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O. Röschel

Institute for Geometry, Graz University of Technology, Kopernikus-
gasse 24, Graz, Austria

Received : March 2008

MSC 2000 : 51 N 25, 51 M 09, 51 M 15, 51 N 15

Keywords : Hyperbolic plane, entirely circular curves of order 4, quadratic sys-
tems of conics, envelopes of special quadratic systems of conics.

Abstract: A curve in the hyperbolic plane H2 (we use the Cayley–Klein-
model) is called entirely (completely) circular if it possesses an isotropic asymp-
tote at each intersection point with the absolute. Any planar curve of fourth
order can be generated as an envelope of a quadratic set of conics. If one of
these tangent conics coincides with the absolute conic A we refer to it as an
absolute quadratic systems of conics. Most of the envelopes of these absolute
quadratic systems of conics turn out to be entirely circular. In this paper we
characterize absolute quadratic systems of conics which have entirely circular
envelopes C4. On such an envelope C4 a triple point may occur. We unambigu-
ously decide which absolute quadratic systems of conics of H2 with absolute
conic A deliver triple points of the envelope C4 on A. In a second part of the
paper we will give a complete list of types of non-degenerate entirely circular
curves of order 4 generated as envelopes of absolute quadratic systems of conics
in the hyperbolic plane H2.
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1. Introduction

We will use the projective Cayley–Klein-model of the hyperbolic
plane H2. Points of the projective plane PG(2, R) are described by pro-
jective coordinates ~x = (x0 : x1 : x2)

T 6= (0 : 0 : 0)T . The absolute conic
A of H2 is represented by

(1) A · · ·~x⊤A ~x = x2

0
− x2

1
− x2

2
= 0.

Points ~x of the absolute conic A are called absolute points (see [2], [3]
and [10]).

An absolute point ~y on a C1-curve C of the hyperbolic plane H2 is
called a circular point of C if the curve has a common tangent with the
absolute conic A in this point. The tangent in this point is an isotropic
asymptote of C. According to [15] an algebraic curve C is called entirely
(completely) circular, if there exists at least one common tangent to C
and A at any intersection point C ∩ A (there it possesses an isotropic
asymptote).1

For the isotropic plane entirely circular curves of order 4 have
been studied and classified by D. Palman in [8], [9] and H. Sachs [11],
p. 179, [12].

We are interested in special algebraic curves of order 4. For them
circularity is an algebraic property. Therefore our considerations will
include complex points as well.2

Absolute points of an entirely circular quartic curve C4 of H2 are
points with a common tangent with the absolute conic A. They can be
simple, double or triple points of the curve. Depending on the types
of the multiple joint points and their combinations on the curve there
are seven types of such entirely circular curves of degree 4: (2+2+2+2),
(3+3+2), (4+2+2), (4+4), (5+3), (6+2) and (8), where the numbers
give the multiplicity of the single intersections of C4 and the absolute
conic A.

1If this point is a singular point on C only one branch of C has to be tangent to
the absolute A.

2For these considerations we make use of the complex extension of PG(2, R).
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2. Planar curves of order 4 as envelopes of quadratic

systems of conics

According to G. Kohn [5] every quartic curve C4 can be generated3

as the envelope of quadratic systems of conics (see G. Kohn and G.
Loria [7]).

Let A0, A1, A2 be linearly independent symmetric 3 × 3-matrices
and weights ω0, ω1, ω2 ∈ R − {0}. They define a quadratic system Q
which can be parametrized via

(2) Q(λ) := ω0A0 + 2λω1A1 + λ2ω2A2 λ ∈ R ∪ {∞}.

Any conic Q(λ)4 of this system is represented by an equation

(3) ~x⊤Q(λ)~x = 0.

The set Q(λ) of these conics is called quadratic system of conics with the
basic matrices (conics) A0, A1, A2 and weights ω0, ω1, ω2.

Remark. Proportional symmetric matrices Ai and ωiAi (ωi ∈R−{0})
define the same conic in PG(2, R), but the corresponding quadratic sys-
tems of conics defined by (2) are different.

Some calculation delivers the following equation of the envelope C4

of this quadratic system of conics

(4) F(~x) ≡ ω0ω2(~x
⊤A0~x)(~x⊤A2~x) − ω2

1
(~x⊤A1~x)2 = 0.

In general it is an algebraic curve of order 4. In special cases it can be de-
generate. In the following we will concentrate on the non-degenerate cases.

Remarks. 1. The envelope C4 (4) in algebraic sense intersects any conic
of the system Q(λ) = ω0A0 +2λω1A1 +λ2ω2A2 in four points – each with
intersection multiplicity ≥ 2. These points are the intersections of the
two conics Q(λ) and d

dλ
Q(λ).

