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Abstract: Dynamic oligopolies are examined with discrete time scales under
the assumption that the demand at each time period is affected by earlier de-
mands and consumptions. This intertemporal demand interaction is modeled
by introducing an additional variable in the inverse demand function. First,
the dynamic model is formulated and then the asymptotic stability of the equi-
librium is examined. It is proved that the equilibrium is asymptotically stable
if the adjustment speeds are sufficiently small.

1. Introduction

In the literature of dynamic oligopolies very few researchers have
considered changes in market demands. It was always assumed that the
market demand function (or the inverse demand function) remains the
same during the entire examined time interval, and all produced items
are sold during a single time period. In real economies these assumptions
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are not realistic, since market saturation, taste and habit formation, etc.
make the demand of each time period dependent on earlier consumptions
and demands.

A very simple model of oligopolies with saturated market is intro-
duced and discussed in [1], and a more realistic two stage model is shown
in [2]. Intertemporal demand interaction has been considered by several
authors in analyzing international trade ([3, 4]). In this paper we will
extend the two-stage model of [2] in constructing an N -firm dynamic
oligopoly with intertemporal demand interaction.

After the mathematical model is formulated, the local asymptotic
behavior of the equilibrium will be examined. We will prove that under
realistic conditions the equilibrium is always locally asymptotically stable
if the adjustment speeds are sufficiently small.

2. Mathematical model

A single-product N -firm oligopoly is considered without product
differentiation and with intertemporal demand interaction. Let xk be
the output of firm k, and let Ck be its cost function. If Lk is the capac-
ity limit of firm k, then the feasible set of firm k is the closed interval
[0, Lk]. At each time period the demand function of the market depends
on the industry output and also on an accumulated effect of earlier con-
sumptions, which is assumed to be described by a real variable Q. Let
Sk =

∑

l 6=k

xl be the output of the rest of the industry from the point of

view of firm k, then its profit is given as

(1) πk = xkf(xk + Sk, Q) − Ck(xk).

As it is usual in the theory of oligopoly we make the following
assumptions. Functions f and Ck (1 ≤ k ≤ N) are twice continuously
differentiable and

(A) f ′
x < 0; (B) f ′

x + xkf
′′
xx ≤ 0; (C) f ′

x − C ′′
k < 0

for all k and feasible values of xk, Sk, and Q.

Notice first that under these conditions πk is strictly concave in xk,
and since the feasible set of xk is compact, there is a unique maximizer
of the payoff function of firm k with fixed values of Sk and Q, which is
called the best response function of this firm:
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Rk(Sk, Q) =(2)

=







0 if f(Sk, Q) − C ′
k(0) ≤ 0

Lk if Lkf
′
x(Lk + Sk, Q) + f(Lk + Sk, Q) − C ′

k(Lk) ≥ 0
x∗

k otherwise

where x∗
k is the unique solution of the monotonic equation

f(xk + Sk, Q) + xkf
′
x(xk + Sk, Q) − C ′

k(xk) = 0(3)

in the interval (0, Lk). The left-hand side of this equation is the derivative
of πk with respect to xk. The derivatives of the best response functions
can be obtained by implicit differentiation. If in the first or second case
strict inequality holds, then both R′

ks and R′
kQ are equal to zero. In the

third case, from (3) we have

f ′
x · (1 + R′

ks) + R′
ks · f

′
x + xk · f

′′
xx · (1 + R′

ks) − C ′′
k · R′

ks = 0

and

f ′
x · R

′
kQ + f ′

Q + R′
kQ · f ′

x + xkf
′′
xx · R

′
kQ + xkf

′′
xQ − C ′′

k · R′
kQ = 0

implying that

rk ≡ R′
ks = −

f ′
x + xkf

′′
xx

2f ′
x + xkf ′′

xx − C ′′
k

(4)

and

rk ≡ R′
kQ = −

f ′
Q + xkf

′′
xQ

2f ′
x + xkf ′′

xx − C ′′
k

.(5)

Assumptions (B) and (C) imply that

−1 < rk ≤ 0(6)

and if in addition we assume that

(D) f ′
Q + xkf

′′
xQ ≤ 0

for all k and feasible values of xk, Sk, and Q, then

rk ≤ 0.(7)

Assume discrete time scales, t = 0, 1, 2, . . . and assume in addition
that the firms adjust their output adaptively, then

(8) xk(t + 1) = xk(t) + αk (Rk (Sk(t), Q(t)) − xk(t)) (1 ≤ k ≤ N)

where Sk(t) =
∑

l 6=k

xl(t) and αk is a sign preserving differentiable function:

αk(∆)







< 0 if ∆ < 0
= 0 if ∆ = 0
> 0 if ∆ > 0

.
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We also assume that parameter Q changes according to the first
order law:

Q(t + 1) = H

(

N
∑

k=1

xk(t), Q(t)

)

,(9)

where H is a real valued function on

[

0,
N
∑

k=1

Lk

]

× R. We also assume

that H is continuously differentiable.

