Mathematica Pannonica 19/1 (2008), 89–98

GENERALIZED Λ -SETS AND λ -SETS IN BITOPOLOGICAL SPACES

S. M. Al-Areefi

Department of Mathematics, Faculty of Science, P. O. Box 838, Dammam 31113, Kingdom of Saudi Arabia

Received: November 2006

MSC 2000: 54 C 08, 54 C 55

Keywords: Bitopological spaces, ij-A-sets and ij- λ -sets

Abstract: The aim of this paper is to introduce the concept of generalized Λ -sets in bitopological spaces and define the associated closure operator. Also, we shall introduce the concept of λ -sets in bitopological spaces and establish a new decomposition of pairwise continuity.

1. Introduction

Maki [4] introduced the concept of generalized Λ -sets in topological spaces and defined the associated closure operator C^{Λ} . G. A. Francisco et al. [1] introduced the concept of λ -sets in topological spaces. T. Fukutake [2] introduced the concept of generalized closed sets in bitopological spaces and a new operator (τ_i, τ_j) -cl^{*}.

The aim of this paper is to introduce the concept of generalized Λ sets and λ -sets in bitopological spaces and define the associated closure operator ij-cl^{Λ} on the space as an analogy of [2] by generalizing the results in [1, 4] to bitopological spaces.

Throughout this paper, (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or briefly, X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of X. By *i*-cl(A) we

E-mail address: dr_sara_m@hotmail.com

S. M. Al-Areefi

denote the closure of A with respect to τ_i (or σ_i) and $X \setminus A = A^C$ will denote the complement of A. Also, i, j = 1, 2 and $i \neq j$.

2. ij-g. Λ -sets

Definition 2.1. Let *B* be a subset of a bitopological space (X, τ_1, τ_2) . We define $B^{\Lambda_i} = \cap \{U : B \subset U, U \in \tau_i\}, B^{V_i} = \cup \{F : F \subset B, X \setminus F \in \tau_i\}.$

Remark 2.2. Let A, B and B_k be subsets of (X, τ_1, τ_2) for every $k \in I$ (an index set), then we have

(1) $B \subset B^{\Lambda_i}$. (2) If $A \subset B$, then $A^{\Lambda_i} \subset B^{\Lambda_i}$. (3) $(B^{\Lambda_i})^{\Lambda_i} = B^{\Lambda_i}$. (4) $\left(\bigcup_{k \in I} B_k\right)^{\Lambda_i} = \bigcup_{k \in I} B_k^{\Lambda_i}$. (5) If $B \in \tau_i$, then $B = B^{\Lambda_i}$. (6) $(X \setminus B)^{\Lambda_i} = X \setminus B^{V_i}$.

The converse of (5) above is not true, in general; however, since the intersection of a finite number of τ_i -open sets is τ_i -open, then in finite spaces the converse of (5) is true.

Remark 2.3. We have the following formulas $\left(\bigcap_{k\in I} B_k\right)^{\Lambda_i} \subset \bigcap_{k\in I} B_k^{\Lambda_i}$ and $\left(\bigcup_{k\in I} B\right)^{V_i} \supset \bigcup_{k\in I} B_k^{V_i}$. However, in general, $(B_1 \cap B_2)^{\Lambda_i} \neq B_1^{\Lambda_i} \cap B_2^{\Lambda_i}$ as the following example shows.

Example 2.4. Let $X = \{a, b, c\}, \tau_1 = \{X, \emptyset, \{a\}, \{b, c\}\}$ and $\tau_2 = \{X, \emptyset, \{b\}\}$. Let $B_1 = \{b\}$ and $B_2 = \{c\}$. Then $(B_1 \cap B_2)^{\Lambda_1} = \emptyset$ but $B_1^{\Lambda_1} \cap B_2^{\Lambda_1} = \{b, c\}$.

Definition 2.5. A subset *B* of a bitopological space (X, τ_1, τ_2) is called Λ_i -set (resp. V_i -set) if $B = B^{\Lambda_i}$ (resp. $B = B^{V_i}$). Then we have the following properties.

