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Abstract: Distribution of g-additive functions on the subsets of integers char-
acterized by the values of sum of digits function is investigated.

1. Introduction

Let ¢ > 2 be an integer, A, := {0,1,...,q— 1}, n = Y &;(n)¢,
7=0

ej(n) € Ay (j =0,1,...) be the g-ary expansion of n. Let Ny = N U
U {0} = set of nonnegative integers. Let A,, M, be the ¢g-additive, ¢-
multiplicative functions, respectively. We say that f : Ny — R belongs
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to A, if f(0) =0, and f(n) = 3 f(ej(n)¢’) (n € N), furthermore g :
j=0

: Ny — C belongs to M, if g(0) = 1, and g(n) = [] g(¢;(n)¢’) (n € N).
j=0

We say that g € M,, if g € M, and |g(n)| =1 (n=1,2,3,...).

Let a(n) = > ej(n), Biln) =#{j | ej(n) =1} (1=1,2,...,¢—1).

j=0

Let N be a fixed integer. For some positive integers 1,72, ...,7¢—1

let r = (ri,72,...,7¢—1),
B=B(Nr)={n<d¢" |p(n)=mr,1=1,...,q—1}.

Let ro := N — (r1 + 72+ ... +14_1). It is clear that B is empty if

ro < 0, and that
N!

(1) BNIE) = #(BINI) = gy

ifrozzO.
Let 6;(=d;n) =% (J=0,1,...,¢g—1). Let 0 < e < i be a
fixed number, and assume that

(1.2)c 0;j>e(j=0,...,¢—1).
Let 6™ = (61,...,0,1). Let f € A,,

(1.3) Favip () := #{n € B(N|r), f(n) <y}

1
B(N|r)
Let furthermore
(1.4) QBN (D) == sup (Fa(nir (v + D) — Fanvin (y)) -
ye

A direct consequence of the 3 series theorem of Kolmogorov is
that f € A, has a limit distribution, i.e. that

Jim ot n < ¥ | f(n) < 9} = Fly) (almost all ).

F' is a distribution function, if and only if

q—1

(1.5) i Z f(bg?) is convergent,

7=0b=1

and
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(1.6) Z Z f2(bg?) is convergent.
=0

First we shall give necessary and sufficient conditions for the ex-
istence of such distribution function F¢ (y) depending on the parameter
§ = (517527"'75@—1)7 where 51 Z € (Z — 17"'aq_ 1)7 60 =1- (51 +
+...+&-1) > ¢, for which

(1.7) lim Fpvr(y) = Fe(y) (almost all y)

N—oo
0;—&;

is satisfied.

Theorem 1. Let f € A,. If there exists some &1,...,&;—1 satisfying
& >e(t=0,1,...,q— 1), for which (1.7) holds, then (1.5), (1.6) are
satisfied. If (1.5), (1.6) hold, then (1.7) holds true for all choices of
& satisfying & > e (1 = 0,...,9g —1). Fe(y) := P(O¢ < y), where
N0sM - - . are independent random variables, P(n; = f(aq’)) = &, (a =
=0,1,...,¢—1), O = >y 1;.

Theorem 2. Let g € M, and for & > e (i=0,...,q—1) let

N-1

(1.8)  Mnglg) = H (fo+&19(1- @)+ ...+ &-19((g — D)) .

Assume that

o) q—l
(1.9) Z —1) is convergent.
7=0 a:1
Then
(12)6 sup B(N T) Z g(n) - MN,(S(N) (g) —0 (N - OO)
"~ neB(N,r)

Consequently, if r; = r]( ) (j=1,...,9—1) are so chosen that

r](-N)/Nefj (j=1,...,9—1) then

1
(1.10) BN+ Z g(n) = Moo £(9),
neB(N,r(MN))

where My ¢ is the limit of My ¢ (defined by (1.8)) for N — oo.
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Theorem 3. Let f € Ay, f(bg’) be bounded for j € Ng, b€ A,. Let
| N1 ‘
(1.11) m=m = fbg),
§=0
f(bqj) = f(bg?) =, be Ay, 5=0,1,...,N — 1, f be extended to Ny
as a q-additive function.
Let ry,...,rq—1 be satisfying (1.2).,
1 N
o (8™) == > ).

BWNIE) e m)

We have
2 Ny _ IV " (Fipaly _ 2 _ T gy
A0 = 2| X R (Fod) —mi) ) m= Y S ).

Assume that

1 1
o3 (—,...,—) — 00 (N — ).

q q
Let h=hy € Ag, h(n) = L% Then
1
Nlr). h )
mnax max B(N|£)#{n68( ), h(n) <y} —@(y)|—0
as N — oo.

2. Lemmata

Lemma 1. Let f € Ay, D >0 be fized. If f € Ay, limsup|f(bg?)| =

bql — o0
= 00, then
e 2B (D)
(12).  B(N]r)
Proof. Let b*€ A,)\{0} be such coefficient for which limsup|f(b*¢’) =

J—00

—0 (N — ).

