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Abstract: We consider a generalization of normal numbers to matrix number
systems. In particular we show that the analogue of the Theorem of Copeland
and Erdős also holds in this setting. As a consequence, this generalization holds
true also for canonical number systems.

1. Introduction

Among the properties of number systems mainly investigated are
finiteness, periodicity and randomness. In this paper we concentrate
on the third property. When dealing with an infinite expansion, one
is interested whether a certain block of digits will occur asymptotically
equally often. If this is true for every possible block, then this number is
called normal to that number system.

The first two questions coming up are how many normal numbers
are there and how to construct such a normal number. For the first it is
known that almost every real number is normal to a given base q ≥ 2.
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The second one was first answered by Champernowne [1] who was able
to show that the concatenation of the integers, i.e.,

0.1 2 3 4 5 6 7 8 9 10 11 12 . . .
is normal in the decimal system (q = 10). He conjectures that the same
holds true for the concatenation of the primes. Copeland and Erdős [2]
even proved more that this. They were able to show that one can con-
struct a normal number with any increasing sequence which satisfies a
certain restraint in connection with its growth rate (see Lemma 5.1).
Ways to construct numbers as concatenation of the integer part of poly-
nomials were considered by several authors in [2, 3, 14, 15]. Finally a
construction by the integer part of entire functions of bounded logarith-
mic growth is given by Madritsch et al. in [12].

In this paper we want to generalize the result of Copeland and Erdős
to matrix number systems (MNS). These number systems are strongly
connected with canonical number systems (CNS). Knuth [9] was one of
the first who considered CNS for the Gaussian integers when he was
investigating the properties of the “twin-dragon” fractal. These consid-
erations were extended to quadratic number fields by Kátai, Kovács, and
Szabó [6, 7, 8]. The extension to the integral domains of algebraic num-
ber fields was shown by Kovács and Pethő in [11]. The connection of
MNS and CNS is based on the following observation by Kovács [10]: if β
is a base of a CNS in a number field then {1, β, . . . , βn−1} forms an inte-
gral basis for this number field. Furthermore the connection of MNS to
lattice tilings was worked out for instance by Gröchenig and Haas in [4].

2. Definitions of number systems and normality

As these definitions are standard in this area, we mainly follow [13].
Let B ∈ Z

n×n be an expanding matrix (i.e., its eigenvalues have
all modulus greater than 1). Let D ⊂ Z

n be a complete set of residues
mod B with 0 ∈ D. We call the pair (B,D) a (matrix ) number system
if every m ∈ Z

n admits a representation of the form

m =
k

∑

j=0

Bjaj, (aj ∈ D).

We set ℓ(m) := k + 1 for the length of m. As D is a complete set of
residues modulo B, this representation is unique and we furthermore get
that |D| = [Zn : BZ

n] = |det B| > 1.
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By F :=

{

∑

j≥1

B−jaj : aj ∈ D

}

we denote the fundamental domain

of (B,D). Furthermore for every a ∈ Z
n, we denote by Fa :=B−ℓ(a)(F+a)

the elements of F whose (B,D) expansion starts with the same digits as

a. For α ∈ R
n with α =

k
∑

j=−∞

Bjaj, we denote by

⌊α⌋ :=
k

∑

j=0

Bjaj, {α} :=
∑

j≥1

B−jaj,

the integral and the fractional part of α, respectively.
For our generalization it is not necessary that (B,D) is a num-

ber system. We are interested in a wider class of pairs (B,D), which
Indlekofer et al. [5] call just touching covering systems (JTCS). A pair
(B,D) is a JTCS if

λ((m1 + F) ∩ (m2 + F)) = 0, (m1 6= m2, m1,m2 ∈ Z
n)

where λ denotes the n-dimensional Lebesgue measure.
Now we are ready to define normal numbers in (B,D). Let θ ∈ F ,

then we denote by N (θ; a,N) the number of blocks in the first N digits
of θ which are equal to the expansion of a. Thus

N (θ; a,N) := |{0 ≤ n < N : {Bnθ} ∈ Fa}| .

We call θ ∈ F normal in (B,D) if for every k ≥ 1

(2.1) sup
ℓ(a)=k

∣

∣

∣

∣

∣

N (θ; a,N) −
N

|D|k

∣

∣

∣

∣

∣

= o(N),

where the supremum is taken over all a ∈ Z
n whose (B,D) expansion

has length k.
As the representation of an element is not necessarily unique in a

JTCS, we have to define and to consider ambiguous expansions. Later
we will show that an element with an ambiguous expansion cannot be
normal.