- (1) \emptyset and X are Λ_i -sets.
- (2) Every union of Λ_i -sets is a Λ_i -set.
- (3) Every intersection of Λ_i -sets is a Λ_i -set.
- (4) A subset B is Λ_i -set if and only if $X \setminus B$ is a V_i -set.

Thus we conclude that the family of all Λ_i -sets of X forms a topology on X finer than τ_i .

To show that not every Λ_i -set is τ_i -open and so the converse of (5) in Rem. 2.2 is not true, in general, let $X = \mathbb{R}$ be the set of all real numbers, τ_1 = the usual topology and τ_2 = the indiscrete topology on \mathbb{R} . Then $\{0\}$ is a Λ_1 -set but not τ_1 -open.

It is easy to see that in a bitopological space (X, τ_1, τ_2) , if every singleton set is a Λ_i -set, then (X, τ_1, τ_2) is pairwise T_1 in the sense of Reilly [5].

Proposition 2.6. If a bitopological space (X, τ_1, τ_2) is pairwise T_1 in the sense of Reilly [5], then every subset of X is a Λ_i -set.

Proof. Let B be a subset of X and $x \in X \setminus B$. Since X is pairwise T_1 , therefore $\{x\}$ is τ_i -closed and so $X \setminus \{x\}$ is a τ_i -open set containing B. This implies that $x \notin B^{\Lambda_i}$. Hence we have $B^{\Lambda_i} \subset B$ and therefore $B^{\Lambda_i} = B$. **Definition 2.7.** A subset B of a bitopological space (X, τ_1, τ_2) is called an ij-g.A-set if $B^{\Lambda_i} \subset F$ whenever $B \subset F$ and F is τ_i -closed. A subset B is called an ij-g.V-set of X if $X \setminus B$ is ij-g.A-set. Let ij-D^A (resp. $ij-D^V$ denote the set of all ij-g. A-sets (resp. ij-g. V-sets) of X.

Remark 2.8. In a bitopological space (X, τ_1, τ_2) , we have

- (1) Every Λ_i -set is an ij-q. Λ -set.
- (2) Every V_i -set is an ij-q.V-set.
- (3) If $B_k \in ij \cdot D^{\Lambda}$, then $\bigcup_{k \in I} B_k \in ij \cdot D^{\Lambda}$ for any index set I. (4) If $B_k \in ij \cdot D^V$, then $\bigcap_{k \in I} B_k \in ij \cdot D^V$ for any index set I.

The intersection of two ij-g. Λ -sets need not be an ij-g. Λ -set as shown by the following example.

Example 2.9. Let $X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{c, d\},$ $\{a, c, d\}, \{b, c, d\}\}$ and $\tau_2 = \{X, \emptyset, \{b\}, \{c, d\}, \{b, c, d\}\}$. Then $\{a, b, c\}$ and $\{a, b, d\}$ are 21-g. A-sets but their intersection $\{a, b\}$ is not a 21-g. Aset.

The converse of Rem. 2.8(1) is not true, in general, since in Ex. 2.9, $\{b, c\}$ and $\{a, b, d\}$ are 12-g.A-sets but not Λ_1 -sets.

Proposition 2.10. Let x be a point of a bitopological space (X, τ_1, τ_2) , then

(1) $\{x\}$ is a τ_i -open set or $X \setminus \{x\}$ is an ij-g. Λ -set.

(2) $\{x\}$ is a τ_i -open set or $\{x\}$ is an ij-g.V-set.

Proof. (i) Suppose that $\{x\}$ is not a τ_i -open set. Then the only τ_i -closed set F containing $X \setminus \{x\}$ is X. Thus $(X \setminus \{x\})^{\Lambda_i} \subset F = X$ and $X \setminus \{x\}$ is an ij-q. Λ -set.

