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Abstract: The object of the present paper is to reveal the condition of exis-
tence of almost pseudo symmetric, almost pseudo Ricci symmetric and almost
pseudo φ-symmetric Sasakian manifolds.

1. Introduction

Let Mn be a contact Riemannian manifold with a contact form
η, the associated vector field ξ, (1, 1)-tensor field φ and the associated
Riemannian metric g. Here the dimension n is odd. Then the manifold
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Mn is a Sasakian manifold if ξ is a Killing vector field and φ satisfies the
condition

(∇Xφ)(Y ) = g(X, Y )ξ − η(Y )X,

where ∇ denotes the Riemannian connection of g ([1], [6], [7]).
In a recent paper [5], the first and second authors introduced a type

of non-flat Riemannian manifold (Mn, g) (n ≥ 2) whose curvature tensor
R̃ of type (0, 4) satisfies the condition

(∇XR̃)(U, Y, Z, W ) = [A(X) + B(X)]R̃(U, Y, Z, W )+(1.1)

+A(U)R̃(X, Y, Z, W )+A(Y )R̃(U, X, Z, W )+

+A(Z)R̃(U, Y, X, W )+A(W )R̃(U, Y, Z, X),

where A, B are two non-zero 1-forms called the associated 1-forms de-
fined by

(1.2) g(X, P ) = A(X), g(X, Q) = B(X),

for all vector fields X, Y, Z, U, W on Mn, ∇ denotes the operator of
covariant differentiation with respect to the metric g, R̃ is defined by
R̃(X, Y, Z, W ) = g(R(X, Y )Z, W ), where R is the curvature tensor of
type (1, 3). Such a manifold was called an almost pseudo symmetric

manifold and was denoted by A(PS)n. If in particular A = B in (1.1)
then the manifold reduces to a pseudo symmetric manifold which is de-
noted by (PS)n, introduced by M. C. Chaki [2]. In this connection we
can mention the notion of weakly symmetric manifold introduced by
Tamassy and Binh [9]. A non-flat Riemannian manifold of dimension
> 2 is said to be weakly symmetric [9] if there exist 1-forms A, B, C, D

and E, not simultaneously zero, such that the curvature tensor satisfies
the condition

(∇U R̃)(X, Y, Z, W ) = A(U)R̃(X, Y, Z, W ) + B(X)R̃(U, Y, Z, W )

+ C(Y )R̃(X, U, Z, W ) + D(Z)R̃(X, Y, U, W )

+ E(W )R̃(X, Y, Z, U).

It may be mentioned that almost pseudo symmetric manifold is not a
particular case of a weakly symmetric manifolds. In a previous paper [5],
it was proved the existence of an A(PS)n by the following:
Theorem. Let (R4, g) be a Riemannian manifold endowed with the met-

ric given by

ds2 = gijdxidxj = (x4)
4

3

[

(dx1)2 + (dx2)2 + (dx3)2
]

+ (dx4)2,

(i, j = 1, 2, 3, 4). Then (R4, g) is an A(PS)4 with non-zero and non-

constant scalar curvature.
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In a recent paper, M. C. Chaki and T. Kawaguchi [4] introduced
another type of non-flat Riemannian manifold (Mn, g) (n ≥ 3) whose
Ricci tensor S of type (0, 2) satisfies the condition
(1.3)
(∇XS)(Y, Z) = [A(X) + B(X)]S(Y, Z) + A(Y )S(X, Z) + A(Z)S(X, Y ),

where A, B and ∇ have the meaning already stated. Such a manifold was
called an almost pseudo Ricci symmetric manifold and an n-dimensional
manifold of this kind was denoted by A(PRS)n. If in particular A = B

then the manifold reduces to a pseudo Ricci symmetric manifold intro-
duced by M. C. Chaki [3]. It can be mentioned that almost pseudo Ricci
symmetric manifold is not a particular case of weakly Ricci symmetric
manifold, introduced by Tamassy and Binh [10].

A Sasakian structure M(φ, ξ, η, g) is called almost pseudo φ-symmet-

ric if there exist 1-forms A and B and a vector field P such that

(1.4) φ2((∇WR)(X, Y )Z) = [A(W ) + B(W )]R(X, Y )Z+

+ A(X)R(W, Y )Z + A(Y )R(X, W )Z+

+ A(Z)R(X, Y )W + g(R(X, Y )Z, W )P,

where A and B is defined by (1.2). In this case if A = B = 0 and P = 0,
almost pseudo φ-symmetry reduces to the φ-symmetry of T. Takahashi
which is expressed by

φ2((∇WR)(X, Y )Z) = 0,

though he requires this relation for vector fields W , X, Y , Z orthogonal
to ξ only (see [13] p. 308 or, [11]). It is to be noted that almost pseudo
φ-symmetry is not a particular case of weakly φ-symmetry of Tamassy
and Binh [10].