3. Numbering the elements of a JTCS

To show the structure of elements of (B,D) we mainly follow [13].
First we define the map

Φ : Z
n → Z

n

x 7→ B−1(x − a)
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where a ∈ D is the representative of the congruence class of x (i.e.,
x − a ∈ BZ

n).
We define P :=

{

m ∈ Z
n : ∃k ∈ N : Φk(m) = m

}

to be the set of
periodic elements, which is finite (cf. [13]). Now we construct a unique
representation of every m ∈ Z

n. Therefore let r = r(m) ≥ 0 be the least
integer such that Φr(m) = p ∈ P. Then every m ∈ Z

n has a unique
representation as follows:

m =
r−1
∑

j=0

Bjaj + Brp (aj ∈ D, p ∈ P)

with Φr−1(m) = ar−1 + Bp /∈ P if r ≥ 1.
We denote by

R :=

{ k
∑

j=0

Bjaj : k ≥ 0, aj ∈ D

}

the set of all properly representable elements of Z
n.

We want to define an ordering on this set. Therefore let q := |det B|
and let τ be a bijection from D to {0, . . . , q−1} such that τ(0) = 0. Then
we extend τ on R by setting τ(akB

k + · · ·+ a1B + a0) := τ(ak)q
k + · · ·+

+ τ(a1)q + τ(a0). We also pull back the relation ≤ from N to R by
setting

(3.1) a ¹ b :⇔ τ(a) ≤ τ(b) (a, b ∈ R).

Then we define a sequence {zi}i≥0 of elements in R with zi := τ−1(i).
This sequence is increasing, i.e., i ≤ j ⇒ ℓ(zi) ≤ ℓ(zj) and zi ¹ zj for
i, j ∈ N.

Now we can state our main result.

Theorem 3.1. Let (B,D) be a JTCS and let {ai}i≥0 be an increasing
subsequence of {zi}i≥0. If for every ε > 0 the number of ai with ai ¹ zN

exceeds N ε for N sufficiently large, then

θ = 0.[a0][a1][a2][a3][a4][a5][a6][a7] · · ·

is normal in (B,D) where [·] denotes the expansion in (B,D).

Before we state the proof of the theorem we have to exclude the case
that θ is ambiguous (i.e., has two different representations). In the next
section we will show that any θ ∈ F with two different representations
cannot be normal.
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4. Ambiguous expansions in JTCS

We call a θ ∈ F ambiguous (with ambiguous expansion) if there
exists a l ≥ 0 such that

(4.1) {Blθ} ∈ ∂F .

In the following lines we will justify our definition. If a θ ∈ F has
two different expansions this means that there exist l ≥ 1 and ai, bi ∈ D
for i = 1, 2, . . . with

θ =
∞

∑

i=1

B−iai =
∞

∑

i=1

B−ibi and al 6= bl.

This equals saying that there exist an m ∈ Z
n and a l ≥ 0 such that

{Blθ} ∈ F ∩ (m + F).

We set S := {m ∈ Z
n \ {0} : F ∩ (m + F) 6= ∅}, S0 := S ∪ {0},

Bm := F ∩ (m + F). By Lemma 3.1 of [13] we see that

∂F =
⋃

m∈S

Bm.

Thus all θ ∈ F , which satisfy (4.1), have at least two different expansions.
Since l is finite and we are interested in the asymptotical distribu-

tion of blocks in the digital expansion and since BlF ∩ F = F we may
assume without loss of generality that l = 0.

The goal of this section is to show the following

Theorem 4.1. If θ ∈ F is ambiguous, then θ is not normal.

We follow [13] to construct the graph G(Zn), which provides a tool
for constructing the representation of an element of S0. For this graph
Z

n is its set of vertices and B := D − D its set of labels. The rule for
drawing an edge is the following

m1
b

−−→ m2 :⇐⇒ Bm1 − m2 = b ∈ B (m1,m2 ∈ Z
n).

By G(S) and G(S0) we define the restrictions of G(Zn) to the sets S and
S0, respectively.

By Rem. 3.4 of [13] we get that any infinite walk m
b1−−→ m2

b2−−→
b2−−→ m3

b3−−→ · · · in G(S0) yields a representation

m =
∑

j≥1

B−jbj.

Vice versa, by looking at such a representation of m we get an
infinite walk in G(S0), starting at m.
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Now we construct the graph G(S0) to determine all points of Bm.
Therefore we define for every pair (m1,m2) the set C(m1,m2) := {a ∈ D :
(Bm1+D)∩(m2+a) 6= ∅} and its cardinality cm1,m2

:= |C(m1,m2)|. Now

the graph G(S0) results from G(S0) by replacing every edge m1
b

−−→ m2

by cm1,m2
edges m1

a
−−→ m2 with a ∈ C(m1,m2). By the considerations

in Rem. 3.4 of [13] we furthermore get that every infinite walk m
a1−−→

a1−−→ m2
a2−−→ m3

a3−−→ · · · in G(S0) yields a point

θ =
∑

j≥1

B−jaj ∈ Bm ⊂ ∂F .

We denote by C := (ck,l)k,l∈S the accompanying matrix of G(S) and call
it the contact matrix (cf., (6) of [4]). Similarly we call G(S) the contact
graph of (B,D).