2. This fact holds particularly for the basic conics A0 and A2. The
common points of A0 (A2) and C4 are exactly the intersections of A0

(or A2) and A1. According to (4) any point of C4 ∩ A0 has twice the
multiplicity of its multiplicity on the intersection A0 ∩ A1.

3. Reparametrisation of the quadratic system facilitates the use of
any conic of the system Q(λ) as basic conic A0.

3In general in 63 different ways!
4We will denote the conics by the same letters as the matrices.
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Another way to determine points on the curve C4 (4) is the following:
The space of conics of the real projective plane PG(2, R) can be in-

terpreted as a 5-dimensional projective space PG(5, R). Then a quadratic
system of conics defines a conic Q in PG(5, R). It contains the points
A0 and A2 with tangents T0 := [A0, A1] and T2 := [A1, A2]. The other
tangents of this conic Q intersect the tangents T0 and T2 in projectively
linked pairs of points. This projectivity will be denoted by π.

In PG(2, R) this gives a parametrisation of π interlinking pairs of
the conics of the two pencils T0(λ) and T2(λ) by the same parameter
λ ∈ R ∪∞:

(5) T0(λ) := λω0A0 + ω1A1 and T2(λ) := λω1A1 + ω2A2 λ ∈ R ∪∞.

The points of intersection T0(λ)∩T2(λ) define the envelope C4, too.5

Remark. We can define this projectivity by 3 pairs of conics of the two
pencils: It maps the conics A0 to A1, A1 to A2 and (ω0A0 + ω1A1) and
to (ω1A1 + ω2A2).

3. Absolute quadratic systems of conics in the hy-

perbolic plane

An interesting class of Euclidean entirely circular curves are bicir-
cular curves of order 4 in the Euclidean plane. They can be generated as
envelopes of quadratic systems of circles (see G. Loria [6], p. 112). In the
hyperbolic plane the situation is different from the Euclidean one: The
corresponding envelope of a quadratic system of hyperbolic circles splits
into the absolute conic A and some remaining part of order 2.

In order to get entirely circular curves of order 4 in the hyperbolic
plane as envelopes of special quadratic systems of conics we define:

Definition 1. A quadratic system Q(λ) of conics of the hyperbolic plane
H2 is called absolute iff it contains the absolute conic A.6

According to the remarks in Sec. 2 we have: The points A∩C4 have
even multiplicity. So we cannot generate those entirely circular curves
of order 4 as envelopes of absolute quadratic systems of conics which
intersect A in one or more points with odd multiplicity. Thus we cannot
get the whole class of entirely circular curves of degree 4 of the hyperbolic
plane as envelopes of absolute quadric systems of conics.

5See G. Kohn [5].
6There exists λ∗ ∈ R ∪ {∞} with A(λ∗) ∼ A.
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On the other hand we will demonstrate that there are envelopes C4

of absolute quadratic systems of conics in the hyperbolic plane H2 which
are not entirely circular.

The goal of this paper is to characterize those absolute quadratic
systems of conics which define a non-degenerate entirely circular envelope
C4 of order 4.

In order to get standard representations of absolute quadratic sys-
tems of conics in H2 we can transform the basic conic A0 into the absolute
conic A with weight ω0 := 1. As A0 = A is regular, the pencil T0 spanned
by [A0 = A, A1] contains at least one singular conic. Changing the pa-
rameterisation of this pencil allows to consider the basic conic A1 as a
singular conic in H2 – for the following we assume the symmetric matrix
A1 to be singular (with arbitrary ω1 ∈ R − {0}). The quotient ω2 : ω2

1

then is the only geometric shape parameter of Q.

4. Absolute quadratic systems of conics and circular

points on their envelopes

According to our considerations the envelope C4 of an absolute
quadratic system Q(λ) of conics in general will intersect the absolute
A in points with even multiplicity ≥ 2. These points are exactly the
points of intersection ~y ∈ A ∩ A1 (~y can be a complex point). We will
look at the tangential behavior of the envelope C4 in this point ~y.

Let us start with such an absolute basic point ~y ∈ A ∩ A1 of the
pencil of conics spanned by [A0 = A, A1]. ~y is a point on the envelope C4

and we have

(6) ~y⊤A0~y = 0 and ~y⊤A1~y = 0.

The tangential behavior in this point on C4 is usually being stud-
ied by observing the intersections of C4 with arbitrary straight lines
through ~y. Such a line L will be spanned by ~y and a further point
~z 6= ρ~y with ρ ∈ R. It can be parametrized by

(7) L · · ·~y + t ~z with t ∈ R.