(ii) Follows directly by (i) and the definition. \Diamond

Remark 2.11. In a bitopological space (X, τ_1, τ_2)

(i) for a subset $B \subset X$, generally, B^{Λ_1} is not equal to B^{Λ_2} , since in Ex. 2.9, $\{a, c\}^{\Lambda_1} = \{a, c, d\}$ but $\{a, c\}^{\Lambda_2} = X$;

(ii) generally, $12 \cdot D^{\Lambda}$ is not equal to $21 \cdot D^{\Lambda}$, since in Ex. 2.9, $12 \cdot D^{\Lambda} =$ = the set of all subsets of X while $21 \cdot D^{\Lambda} = \{\{b\}, \{c\}, \{d\}, \{c, d\}, \{b, c\}, \{b, d\}, \{b, c, d\}, \{a, b, c\}, \{a, b, d\}, X, \emptyset\}.$

Proposition 2.12. In a bitopological space (X, τ_1, τ_2) , if $\tau_i \subset \tau_j$, then $B^{\Lambda_j} \subset B^{\Lambda_i}$ and $ij-D^{\Lambda} \subset ji-D^{\Lambda}$, for any subset B of X.

Proposition 2.13. In a bitopological space (X, τ_1, τ_2) , every subset A is an ij-g. Λ -set if and only if every τ_j -closed set is a Λ_i -set.

Proof. Let $A \subset X$ and let F be a τ_j -closed set such that $A \subset F$. Then $A^{\Lambda_i} \subset F^{\Lambda_i} = F$ (since F is a Λ_i -set). This shows that A is an ij-g. Λ -set. Conversely, let F be a τ_j -closed set, then F is an ij-g. Λ -set and so $F^{\Lambda_i} \subset F$, but $F \subset F^{\Lambda_i}$, then $F = F^{\Lambda_i}$. This shows that F is a Λ_i -set. \Diamond **Proposition 2.14.** In a bitopological space (X, τ_1, τ_2) , if B is an ij-g. Λ -set, then $B^{\Lambda_i} \setminus B$ contains no nonempty τ_i -open set.

Proof. Let U be a τ_j -open subset of $B^{\Lambda_i} \setminus B$, then $B \subset U^C$. Now, since U^C is τ_j -closed and B is an ij-g. Λ -set, then $B^{\Lambda_i} \subset U^c$, i.e., $U \subset (B^{\Lambda_i})^C$. Thus $U \subset B^{\Lambda_i} \cap (B^{\Lambda_i})^C = \emptyset$.

Proposition 2.15. In a bitopological space (X, τ_1, τ_2) , if A is an ij-j. A-set and $A \subset B \subset A^{\Lambda_i}$, then B is an ij-g. Λ -set.

3. ij- Λ -closure operator

By using the family of all ij-g. Λ -sets of a bitopological space (X, τ_1, τ_2) , we define the closure operator ij-cl^{Λ} and the associated topology $\tau^{\Lambda}(i, j)$ on X.

Definition 3.1. For a subset *B* of a bitopological space (X, τ_1, τ_2) , we define ij-cl^{Λ}(*B*) = \cap { $U: B \subset U, U \in ij$ - D^{Λ} } and ij-int^{Λ}(*B*) = \cup { $F: F \subset C B, F \in ij$ - D^V }.

Proposition 3.2. Let A, B and B_k be subsets of a bitopological space (X, τ_1, τ_2) for $k \in I$, then

(1)
$$B \subset ij \text{-cl}^{\Lambda}(B), ij \text{-cl}^{\Lambda}(X \setminus B) = X \setminus ij \text{-int}^{\Lambda}(B) \text{ and } ij \text{-cl}^{\Lambda}(\emptyset) = \emptyset.$$

(2)
$$\bigcup_{k \in I} ij \operatorname{-cl}^{\Lambda}(B_k) = ij \operatorname{-cl}^{\Lambda}\left(\bigcup_{k \in I} B_k\right)$$

- (3) ij-cl^{Λ}(ij-cl^{Λ}(B)) = ij-cl^{Λ}(B).
- (4) If $A \subset B$, then ij-cl^{Λ}(A) $\subset ij$ -cl^{Λ}(B).

92

Proof. The proofs of (1) and (4) are obvious.