= o0o. By changing the sign of f, if needed, we may assume that
limsup f(b*¢’) = oc.
Jj—oo
Let I1 < Iy < ... be such a sequence of integers for which 2D <
< f(b*g"), f(b*g'r) > 2f(b*g).
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Let N be a large integer, T be defined such that I < N —1 <
< Ip41. Then T = Ty — oo. We may assume that Tx|log N — 0
(say). Let

U={lils,....lr}, V={01,...,N—1N\U.

Consider all those n € B(N,r) for which f(n) € [y,y + D]. Let

50,51, ---,8¢—1 be nonnegative integers such that sg+s1+...+s,-1 =
=T. Let

T
EW sy = M m=) e, (m)d"s, By(m) = s, b€ A
j=1

FO) = {u v = "e()q", B(v) =15 — 51, bE Aq} .

reVv
We have
N —-T)
WA . = BIN-T |13 = e
sy Sq— (ro—so)!(ri—s1)!... (rg—1—5¢-1)!
T!
gw) = B(T|s) = :
50,01 (Tls) solsi!...sq-1!

It is clear that every n € B(N|r) can be written uniquely as n = m + v,
where m € 5§§{?..,5q_1 and v € f§§{?‘.,sq_1. Let us fix a v with
v = Z er(V)q", Bo(v) =ro —sp, bEAq
reVv

Let U, s,. be an arbitrary subset of U having exactly so + sp=
elements,

USO,Sb* = {jl < jQ < ... < j50+sb* },

H507Sb* = U\Uso,sb*7 HSO,Sb* = {kl <k <...< kT_(SO+Sb*)}'
Sp*
We shall write every m &€ SS(OU,,),_,SH as k+ p, where Kk = > b*q"™,
h=1
ry <712 < ...<rj is an arbitrary sequence of the elements of USO,S;,

and p = ) ep(p)g?, where p runs over all elements of Hy, s,., €p(p) €
€ A\{0,b*}, and Bi(p) = s if | € A,\{0,b*}.

Let Hg, s,. be fixed, and r&i) < rg) <...< rgz)* (1 =1,2) be
two subsequences and (!, k(® be the corresponding integers: k() =

E A
= hzlb qgr (j=1,2).
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From the definition of the sequence U we obtain that |f(k(})) —
— f(k?)| > D.

Assume that f(n) € [y,y + D], in € B(N|r). Then n can be
written in the form

n=xK+p+v.
Let v be fixed, i(v) =1, — Sy, S0, ..., 5q—1 are determined by v.
We can form exactly r different sets Us,, sp=.
So + Sp*

Assume that U, s,. is fixed. Then the number of p is

(T — (s0 + sp~))!
IT s

J#0,b*

Let us assume now that v, p, sg, s; and Uso7s; are fixed. Then no
more than one x is appropriate. Thus we have

C)B(N,f)(d)S
< Z (N -T)! ( T )(T—(so—l—sb*))!

D D i ey 1 PR By | o
o JAO,b*

Qp(N,r) (D) <
B(N|r) —
(2.1) -

<9 Z ! <7’0>50 (rq_1>8q—1 Solsp+!
- sol...sq_1! \N/ T \UN so+si)!
so+-+sg 1=T 0 q—1 ( 0 b)

We subdivide the sum on the right hand side of (2.1) as Y ; +> o+
+> 5+ 4, wherein >3, s =0,in Y 5, s; =0;in Y 5 so+s; < H
and sg,sp- > 1;and in >, © so +s; > H, sosp- # 0.

One can see easily that ) ,,> 5, > 5 = on(1).

. solsp+! 1 1 1 3
Since oy = . < 545 < 77, We obtain that 0, < 2/H.
-

Since H is an arbitrary large fixed number, therefore Lemma 1 is true.
Lemma 2. Let f € A, f be defined as in Th. 3.

Letmy:= ) 2% f(bq'). Then
beA,
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> =g S () i)
b

neB(N|r) 1=0

(2.2)

B(N|r)
Proof. Since
1 ~ - .
_— = = =
n€B(N|r) J=0 bEA,
we have

Y Pw=Y N1<N”j 5 2 Fod")F e+

- nGB(N|7") b1#£b2
+Z _1N2qu1 (bg™) + > D (b)),
beA, l1#£ls b =0

Since Z f(bqj) =0 (b e A,), therefore
J

thus Lemma 2 is true.

3. Proof of Theorem 3

We shall use the Frechet—Shohat theorem. (See [1].)

Let
(3.1) mi= Y 20,
bEA,
and
(32) gi(b) = f(bg") —mu (be Ay).