We compute the intersections of L and C4: They belong to the zeros
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of the following polynomial of degree 47 in t

p(t) : = F (~y + t~z) =
4

∑

i=0

tiFi(~y, ~z) with(8)

F0(~y, ~z) = 0,

F1(~y, ~z) = 2 ω2(~y
⊤A0~z)(~y⊤A2~y),

F2(~y, ~z) = 4 ω2(~y
⊤A0~z)(~y⊤A2~z)+ ω2(~z

⊤A0~z)(~y⊤A2~y)−4 ω2

1
(~y⊤A1~z)2,

F3(~y, ~z) = 2 ω2(~y
⊤A0~z)(~z⊤A2~z) + 2 ω2(~z

⊤A0~z)(~y⊤A2~z)−

− 4 ω2

1
(~y⊤A1~z)(~z⊤A1~z),

F4(~y, ~z) = ω2(~z
⊤A0~z)(~z⊤A2~z) − ω2

1
(~z⊤A1~z)2.

Now we will discuss the following two cases: Either the point ~y ∈
∈ A0 = A ∩ A1 does or does not belong to the third basic conic A2 of
the absolute quadratic system (Cases B and A, resp.). In order to gain ~y

as a circular point on C4 we have to compare the tangent of the envelope
C4 at ~y with the tangent of A at this point. The tangent to A at ~y ∈ A
contains the points ~z of H2 with the equation

(9) ~y⊤A0~z = 0 (with ~y⊤A0~y = 0).

Case A. The absolute point ~y on A0 = A and A1 does not belong to A2.
This case is characterized by ~y⊤A2~y 6= 0. Equation F1(~y, ~z) = 0 from (8)
characterizes points ~z on the tangent of C4 at ~y. This condition reduces
to

(10) ~y⊤A0~z = 0

which shows that the tangent of C4 at ~y is tangent of A0 = A at ~y, too
and the point ~y ∈ A∩A1 is circular on C4. If Case A holds for any basic
point ~y of the pencil [A0 = A, A1] this implies the following

Theorem 1. If the 3 basic conics A0 = A, A1 and A2 of an absolute
quadratic system Q of conics of the hyperbolic plane H2 do not have any
(real or complex) common basic point the envelope C4 of this absolute
quadratic system is an entirely circular curve of the hyperbolic plane H2.

Fig. 1 displays such a curve with the basic conics A0 = A · · ·x2

0
−

− x2

1
− x2

2
= 0, A1 · · ·x

2

1
− x2

2
= 0 and A2 · · · 4x

2

0
− x2

1
− x2

2
= 0 with

7In order to simplify we use the condition (6).
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ω1 = −1 and ω2 = −2 in an auxiliary Euclidean view: We put (x0 :
: x1 : x2) := (1 : x : y) (x0 6= 0) for Cartesian coordinates (x, y).8 The
envelope’s equation is 2(x2

0
− x2

1
− x2

2
)(4x2

0
− x2

1
− x2

2
) + (x2

1
− x2

2
)2 = 0.

A
1

A
2

A = A
0

C
4

Figure 1. An entirely circular curve C4 of order 4 according to Th. 1.

Remark. The conics A0 and A2 can be exchanged. Therefore the tan-
gents to C4 in the points of A1 ∩ A2 are also tangents of A2 (if A0 = A
does not contain these points of intersection).

Case B. The absolute point ~y on A0 = A and A1 also belongs to A2.
Additionally to (6) this case is characterized by ~y⊤A2~y = 0. Then (8)
yields F1(~y, ~z) = 0 ∀~z. Therefore the point ~y is a singular point on the
envelope C4 in Case B. The tangents to C4 at ~y in general are given by
the following quadratic equation for the points ~z

(11) 0 = F2(~y, ~z) = 4 ω2(~y
⊤A0~z)(~y⊤A2~z) − 4 ω2

1
(~y⊤A1~z)2.

Remark. In Case A we have got circularity at any intersection of A
and A1.

9 Fig. 2 displays an interesting example of Case B demonstrating
that there are examples of envelopes C4 of absolute quadratic systems Q
of conics in the hyperbolic plane H2 which do not have circularity at all
absolute points. This is why we will try to characterize those absolute
quadratic systems Q of conics which have envelopes C4 with circularity
also at singular points on the absolute A.

8Note that different values of ω1 and ω2 (both 6= 0) determine different envelopes,
but all share their points of contact on A0 and A2.