(2) Suppose that there exists a point $x \notin ij$ -cl^{Λ} $\left(\bigcup_{k \in T} B_k\right)$. Then there exists a subset $U \in ij \cdot D^{\Lambda}$ such that $\bigcup B_k \subset U$ and $x \notin u$. Thus for each $k \in I$, we have $x \notin \bigcup_{k \in I} ij$ -cl^{Λ}(B_k). Conversely, let $x \notin \bigcup_{k \in I} ij$ - $\mathrm{cl}^{\Lambda}(B_k)$. Then there exist subsets $U_k \in ij \cdot D^{\Lambda}$, for all $k \in I$, such that $x \notin U_k$ and $B_k \subset U_k$. Let $U = \bigcup_{k \in I} U_k$, then $x \notin U, U \in ij - D^{\Lambda}$ and $\bigcup_{k \in I} B_k \subset U.$ This shows that $x \notin ij\text{-cl}^{\Lambda} \left(\bigcup_{k \in I} B_k\right).$

(3) It is clear by the definition that $ij\text{-cl}^{\Lambda}(B) \subset ij\text{-cl}^{\Lambda}(ij\text{-cl}^{\Lambda}(B))$. Now let $x \notin ij$ -cl^{Λ}(B), then there exists $U \in ij$ -D^{Λ} such that $x \notin U$ and $B \subset U$. Since $U \in ij \cdot D^{\Lambda}$, then $ij \cdot cl^{\Lambda}(B) \subset U$, thus $x \notin ij \cdot cl^{\Lambda}(ij \cdot d)$ $\mathrm{cl}^{\Lambda}(B)$). This shows that ij- $\mathrm{cl}^{\Lambda}(ij$ - $\mathrm{cl}^{\Lambda}(B)) \subset ij$ - $\mathrm{cl}^{\Lambda}(B)$.

By Prop. 3.2, we have the following theorem.

Theorem 3.3. The operator ij-cl^{Λ} defined above is a Kuratowski operator on X.

From Th. 3.3, ij-cl^{Λ} defines a new topology on X.

Definition 3.4. Let $\tau^{\Lambda}(i, j)$ be the topology on X generated by ij-cl^{Λ} in the usual manner, i.e., $\tau^{\Lambda}(i, j) = \{E \subset X : ij \text{-cl}^{\Lambda}(X \setminus E) = X \setminus E\}$. We define a family $ij - F^{\Lambda}$ by $ij - F^{\Lambda} = \{B : ij - cl^{\Lambda}(B) = B\}$. Then $ij - F^{\Lambda} = \{B : ij - cl^{\Lambda}(B) = B\}$. $= \{B : X \setminus B \in \tau^{\Lambda}(i,j)\}. \text{ And let } \tau^{V}(i,j) = \{B \subset X : ij\text{-int}^{V}(B) = B\}.$ **Proposition 3.5.** Let F_i^{Λ} (resp. τ_i^V) be the family of all Λ_i -sets (resp. V_i -sets) of (X, τ_1, τ_2) . Then

(1) $\tau^{\Lambda}(i,j) = \tau^{V}(i,j).$

(2) $\tau_i \subset F_i^{\Lambda} \subset ij \cdot D^{\Lambda} \subset ij \cdot F^{\Lambda}$. (3) $F_i \subset \tau_i^V \subset ij \cdot D^V \subset \tau^{\Lambda}(i,j)$, where F_i is the family of all τ_i -closed subsets of X.

Proof. (1) It is clear by Rem. 2.2 (6) and Def. 3.4. To prove (2), let $B \in \tau_i$, then, by Rem. 2.2 (5), B is a Λ_i -set, i.e., $B \in F_i^{\Lambda}$. By Rem. 2.8 (1), $B \in ij \cdot D^{\Lambda}$ for each $B \in F_i^{\Lambda}$. For each $B \in ij \cdot D^{\Lambda}$, we have $B = ij \cdot d^{\Lambda}$. $cl^{\Lambda}(B)$. This implies that $B \in ij - F^{\Lambda}$. The proof of (3) follows directly by Rem. 2.2 (5), (6), Rem. 2.8 (2) and Def. 3.4. \Diamond

Remark 3.6. Containment relations in Prop. 3.5 may be proper, since in Ex. 2.9, $\{a, b\} \in 21$ - F^{Λ} but $\{a, b\} \notin 21$ - D^{Λ} and $\{a, b, c\} \in 21$ - D^{Λ} but $\{a, b, c\}$ is not a Λ_2 -set.