Thus every ambiguous point θ ∈ F can be constructed by an infi-
nite walk in G(S0). If we can show that there exists a sufficiently long
walk which could not be constructed by G(S0), then we get that the
corresponding block does not appear in any ambiguous point and hence
the ambiguous points cannot be normal.

Therefore we denote by Wk(m) the set of all different walks of
length k starting at m in G(S0). Further let Wk be the total set of walks
of length k in G(S0). Then we simply get

|Wk| =
∑

m∈S

|Wk(m)| .

By the definition of the contact matrix C and noting that

(|W0(m)|)m∈S = (1, . . . , 1)t

we get the recurrence

(|Wk+1(m)|)m∈S = C · (|Wk(m)|)m∈S.

Let µmax be the eigenvalue of largest modulus of C. Then there exists a
constant c > 0 such that

(4.2) |Wk| =
∑

m∈S

|Wk(m)| = cµk
max(1 + o(1)).

Thus we are left with an estimation of µmax. Therefore we justify our
naming of C and use the following result.

Lemma 4.2 ([4, Th. 2.1]). If (B,D) is a JTCS, then |µmax| < |det B| .

Now the proof of Theorem 4.1 follows easily.
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Proof of Theorem 4.1. In order to show that an ambiguous number θ
is not normal we need to show that there exists a block of length k that
cannot occur in the (B,D)-expansion of θ.

By the considerations above this is equivalent to showing that there
exists a block of length k that cannot occur as a labeling of a walk of
length k in G(S).

Since the number of possible blocks of length k is |D|k and the
number of walks of length k is |Wk| it suffices to show

|Wk| ≤ |D|k − 1.

Thus putting (4.2) and Lemma 4.2 together we get that there exists a
k0 > 0 such that

|Wk| = cµk
max(1 + o(1)) ≤ |det B|k − 1 = |D|k − 1 (k ≥ k0). ♦

5. Proof of Theorem 3.1

The proof works in three steps.
1. We start by using the ordering function τ to transfer the number

to a number in q-ary expansion for q := |det B|.
2. Then we apply the Theorem of Copeland and Erdős to show the

normality of this transferred number.
3. Finally transferring the number back to a JTCS we show that

this does not affect normality.
First we transpose the problem in the setting of q-ary expansions

where q := |det B| > 1. Therefore we use our numbering function τ to
transfer θ into a q-ary expansion. Thus

τ(θ) := 0.[τ(a0)][τ(a1)][τ(a2)][τ(a3)][τ(a4)][τ(a5)][τ(a6)][τ(a7)] · · · ,

where [·] denotes the q-ary expansion. As it will always be clear we use
[·] for the (B,D)- and the q-ary expansion simultaneously.

By the assumptions of the theorem we get that {τ(ai)}i≥0 is an
increasing sequence and we can apply the Theorem of Copeland and
Erdős.
Lemma 5.1 ([2, Th.]). If a1, a2, . . . is an increasing sequence of integers
such that for every ε < 1 the number of a’s up to N exceeds N ε provided
N is sufficiently large, then the infinite decimal

0.a1a2a3a4a5a6 . . .

is normal with respect to the base q in which these integers are expressed.
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Applying Lemma 5.1 gives that τ(θ) is normal. Thus for k ≥ 1,
M ≥ k and (d1, . . . , dk) ∈ {0, 1, . . . , q − 1}k

(5.1)
∣

∣

∣

∣

∣

{

k ≤ n ≤ M + k

∣

∣

∣

∣

∃x ∈ Z : ⌊qnτ(θ)⌋ = xqk +
k−1
∑

i=0

diq
i

}∣

∣

∣

∣

∣

=
M

qk
+ o(M).

For an x ∈ Z with x =
k

∑

i=0

aiq
i, where 0 ≤ ai < q for every i, we

define ℓ(x) := k + 1 to be the q-ary length of x. Then it is clear that
ℓ(a) = ℓ(τ(a)) for all a ∈ R.

For k ≥ 1 and a ∈ R with ℓ(a) = k we get together with (5.1) that

N (θ; a,N) = |{0 ≤ n < N |{Bnθ} ∈ Fa}| =

=

∣

∣

∣

∣

{

k ≤ n ≤ N + k

∣

∣

∣

∣

∃x ∈ Z : ⌊qnτ(θ)⌋ = xqk + τ(a)

}∣

∣

∣

∣

=

=
N

qk
+ o(N) =

N

|D|k
+ o(N).

By noting the definition of normality in (2.1) the theorem is proven.

References

[1] CHAMPERNOWNE, D. G.: The construction of decimals normal in the scale of
ten, J. Lond. Math. Soc. 8 (1933), 254–260 (English).

[2] COPELAND, A. H. and ERDŐS, P.: Note on normal numbers, Bull. Amer.
Math. Soc. 52 (1946), 857–860.
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