9Under the assumption that the conic A2 does not pass through any of the basic
points of the pencil [A, A1].
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A
1

A
2

C
4

A = A
0

Figure 2. Real double points on the envelope C4 of an absolute quadratic system of
conics based on the absolute conic A and the conics A1 and A2.

Now we have to discuss two subcases:

Case B1. We do not have F2(~y, ~z) = 0 for all ~z. Then the absolute
point ~y on A = A0, A1 and A2 is a singularity (of first kind – see R. J.
Walker [16], p. 52) on the envelope C4. In order to gain ~y as a circular
point on C4 one of the tangents in this singular point has to coincide with
the tangent to A0 = A at ~y. The equation F2(~y, ~z) = 0 has to contain
the factor ~y⊤A0~z which according to (11) implies the condition

(12) ~y⊤A1~z = 0.

Together with (6) this condition characterizes ~y as an intersection
of A0 = A and A1 with multiplicity ≥ 2. This is a necessary condition
to gain circularity of C4 at ~y in the Case B1. We can state

Theorem 2. If the 3 basic conics A0 = A, A1 and A2 of an absolute
quadratic system Q of conics of the hyperbolic plane H2 have a (real or
complex) common basic point ~y this point is a singularity on the enve-
lope C4. Is this singularity of first kind we have: C4 has an isotropic
tangent at ~y iff A and A1 intersect in ~y with multiplicity ≥ 2.

Remark. Fig. 2 can also be interpreted as an example for this case. If
we exchange A0 for A2 the conic A2 = A is the absolute conic of H2

and is tangent to A1 in two real points. These two points are double
points on C4 – each of them has one branch osculating A2 in the double
point. In this interpretation (with A2 = A) the envelope C4 is an entirely
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circular curve of order 4 in H2. We have one interesting example for the
case (4 + 4).

Case B2. We have F2(~y, ~z) ≡ 0 for all ~z. The absolute point ~y on
A = A0, A1 and A2 will be a singularity of the second kind on C4. On
this curve C4 this point has to be a triple point (see R. J. Walker [16],
p. 52). A triple point on an algebraic curve of order 4 has to be real.
Therefore we can transform this point by some hyperbolic displacement
into ~y = (1 : 1 : 0)⊤.

First we want to geometrically interpret the condition

(13) F2(~y, ~z) = 4 ω2(~y
⊤A0~z)(~y⊤A2~z) − 4 ω2

1
(~y⊤A1~z)2 ≡ 0 ∀~z

for the absolute quadratic system of conics. The conics A1 and A2 contain
the real point ~y = (1 : 1 : 0)⊤. Their corresponding symmetric matrices
can be written as

(14) Ai =





ai bi ci

bi −ai − 2bi ei

ci ei fi





with ai, bi, ci, ei, fi ∈ R (i = 1, 2). The condition (13) yields

0 = (z0 − z1)ω2[(a2 + b2)z0 − (a2 + b2)z1 + (c2 + e2)z2]−(15)

− ω2

1
[(a1 + b1)z0 − (a1 + b1)z1 + (c1 + e1)z2]

2

∀ (z0 : z1 : z2) 6= (0 : 0 : 0). Apart from (15) we can easily get

(16) c1 + e1 = 0, c2 + e2 = 0

and

(17) ω2(a2 + b2) = ω2

1
(a1 + b1)

2.

From the condition (16) follows that the 3 basic conics A0 = A, A1 and
A2 have to be pairwise intersecting with multiplicity ≥ 2 in the point ~y.10

The additional condition (17) also affects the definition of the quad-
ratic system Q of conics from the 3 given basic conics A = A0, A1 and
A2 and the weights ω1, ω2.

If A1 and A2 are given according to Case B2 this condition can be
used to change the weights ω1, ω2 such that the envelope C4 has a triple
point in ~y ∈ A.

In order to give a geometric interpretation we go back to the gener-
ation of C4 by projectively linked pencils (5) of conics. According to (16)

10If the conics A1 and A2 were regular then all 3 basic conics had the same tangent
at the point ~y.
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each pencil T0 = [A0, A1] and T2 = [A1, A2] contains at least one degen-
erate conic with a singular point in ~y.11 Some short calculation yields:
In the first and the second pencil T0(λ) and T2(λ

∗) the corresponding
symmetric matrices are given by λ and λ∗ with

(18)
λ + ω1(a1 + b1) = 0 and

ω1λ
∗(a1 + b1) + ω2(a2 + b2) = 0.

Again we arrive at two subcases: 1. If a1 + b1 = 0 the conic A1 is
the singular conic of the pencil T0 with singular point ~y. Then (17) gives
a2 + b2 = 0. Therefore the conic A2 must also have ~y as a singular point.