In the present paper, the question whether an almost pseudo sym-
metric or, almost pseudo Ricci symmetric or, almost pseudo φ-symmetric
manifold may be a Sasakian manifold is answered.

2. Preliminaries

Let R, S and r denote, respectively, the curvature tensor of type
(1, 3), the Ricci tensor of type (0,2) and the scalar curvature in a Sasakian
manifold (Mn, g). It is known that in a Sasakian manifold Mn, the
Riemannian metric may be chosen so that the following relations hold
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([1], [7], [8]).

φ(ξ) = 0,(2.1)

η(ξ) = 1,(2.2)

φ2X = −X + η(X)ξ,(2.3)

g(φX, φY ) = g(X, Y ) − η(X)η(Y ),(2.4)

g(ξ, X) = η(X),(2.5)

∇Xξ = −φX,(2.6)

η(φX) = 0,(2.7)

S(X, ξ) = (n − 1)η(X),(2.8)

g(R(ξ, X)Y, ξ) = g(X, Y ) − η(X)η(Y ),(2.9)

R(ξ, X)ξ = −X + η(X)ξ,(2.10)

g(R(X, Y )ξ, Z) = g(X, Z)η(Y ) − g(Y, Z)η(X)(2.11)

and

(∇Xφ)(Y ) = R(ξ, X)Y(2.12)

for any vector fields X, Y, Z on Mn.
The above results will be used in the next sections.

3. Sasakian A(PS)n (n ≥ 3)

In this section, we suppose that an n-dimensional A(PS)n (n ≥ 3)
is a Sasakian manifold.

Putting U = W = {ei}, where {ei} (i = 1, 2, . . . , n), is an or-
thonormal basis of the tangent space at each point of the manifold, and
taking summation over i, 1 ≤ i ≤ n, we get from (1.1),

(∇XS)(Y, Z) = [A(X) + B(X)]S(Y, Z) + A(Y )S(X, Z)+(3.1)

+ A(Z)S(X, Y ) + A(R(X, Y )Z) + A(R(X, Z)Y ).

Now taking account of the fact that (∇Xg)(Z, ξ) = 0 and using
(2.5), (2.6) and (2.8) we get

(3.2) (∇XS)(ξ, Z) = −(n − 1)g(Z, φX) + S(φX, Z).

In (3.1), we put Y = ξ and in view of (3.2) and (2.8) we obtain

− (n − 1)g(Z, φX)+S(φX, Z) =(3.3)

= (n − 1)[A(X) + B(X)]η(Z) + A(ξ)S(X, Z)+

+ (n − 1)A(Z)η(X) + A(R(X, ξ)Z) + A(R(X, Z)ξ).
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Putting Z = ξ in (3.3) and taking into account (2.2), (2.6), (2.8) and
(2.10) we have

(3.4) (n + 1)A(X) + (n − 1)B(X) + 2(n − 2)A(ξ)η(X) = 0.

Now since n ≥ 3, if we put X = ξ in (3.4), we get

(3.5) 3A(ξ) + B(ξ) = 0.

This implies that the vanishing of the 1-form 3A + B over the Killing
vector field ξ of (Mn, g) is necessary in order that Mn(φ, ξ, η, g) be a
Sasakian manifold. We now show that 3A + B = 0 is also necessary for
this.

Putting X = ξ in (3.3) and taking into account (2.1), (2.2), (2.8)
and (2.10) we have

(3.6) (2n − 1)A(ξ)η(Z) + (n − 2)A(Z) + (n − 1)B(ξ)η(Z) = 0.

Replacing Z by X in (3.6) and then adding (3.4), in view of (3.5), we get

(3.7) (n − 2)A(ξ)η(X) + (2n − 1)A(X) + (n − 1)B(X) = 0.

Finally, replacing Z by X in (3.6) and then adding (3.7), in view of (3.5),
we obtain

(3.8) (n − 1)[3A(X) + B(X)] = 0,

for all X. This gives the following theorem:

Theorem 3.1. There exists no almost pseudo symmetric Sasakian man-

ifold if 3A + B is not everywhere zero.