Remark 3.7. Let (X, τ_1, τ_2) be as in Ex.2.9. Then $21-cl^{\Lambda}(\{a, d\}) =$

S. M. Al-Areefi

= {a, b, d} and (τ_2, τ_1) -cl^{*}({a, d}) = {a, d}, where (τ_i, τ_j) -cl^{*} is the closure operator due to T. Fukutake [2]. In this space 21- $D^{\Lambda} = \{X, \emptyset, \{b\}, \{c\}, \{d\}, \{c, d\}, \{b, c\}, \{b, d\}, \{b, c, d\}, \{a, b, c\}, \{a, b, d\} \}$ and $\tau^{\Lambda}(2, 1) = \{X, \emptyset, \{a\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$. On the other hand, $D(\tau_2, \tau_1)$ = the power of X and $\tau^*(\tau_2, \tau_1)$ = the indiscrete topology on X, where $D(\tau_i, \tau_j)$ is the family of all (τ_i, τ_j) -g-closed sets (A is called (τ_i, τ_j) -g-closed if and only if j-cl(A) \subset G whenever A \subset \subset G and G is τ_i -open [2]) and $\tau^*(\tau_i, \tau_j)$ is the topology on X generated by (τ_i, τ_j) -cl^{*} operator [2]. These examples show that (τ_i, τ_j) -cl^{*} operator does not coincide with ij-cl[^] operator and $\tau^*(\tau_i, \tau_j)$ and $\tau^{\Lambda}(i, j)$ are different topologies on X, in general.

Proposition 3.8. In a bitopological space (X, τ_1, τ_2) , if U is an ij-g- Λ -set, then ij-cl^{Λ}(U) = U.

Corollary 3.9. In a bitopological space (X, τ_1, τ_2) , if E is an ij-g.A-set, then E is $\tau^{\Lambda}(i, j)$ -closed.

Proposition 3.10. For a bitopological space (X, τ_1, τ_2) , we have

(1) If $F_i = \tau^{\Lambda}(i, j)$, then $\tau_i = ij \cdot D^{\Lambda}$, where F_i is the family of all τ_i -closed sets of X.

(2) If every ij-g. Λ -set is τ_i -open, then $\tau_i^V = \tau^{\Lambda}(i, j)$.

(3) If every ij-g. Λ -closed set is τ_i -closed, then $\tau_i = \tau^{\Lambda}(i, j)$.

Proof. (1) By Prop. 3.5 (2), $\tau_i \subset ij \cdot D^{\Lambda}$. Now, let *B* be any $ij \cdot g \cdot \Lambda$ -set, i.e., $B \in ij \cdot D^{\Lambda}$. Then by Prop. 3.5 (2), $B \in ij \cdot F^{\Lambda}$. This implies that $X \setminus B \in \tau^{\Lambda}(i, j)$. From this assumption, we have $X \setminus B \in F_i$ and so $B \in \tau_i$. This shows that $ij \cdot D^{\Lambda} \subset \tau_i$.

(2) By Prop. 3.5 (3), $\tau_i^V \subset \tau^{\Lambda}(i,j)$. Now, let $B \in \tau^{\Lambda}(i,j)$, then by the definition $X \setminus B = ij\text{-cl}^{\Lambda}(X \setminus B) = \cap\{U : X \setminus B \subset U, U \in ij\text{-}D^{\Lambda}\} =$ $= \cap\{U : X \setminus B \subset U, U \in \tau_i\} = (X \setminus B)^{\Lambda_i}$. Hence $B = B^{V_i}$ and $B \in \tau_i^V$. This shows that $\tau^{\Lambda}(i,j) \subset \tau_i^V$.

(3) The proof is similar to that of (2). \diamond

Proposition 3.11. In a bitopological space (X, τ_1, τ_2) , if $\tau_j = \tau^{\Lambda}(i, j)$, then every singleton $\{x\}$ of X is $\tau^{\Lambda}(i, j)$ -open.