2. If a1 + b1 6= 0 the conic A1 does not have ~y as singular point.
Then the condition (17) characterizes T0(λ) and T2(λ

∗) with λ and λ∗

from (18) as conics linked via the projectivity π (5).

Both cases are described in

Theorem 3. Given 3 basic conics A0 = A, A1 and A2 of an absolute
quadratic system Q of conics of the hyperbolic plane H2 with a (real or
complex) common basic point ~y ∈ A and common tangent at ~y (inter-
section with multiplicity ≥ 2). Its envelope C4 shall be a non-degenerate
algebraic curve of order 4. This absolute quadratic system Q of conics
induces a projectivity between the two pencils of conics T0 = [A = A0, A1]
and T2 = [A1, A2] denoted by π. The point ~y is a triple point of the enve-
lope C4 iff the projectivity π maps the singular conic with singular point
~y from the pencil T0 to a singular conic with singular point ~y from T2.

Now we are interested in the tangents at this triple point ~y ∈ C4:
With (16) and (17) we have

(19)

~y⊤A0~z = z0 − z1,

~y⊤A1~z = (a1 + b1)(z0 − z1),

ω2~y
⊤A2~z = ω2

1
(a1 + b1)

2(z0 − z1)

and

F3(~y, ~z) =

(20)

= 2(z0−z1)[ω2(~z
⊤A2~z) + ω2

1
(a1 + b1)

2(~z⊤A0~z)−2 ω2

1
(a1 + b1)(~z

⊤A1~z)].

11We stated A1 to be singular. But there can be two singular conics in the pencil
[A0, A1]. Only one of them has the desired property.
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F3(~y, ~z) = 0 in (20) is the equation of the tangents to C4 in the triple
point ~y on the absolute A. One of them is z0 − z1 = 0 which coincides
with the tangent of C4 in the triple point ~y. Therefore in all cases the
triple point ~y is a circular point on C4.

Theorem 4. Given 3 basic conics A0 =A, A1 and A2 of an absolute quad-
ratic system Q of conics of the hyperbolic plane with a (real or complex)
common absolute basic point ~y ∈ A. If the envelope C4 of this quadratic
system Q of conics is a non-degenerate curve of degree 4 and ~y is a triple
point on C4 ∩ A (characterization in Th. 3) one of the tangents to C4 in
~y will be tangent to A, too. The triple point ~y is a circular point on C4.

Fig. 3 displays the interesting case of a triple point for A0 · · ·x
2

0
−

− x2

1
− x2

2
= 0, A1 · · ·x

2

2
= 0 and A2 · · · (x0 − x1)

2 − x2

2
= 0 with ω1 =

= 1, ω2 = 0.75. According to Th. 4 the envelope C4 is an entirely circular
curve of order 4 and belongs to the type (4 + 4).

A
1

A
2

A = A
0

C
4 A

2

Figure 3. One absolute triple point on the envelope C4 of an absolute quadratic
system of conics.

Fig. 4 addresses another interesting case of a triple point for
A0 · · ·x

2

0
−x2

1
−x2

2
= 0, A1 · · · (x0−x1)

2 = 0 and A2 · · · (x0−x1)
2−x2

2
= 0

with ω1 = −1, ω2 = −0.4. The envelope C4 is an entirely circular curve
of order 4 and belongs to the type (8).
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A
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A = A
0

C
4

A
2

Figure 4. One absolute triple point on the envelope C4 of an absolute quadratic
system of conics.

According to our Ths. 1–4 we can characterize such absolute quad-
ratic systems Q of conics of the hyperbolic plane H2 with entirely circular
envelopes C4 of order 4. The following theorem is an immediate conse-
quence of our previous results:

Theorem 5. Given an absolute quadratic system Q of conics Q(λ) :=
:= A + 2 ω1λA1 + ω2λ

2A2 of the hyperbolic plane H2 with absolute A.
Its non-degenerate envelope C4 of order 4 is an entirely circular curve
in the hyperbolic plane H2 iff we have: In any absolute point ~y (real or
complex) belonging to A, A1 and A2 at the same time the conics A and
A1 intersect with multiplicity ≥ 2.

5. Conclusions

These results provide us with a comprehensive criterion to decide
wether an absolute quadratic system of the hyperbolic plane H2 has an
entirely circular envelope or not.

A further part of this paper will contain a complete list of abso-
lute quadratic systems Q of conics which possess entirely circular en-
velopes C4. These curves will be generated by the help of the projectivity
π (5) linking the pencils T0 and T2.
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