System (8)–(9) is an (N + 1)-dimensional discrete system. A con-
stant vector

(

x1, . . . , xN , Q
)

is an equilibrium of the system if and only
if for all k,

xk = Rk

(

∑

l 6=k

xl, Q

)

and Q = H

(

N
∑

k=1

xk, Q

)

.

The state of system (8)–(9) at time period t is the vector

(x1(t), . . . , xN (t), Q(t)) .

The asymptotic behavior of the equilibrium will be examined in the next
section.

3. Asymptotic stability of the equilibrium

If at any time period t the state of the system is at the equilibrium,
then the state will remain there for all future times. We say that the equi-
librium is asymptotically stable if the initial state is selected sufficiently
close to the equilibrium, then the state converges to the equilibrium as
t tends to infinity. In this section we will derive sufficient conditions for
the asymptotical stability of the equilibrium based on linearization.

Assume that
(

x1, . . . , xN , Q
)

is an equilibrium, which is not on the
boundary between the cases (2). In this case rk and rk exist for all k at
the equilibrium. The Jacobian of the system (8)–(9) at the equilibrium
is a constant matrix which has the special structure

J =















1 − a1 a1r1 . . . a1r1 a1r1

a2r2 1 − a2 . . . a2r2 a2r2

...
...

. . .
...

...
aNrN aNrN . . . 1 − aN aNrN

h h . . . h h















where ak = α′
k(0), h = H ′

x and h = H ′
Q at the equilibrium. We assume
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that for all k, 0 < ak ≤ 1 in order to guarantee that αk is sign preserving
and to avoid overshooting in the dynamic process (8). The eigenvalue
equation of J has the form

(1 − ak)uk + akrk

∑

l 6=k

ul + akrkv = λuk (1 ≤ k ≤ N)(10)

h

N
∑

k=1

uk + hv = λv.(11)

From (11) we have

hU = (λ − h)v,(12)

where U =
N
∑

k=1

uk.

Assume first that h = 0. Then the eigenvalues of J are h and the
eigenvalues of matrix











1 − a1 a1r1 . . . a1r1

a2r2 1 − a2 . . . a2r2

...
...

. . .
...

aNrN aNrN . . . 1 − aN











which is the Jacobian of discrete single-product oligopolies without in-
tertemporal demand interaction. It is known (see for example [5]) that
the eigenvalues are inside the unit circle if and only if

−1 < h < 1,(13)

ak(1 + rk) < 2(14)

for all k, and
N
∑

k=1

rkak

2 − ak(1 + rk)
> −1.(15)

Notice that under conditions ak ∈ (0, 1] and (6), relation (14) al-
ways holds.

Assume next that h 6= 0. Then from (12) we have

U =
λ − h

h
v,(16)

and from (10),

akrkU + akrkv = (λ − (1 − ak(1 + rk))) uk.

Since 1− ak(1 + rk) is inside the unit circle, we may assume that λ

differs from this value. Then
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uk =
akrkU + akrkv

λ − (1 − ak(1 + rk))
=

akrk(λ − h) + akrkh

[λ − (1 − ak(1 + rk))]h
v.(17)

By adding this equation for k = 1, 2, . . . , N and using (16) again
we have

(

N
∑

k=1

akrk(λ − h) + akrkh

λ − (1 − ak(1 + rk))
− (λ − h)

)

v = 0.

If v = 0, then from (17), uk = 0 for all k, which is impossible,
since eigenvectors must be nonzero. Therefore v 6= 0, and we have the
following equation:

N
∑

k=1

akrk(λ − h) + akrkh

λ − (1 − ak(1 + rk))
= λ − h.(18)

The above derivation implies the following result.

Theorem 3.1. The equilibrium is locally asymptotically stable, if all

roots of equation (18) are inside the unit circle.

Notice first that the left-hand side is a rational function of λ with
derivative

N
∑

k=1

−akrk(1 − ak(1 + rk)) + ak(rkh − rkh)

(λ − (1 − ak(1 + rk)))
2

.(19)

The numerator of the general term of (19) is nonpositive, if

akrk(1 + rk) ≤ rk(1 − h) + rkh.