Proof. Suppose that $\{x\}$ is not τ_j -open, then by Prop. 2.10 (1), $X \setminus \{x\}$ is ij-g.A-set. Thus $\{x\} \in \tau^{\Lambda}(i, j)$. Now if $\{x\} \in \tau_j = \tau^{\Lambda}(i, j)$, then $\{x\}$ is $\tau^{\Lambda}(i, j)$ -open. \Diamond

4. $ij-\lambda$ -sets

Definition 4.1. A subset A of a bitopological space (X, τ_1, τ_2) is called $ij-\lambda$ -closed if $A = L \cap F$, where L is a Λ_i -set and F is a τ_j -closed set. The complement of an $ij-\lambda$ -closed set will be called $ij-\lambda$ -open.

Remark 4.2. The concepts of ij-g. Λ -sets and ij- λ -closed sets are independent, since let $X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ and $\tau_2 = \{X, \emptyset, \{b\}, \{c, d\}, \{b, c, d\}\}$. Then $\{a, b, d\}$ and $\{b, c\}$ are both 21-g. Λ -sets but not 21- λ -closed. Also, $\{a, c, d\}$ and $\{a\}$ are both 21- λ -closed sets but not 21-g. Λ -sets.

Proposition 4.3. For a subset A of a bitopological space (X, τ_1, τ_2) , the following are equivalent:

- (1) A is $ij \lambda$ -closed.
- (2) $A = L \cap j$ -cl(A), where L is a Λ_i -set.
- (3) $A = A^{\Lambda_i} \cap j$ -cl(A).

Proposition 4.4. In a bitopological space (X, τ_1, τ_2) ,

(1) Every ij-locally closed set is $ij-\lambda$ -closed (A is ij-locally closed if $A = U \cap F$, where U is a τ_i -open set and F is τ_j -closed [3]).

(2) Every Λ_i -set is ij- λ -closed.

Generally, ij-locally closet sets and Λ_i -sets are independent concepts, and so an ij-closed set need not be an ij-locally closed or a Λ_i -set. However, in finite spaces, the concept of ij-locally closed sets coincides with the concept of ij- λ -closed sets.

Definition 4.5 ([2]). A subset A of a bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) -g-closed if $A \subset G \in \tau_1$ implies τ_2 -cl $A \subset G$.

Proposition 4.6. A subset A of a bitopological space (X, τ_1, τ_2) is (τ_i, τ_j) -g-closed if and only if j-cl $(A) \subset A^{\Lambda_i}$.

Theorem 4.7. For a subset A of a bitopological space (X, τ_1, τ_2) , the following are equivalent:

(1) A is τ_i -closed.

(2) A is (τ_i, τ_j) -g-closed and ij-locally closed.

(3) A is (τ_i, τ_j) -g-closed and ij- λ -closed.

Proof. (1) \Rightarrow (2): Every τ_j -closed set is both (τ_i, τ_j) -g-closed and ij-locally closed.

 $(2) \Rightarrow (3)$: That is Prop. 4.4 (1).

 $(3) \Rightarrow (1)$: A is (τ_i, τ_j) -g-closed, so by Prop. 4.6, j-cl $(A) \subset A^{\Lambda_i}$. A is ij- λ -closed so by Prop. 4.3, $A = A^{\Lambda_i} \cap j$ -cl(A). Hence A = j-cl(A) and A is j-closed. \diamond

Theorem 4.8. A bitopological space (X, τ_1, τ_2) is pairwise T_0 if and only if every singleton subset of X is $ij-\lambda$ -closed.

Proof. Let $x \in X$. Since X is pairwise T_0 , therefore, for every point $y \neq x$, there exists a set A_y containing x and disjoint from $\{y\}$ such that A_y is either τ_i -open or τ_j -closed. Let L be the intersection of all τ_i -open sets A_y and let F be the intersection of all τ_j -closed sets A_y . Clearly, L is a Λ_i -set and F is τ_j -closed. Note that $\{x\} = L \cap F$. This shows that $\{x\}$ is ij- λ -closed. Conversely, let x and y be two different points of X. Then $\{x\} = L \cap F$, where L is a Λ_i -set and F is τ_j -closed. If F does not contain y, then $X \setminus F$ is a τ_j -open set containing y and we are done. If F contains y, then $y \notin L$ and thus for some τ_i -open set U containing x, we have $y \notin U$. Hence X is pairwise T_0 .