Thus our condition still allows the existence of a Sasakian structure
on an almost pseudo symmetric manifold. If in particular B = A, then
the manifold reduces to a (PS)n and from (3.8) we get A = 0 which
is inadmissible by the definition of (PS)n. Hence we have the following
corollary:

Corollary 3.1. There exists no proper pseudo symmetric Sasakian man-

ifold.

The above corollary has been proved by M. Tarafdar [12] in another
way.

4. Sasakian A(PRS)n (n ≥ 3)

In this section, we suppose that an n-dimensional A(PRS)n (n ≥ 3)
is a Sasakian manifold. Now putting Z = ξ in (1.3) we get

(4.1) (∇XS)(Y, ξ) = [A(X)+B(X)]S(Y, ξ)+A(Y )S(X, ξ)+A(ξ)S(X, Y ).
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In view of (3.2) [in deriving (3.2) we only used that the manifold is
Sasakian and we did not exploit almost pseudo symmetry], and (2.8) the
equation (4.1) can be written as

−(n−1)g(Y, φX)+S(φX, Y ) = (n−1)[A(X) + B(X)]η(Y )(4.2)

+ (n−1)A(Y )η(X)+A(ξ)S(X, Y ).

Putting X = ξ in (4.2) and using (2.1) we get

(4.3) (n − 1)[2A(ξ)η(Y ) + A(Y ) + B(ξ)η(Y )] = 0.

Next putting Y = ξ in (4.3) we get

(n − 1)[3A(ξ) + B(ξ)] = 0.

Now since n ≥ 3 we get from above

(4.4) 3A(ξ) + B(ξ) = 0.

Again putting Y = ξ in (4.2) and then using (2.5), (2.6) and (2.8) we get

(4.5) (n − 1)[A(X) + B(X) + 2A(ξ)η(X)] = 0.

Now replacing Y by X in (4.3) and then adding with (4.5), in view of
(4.4), we get

(4.6) (n − 1)[A(ξ)η(X) + 2A(X) + B(X)] = 0.

Again replacing Y by X in (4.3) and then adding with (4.6), in view of
(4.4), we obtain

(4.7) (n − 1)[3A(X) + B(X)] = 0,

for all X. Thus we have:
Theorem 4.1. There exists no almost pseudo Ricci symmetric Sasakian

manifold if 3A + B is not everywhere zero.

If in particular B = A, then the manifold reduces to a (PRS)n

and from (4.7) we get A = 0 which is inadmissible by the definition of
(PRS)n. Hence we have the following corollary:

Corollary 4.1. There exists no proper pseudo Ricci symmetric Sasakian

manifold.

The above corollary has already been proved by M. Tarafdar [12]
in another way.

5. Almost pseudo φ-symmetric Sasakian manifolds

From (1.4) and (2.3) we have

− (∇XR)(W, Y )Z + η((∇XR)(W, Y )Z)ξ =(5.1)

= [A(X) + B(X)]R(W, Y )Z + A(W )R(X, Y )Z+
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+ A(Y )R(W, X)Z + A(Z)R(W, Y )X + g(R(W, Y )Z, X)P.

Putting on both sides of (5.1) W = ei, multiplying by ei and performing a
summation over i, by using (2.5) and the symmetry and skew-symmetry
properties of R we get

− (∇XS)(Y, Z) +

n
∑

i=1

η((∇XR)(ei, Y )Z)η(ei) =(5.2)

= [A(X) + B(X)]S(Y, Z) + A(R(X, Y )Z)+

+ A(Y )S(X, Z) + A(Z)S(Y, X) + A(R(X, Z)Y ).

If we put Z = ξ in (5.2), then the second term of (5.2) vanishes (see the
proof of Th. 6 in [10]). Replacing Z by ξ in (5.2) and using (2.8) and
(3.2) and taking account of the second term is zero we have

(n − 1)g(Y, φX) − S(φX, Y ) = (n − 1)[A(X) + B(X)]η(Y )
(5.3)

+ A(R(X, Y )ξ) + (n − 1)A(Y )η(X)+

+ A(ξ)S(Y, X) + A(R(X, ξ)Y ).

Now putting Y = ξ in (5.3) and using (2.2), (2.8) and (2.10) we get (3.4)
from which we obtain (3.5) and finally (3.8). Thus we have the following
theorem:

Theorem 5.1. There exists no almost pseudo φ-symmetric Sasakian

manifold if 3A + B is not everywhere zero.
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