Since the left-hand side is nonpositve, this is true for all ak, if

rk(1 − h) + rkh ≥ 0.(20)

The first term is negative under condition (13), so the value of h has
to be negative with sufficiently large absolute value. If (20) is violated,
then the value of ak must not be too small:

ak ≥
rk(1 − h) + rkh

rk(1 + rk)
.(21)

Let K be the set of the k values such that the numerator is nonzero.
Then the poles of the left-hand side are the values 1−ak(1+rk) (k ∈ K),
which are inside the unit circle. Since (19) is nonpositive, there is a root
before the smallest pole, one after the largest pole, and one between each
pair of consecutive poles. Hence we have the following result.
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Theorem 3.2. All roots of equation (18) are real and they are between

−1 and +1 if in addition to (20) or (21),
N
∑

k=1

rk(1 − h) + rkh

1 + rk

< 1 − h

and
N
∑

k=1

akrk(−1 − h) + akrkh

−2 + ak(1 + rk)
> −1 − h.

If the left-hand side of (18) is not strictly decreasing, then there
is no guarantee that the roots are real. In this case no simple stability
condition can be given in general. However if the firms are identical, then
it is still possible. By assuming symmetric firms, equation (18) becomes

Nar(λ − h) + Narh =
(

λ − h
)

(λ − 1 + a(1 + r)) ,

which can be written as

λ2 + λ
[

−1 − h + a(1 + (1 − N)r)
]

+(22)

+
[

h − ha(1 + (1 − N)r) − Narh
]

= 0.

By introducing the notation z = a(1 + (1 − N)r) > 0, the discrim-
inant becomes

D = (−1 + h + z)2 + 4Narh,

which can have negative value if h > 0 and at least one of the quantities
h, |r| and N is sufficiently large. Hence the apperance of complex roots
is a possibility. All roots are inside the unit circle if and only of

h(1 − z) − Narh < 1,

−1 − h + z + h(1 − z) − Narh + 1 > 0

and

1 + h − z + h(1 − z) − Narh + 1 > 0.

These relations can be rewritten as follows:

hz + aNrh > h − 1(23)

z(1 − h) − aNrh > 0(24)

and

(25) z(1 + h) + aNrh < 2(1 + h).

We can summarize these conditions as follows:

Theorem 3.3. The equilibrium is locally asymptotically stable if

h(1 − z) − 1 < aNrh < min
{

z(1 − h); (2 − z)(1 + h)
}

.(26)
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This condition clearly has feasible solution if

h − 1 < z < h + 3.

In this case (26) holds if the value of r is bounded from both sides.

We can have an easy interpretation of these conditions in the sat-
uration model introduced in [1]. In that case h = 1 and h = α ∈ (0, 1).

Relation (23) can be rewritten as

a · [α(1 + (1 − N)r) + Nr] > a − 1,

where the right-hand side is negative. Therefore this holds if the multi-
plier of a is nonnegative. Otherwise it can be written as

a <
α − 1

α(1 + (1 − N)r) + Nr

with positive right-hand side. So the value of a has to be sufficiently
small. Inequality (24) has the form

a · [(1 + (1 − N)r)(1 − α) − Nr] > 0

which always hold, since the multiplier of a is positive. Relation (25) can
be rewritten as

a · [(1 + (1 − N)r)(1 + α) + Nr] < 2(1 + α),

where the right-hand side is positive. So this condition is clearly satisfied
if the multiplier of a is nonpositive. Otherwise it can be rewritten as

a <
2(1 + α)

(1 + (1 − N)r)(1 + α) + Nr
.

In summary, if a is sufficiently small, then the equilibrium is locally
asymptotically stable.

In the more general case, we cannot get analytic results, however in
particular cases we can use computer methods to locate the eigenvalues
and generate output trajectories starting from a large variety of initial
states to see the asymptotic behavior of the equilibrium.

4. Conclusions

We have investigated nonlinear dynamic oligopolies with discrete
time scales and intertemporal demand interaction. The effect of the con-
sumptions at earlier time periods is modeled by a real valued parameter
which was also a variable of the inverse demand function. It was also
assumed that this additional variable followed a simple dynamic rule.
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The driving dynamic equations were first introduced, and then the
local asymptotic stability of the equilibrium was examined. General sta-
bility conditions were derived, and the special case of symmetric firm
was analysed. We have also demonstrated that the general conditions
can be easily interpreted in the case of a special saturation model, when
the stability conditions are satisfied if the adjustment speeds of the firms
are sufficiently small.
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