Definition 4.9 ([2]). A bitopological space (X, τ_1, τ_2) is called ij- $T_{1/2}$ if any (τ_i, τ_j) -g-closed set is τ_j -closed. (X, τ_1, τ_2) is called strongly pairwise $T_{1/2}$ if it is 12- $T_{1/2}$ and 21- $T_{1/2}$.

Theorem 4.10 ([2]). A bitopological space (X, τ_1, τ_2) is ij- $T_{1/2}$ if and only if $\{x\}$ is τ_j -open or τ_j -closed for each $x \in X$.

Theorem 4.11. A bitopological space (X, τ_1, τ_2) is ij- $T_{1/2}$ if and only if every subset of X is ij- λ -closed.

Proof. Let $A \subset X$, A_1 be the set of all τ_j -open singleton of $X \setminus A$ and let $A_2 = X \setminus (A \cup A_1)$. Set $F = \bigcap_{x \in A_1} X \setminus \{x\}$ and $L = \bigcap_{x \in A_2} X \setminus \{x\}$. Note that F is τ_j -closed and L is a Λ_i -set. Moreover, $A = F \cap L$. Thus A is $ij - \lambda$ -closed. Conversely, let $x \in X$. If $\{x\}$ is not τ_j -open, then $A = X \setminus \{x\}$ is not τ_j -closed. Since A is $ij - \lambda$ -closed, therefore A is a Λ_i -set, i.e., $A = A^{\Lambda_i}$. Since X is the only superset of A, therefore A is τ_i -open and $\{x\}$ is τ_i -closed. \Diamond

Definition 4.12. A bitopological space (X, τ_1, τ_2) is called pairwise $T_{1/4}$ if for every finite subset F of X and every $y \notin F$, there exists a set A_y containing F and disjoint from $\{y\}$ such that A_y is either τ_i -open or τ_i -closed.

Theorem 4.13. A bitopological space (X, τ_1, τ_2) is pairwise $T_{1/4}$ if and only if every finite subset of X is $ij-\lambda$ -closed.

Proof. Let $F \subset X$ be a finite subset. Since X is pairwise $T_{1/4}$, for every point $y \notin F$, there exists a set A_y containing F and disjoint from $\{y\}$ such that A_y is τ_i -open or τ_j -closed. Let L be the intersection of all τ_i -open sets A_y and C be the intersection of all τ_j -closed sets A_y . Clearly, L is a Λ_i -set and C is τ_j -closed. Note that $F = L \cap C$. This shows that

96

F is $ij-\lambda$ -closed. Conversely, let F be a finite subset of X and $y \in X \setminus F$. Then $F = L \cap C$ where L is a Λ_i -set and C is τ_j -closed. If C does not contain y, then $X \setminus C$ is a τ_j -open set containing y. If C contains y, then $y \notin L$ and thus for some τ_i -open set U containing F, we have $y \notin U$. Hence X is pairwise $T_{1/4}$.

A finite union of ij- λ -closed sets need not be ij- λ -closed. However, since any intersection of Λ_i -sets is a Λ_i -set, we have the following:

Proposition 4.14. In a bitopological space (X, τ_1, τ_2) , an arbitrary intersection of ij- λ -closed sets is ij- λ -closed.

Now, one can ask the following question: for which spaces, the set of all $ij-\lambda$ -open subsets is a topology? Call those spaces $ij-\lambda$ -spaces.

Clearly, a bitopological space (X, τ_1, τ_2) is an ij- λ -space if and only if the union of two ij- λ -closed sets is ij- λ -closed. From Th. 4.11, we have that every ij- $T_{1/2}$ space is an ij- λ -space. Also, a pairwise T_0 ij- λ -space is pairwise $T_{1/4}$, since from Th. 4.8, every singleton is ij- λ -closed and in an ij- λ -space, finite union of ij- λ -closed sets is ij- λ -closed.

