of (2) has a maximum either in u = 1 or in
u = n − 1. So, d(x, y) ≤ max{d(x, 01), d(x, 10)}. ♦

As an example take the palindrome x = 001100; one has

d(x, 000011) = d(11000) = 8

and so this is the maximum for distances from x. However, there are
other sequences at the same distance from x, just use Th. 1 to obtain
by permutations inside the halves 000101, 000110, 101000 and 011000.
As for the diameter δ(C) of C, it is soon derived as a corollary, since
d(x, y) ≤ d(x, 01) (say) ≤ max{d(01, 01), d(01, 10)} = d(01, 10):

Corollary 1. δ(C) = 2n0 n1 = 2n1(n − n1).

Actually, this result might have been derived also directly, because
the contribution brought about by i bits 1 to the rank distance cannot
exceed i(n − i), and this does happen when the i bits 1 are compacted
at the beginning of one sequence and at the end of the other sequence,
respectively.

4. General sequences: a conjecture

Analogy to the binary case and computer simulations lead us to put
forward the following conjecture (unfortunately, our proof for the binary
case does not seem to generalise in a straightforward way):

Conjecture 1. Given a sequence x in the composition class C, if P ⊂ C

is the subset of compact sequences, then ∀y ∈ C, d(x, y) ≤ maxz∈P d(x, z).

Were the conjecture true, one would have to check at most |A|!
candidates to find a sequence at maximum rank distance from x (at
most, because some A-letters might be lacking in x); we stress that the
number |A|! does not depend on the sequence length n.

Now we move to the second problem, i.e. to diameters δ(C). After
recalling that for n odd we have agreed that the letter in the central
position is in neither of the two halves of length ⌊n

2
⌋, we give a definition:



Maximal rank distance for binary sequences 133

Definition 4. The pivot of a compact sequence is the run of the same
letter which occurs on both halves of the sequence.

Clearly, a composition class is balanced iff it contains a compact
sequence with a void pivot. For example, the pivots of the compact
sequences aaabbb, aaabbbb, aaacbbb are all void, and so the corresponding
composition classes are all balanced. If x is a compact sequence, we
denote by nP the length of its pivot, by nL and nR the lengths of the
prefix which precedes the pivot and the suffix which follows the pivot,
respectively; nL + nP + nR = n (L stands for Left, R for Right). We set
nm and nM equal to the minimum and the maximum out of nL and nR:

nm = min{nL, nR}, nM = max{nL, nR}; 0 ≤ nm ≤
⌊n

2

⌋

, 0 ≤ nM ≤
⌈n

2

⌉

.

As an example, let x be a compact sequence, and let x∗ be its mirror
image; then:

d(x, x∗) = nL(nR + nP ) + nR(nL + nP ) + nP |nL − nR| =(3)

= 2nLnR + nP

(

nL + nR + |nL − nR|
)

=

= 2nM(nm + nP ) = 2nM(n − nM).

The last side in (3) is an increasing function of nM for nM ≤ n/2, and
so the largest d(x, x∗) is achieved by nM as large as possible, without
breaking the constraint nM ≤ ⌈n

2
⌉. This soon gives for the diameter δ(C)

of C:

2n∗(n − n∗) ≤ δ(C) ≤
n2 − 〈n odd〉

2
, n∗ = max nM .(4)

A straightforward corollary of Conj. 1 would be that the diameter of
a composition class C is exactly equal to the lower bound in (4), precisely
as happens with binary sequences, cf. Cor. 1. Actually, the tightness of
the lower bound, whatever the size of A, can be proved also directly by
generalising the alternative proof of Cor. 1 hinted at at the end of Sec. 3.
Thus, the diameter δ(C) is achieved by compact sequences as in (3) with
largest nM as in (4), nM = n∗.

Proposition 2. δ(C) = 2n∗(n − n∗).

We sketch a proof for non-balanced classes, else there is nothing to
prove. We assume n even, but this would soon be fixed. First: take a
batch of complete letter-runs whose overall length ℓ fits into one of the
two halves, ℓ ≤ n/2. Then the maximal additive contribution that the
corresponding letters can bring to d(x, y) is obtained when those runs are
at opposite ends of x and y, and is equal to ℓ(n−ℓ); this is the maximum
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contribution ℓ letters can bring to d(x, y), even if they are all distinct
as in the “unconstrained case” of Th. 1. This is the case of the letter-
runs corresponding to nM ; we choose nM as large as possible, i.e. equal
to n∗. Second: in two compact sequences as in (3), one of the two halves,
the one corresponding to nm, brings a contribution equal to n2/4, which
is as high as in the unconstrained case. Third, thinking of the other
half, the one corresponding to nM , the n/2− nM letters of the pivot are
unfortunately in the same half of x and x∗, but this is unavoidable, as
an obvious arithmetic check soon shows. One soon checks that the best
situation is when these n/2 − nM letters are as near the centre of the
sequence as possible.

The following straightforward corollary of Prop. 2 is of independent
interest (cf. also Prop. 1). Below x is a compact sequence as in (3) with
largest nM as in (4); a and b are any two distinct letters in A:

Corollary 2. Diameters δ(C) can be re-obtained with binary sequences:

in a compact sequence x achieving the diameter, just replace the letters

corresponding to nM = n∗ by letter a and replace the letters corresponding

to nm and nP by letter b. One has d(ab,ba) = 2n∗(n − n∗).
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