Definition 4.15. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called

(1) ij-g.continuous if the inverse image of each σ_j -closed set in Y is (τ_i, τ_j) -g.closed in X. f is called pairwise g-continuous if it is 12-g-continuous and 21-g-continuous.

(2) ij-co-LC-continuous if $f^{-1}(V)$ is ij-locally closed in X for every σ_j -closed V of Y. f is called pairwise co-LC-continuous if it is 12-co-LC-continuous and 21-co-LC-continuous.

(3) $ij-\lambda$ -continuous if $f^{-1}(V)$ is $ij-\lambda$ -closed in X for every σ_j -closed V of Y. f is called pairwise λ -continuous if it is $12-\lambda$ -continuous and $21-\lambda$ -continuous.

Every ij-co-LC-continuous function is ij- λ -continuous but the converse mayx not be true, in general, as can be shown by the following example:

Example 4.16. Let \mathbb{R} be the set of all real numbers, τ_1 = the usual topology on \mathbb{R} , τ_2 = the indiscrete topology on \mathbb{R} , σ_1 = the cofinite topology on \mathbb{R} and $\sigma_2 = {\mathbb{R}, \emptyset, \mathbb{R} \setminus {0}}$. The identity function $f : (\mathbb{R}, \tau_1, \tau_2) \rightarrow (\mathbb{R}, \sigma_2, \sigma_2)$ is 12- λ -continuous but not 12-co-LC-continuous. Since ${0}$ is the only proper σ_2 -closed set and $f^{-1}({0}) = {0}$ is 12- λ -closed because ${0} = {0} \cap \mathbb{R}$, ${0}$ is a Λ_1 -set and \mathbb{R} is τ_2 -closed. But ${0}$ is not 12-locally closed. Indeed, ${0}$ is neither τ_1 -open nor τ_2 -closed.

To see that ij-g-continuity and ij- λ -continuity are concepts totally independent of each other, consider the following two examples:

Example 4.17. Let $X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $\tau_2 = \{X, \emptyset, \{a, b\}, \{c, d\}\}$. Let $Y = X, \sigma_1 = \{Y, \emptyset, \{b\}, \{d\}, \{b, d\}\}$ and $\sigma_2 = \{Y, \emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c, d\}\}$. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is 21-g-continuous but not 21- λ -continuous. **Example 4.18.** Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be as in Ex. 4.17 and let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be defined by f(a) = f(b) = a, f(c) = f(d) = a. Then f is 21- λ -continuous but not 21-g-continuous.

Finally, we present a new decomposition of j-continuity and pairwise continuity.

Theorem 4.19. For a function $f : X \to Y$, the following are equivalent: (1) f is j-continuous.

- (2) f is ij-q-continuous and ij-co-LC-continuous.
- (3) f is ij-q-continuous and ij- λ -continuous.

Corollary 4.20. For a function $f : X \to Y$, the following are equivalent:

- (1) f is pairwise continuous.
- (2) f is pairwise g-continuous and pairwise co-LC-continuous.
- (3) f is pairwise g-continuous and pairwise λ -continuous.

References

- FRANCISCO, G. A., DONTCHEV, J. and GANSTER, M.: On λ-sets and the dual generalized continuity, Q & A in General Topology 15 (1997), 3–13.
- [2] FUKUTAKE, T.: On generalized closed sets in bitopological space, Bull. Fukuoka Univ. of Educ. 35 (III) (1985), 19–28.
- [3] JELIC, M.: On pairwise LC-continuous mappings, Indian J. Pure Appl. Math. 22 (1) (1991), 55–59.
- [4] MAKI, H.: Generalized Λ-sets and the associated closure operator, The Special Issue in Commemoration of Prof. Kazusada IKEDA's Retirement, 1 Oct. (1986), 139–146.
- [5] REILLY, I. L.: On bitopological separation properties, Nanta Math. 2 (1972), 14–25.