For n < ¢V let
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N—-1
(3.3) g(n) =Y gj(g;(n)).
j:
We have
N-1 .
_ b l _
mp = Z NZ(f(bQ)—Tb) =0.
1= beA, l
Let
g(n
(3.4) K =22 =0,1,...¢% - 1),
ON
and
1
: N)i= = K"(n).
n<qgN
We shall prove that
(3.6) glg;(lsh(N) — | =0 (N — o0),
where
1 [ h—u?/2
= — ue”" 4du
Hh V2T /
We have
h
S K=Y Y dene) Y
neB(N|r) s=1ai+...4+as=h bi,..., bs€A,
Z K (bigh) ... K% (byq"*)En(s,b,a,l),
iyl
where ay,...,as are positive integers, d(ay, ..., as) the coefficient com-
ing from the polynomial theorem, b1, ..., bs run over the possible values

of A,, independently, [y, ...,ls run over {0, 1, ..., N —1} such that {; # [;
if 1 # 7, and

N — s)!
EN(S7Q7 a, D = q—(l 8) )
[T (r6 — ep)!
b=0

where e, := #{b among by, ...,bs}.
We have
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b=0 j5=0 j=0
(3.7) q—1 s—1 g—1ley—1
_ (Tb)eb 1 (1 J/?“ )
= — . . _ b
o NV §=0 (1-j/N) b=0 ;=0
Thus
1 h
n X K=Y X dena)Ha)
— neB(N|r) s=1ai,...,as=h
H(Cll, 7a'S) - Z T(ala y As | bl7 abs)a
bi,...,bs
(3.8)

T(a1, ..yt | b oosbs) = > K (big")... K (bsq"* )ta(s, b).
I, ls

Let a; =1 for some j € {1,...,s}. We have
> K(bq") =
l#{llw":lj—l:lj-‘rl7"'718}
= —K(qull) — ... — K(qulj_l) — K(qulj'H) — .. — K(b]’qls).
Iterating this procedure we can rewrite (3.8) as no more than O(h)
sums of type

(3.9) Yal(s,b) - D H(HK%cwq >=:Q,

t17t27 7tp.7 1

where ¢, ; € Ag, unj > 2, and #{cuj =0b | u,j} = e and the

summation is over those t; € {0,. —1} ( = 1,...,p) for which
ti # t; (0 7# ).

We shall prove that @@ = on (1) if max; E Qu,j > 3.

Indeed "

|K(b1g") K (bag")| < K*(b1g") + K*(bag"),
and in general

|K(b1q") ... K(byq")| < (\K”(blqt)}+...+]K”(bvqt)}).

Furthermore max |K(bg")| < - — 0 (N — o), and hence our asser-
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tion directly follows.

m;
It remains to consider the case when ) g, ; = 2 holds for every
u=1
j = 17 27 <oy D
Let @ be such a sum in which there is an [ for which ¢ ; = ¢2; = 1.

Observe that

(3.10) q%@w)zii<%)%<y+o(%>).

b=0
Then

zwa(s,b)ZK(clq K(diq") Z HHK‘]W Cu Jq

t tiyeyti_q, JALu=1
t1tstp
and * means that t, # t; if v # [.

Let
(3.12)

t

ST e )
jAlu=1 N

The error term is clearly oy (1). Furthermore Q¢ does not depend

on the numbers e;. In the definition of H(ai,...,as) we have to sum
T(ay,...,as|b1,...,bs)over all possible values of by, ...,bs € A,. Since
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<z_: %K(qq“)) (i %K(dlq“)> =0,

CZIO dZZO

the effect of these summands can be ignored.
Hence we obtain that (3.6) holds with pj, = 0 if h = odd, and for
h =2s

1 s
K*(n) =d(2,2,...
(3.13) neBNT)
ST Y Kb K2(big")un(s,b) + on (1),
bi,.bs€AG Iy, ls
g—1
Substituting 2 (s,b) by [] (T—]\‘;)eb, and omitting the condition on
b=0

the right hand side of (3.13), the difference is on(1). Thus the left hand
side of (3.13) equals to

S

dez,....2) [ > > %(bql) +on(1) = (2s): +on(1).

25
I beEA,

This proves the theorem.

4. Proof of Theorem 1, necessity

In Lemma 1 we proved that if f has a limit distribution according
to Th. 1, then f(bg?) is bounded. If (1.6) would be divergent, then we
would be able to show that f satisfied the conditions of Th. 3, which
would imply that Qpn ) (D) — 0 (N — o0).

Therefore (1.6) is convergent.

The proof of the convergence of (1.5) easily follows from Lemma 2.
We omit the details.

Proof of Theorem 2 and the sufficiency part of The-
orem 1

Let gr(n) := [] g(gj(n)¢’). Let g(ag’) = ei(aq’) Y(ag?) €
j=0

€ [—m,7]. From (1.9) we obtain that > > 4(ag¢’) is convergent, and
j a
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that > > 1?(aq’) is convergent as well. Hence, by using Lemma 2 we
j a
can deduce that

sup m%) S 19(n) — gr(n)] < £R(N),

(1.2). neaN

where kp(N) — 0 if R, N — 0o, and this implies Th. 2.
The sufficiency part of Th. 1 can be proved by defining g(n) :=
:= g-(n) = "™ and considering

1
W Z g-(n)

n<qN
as the characteristic function of the distribution function of f. Since
oo q—1

DD (g-(ag’) - 1)

7=0a=0
converges, we can apply Th. 1. This completes the proof.
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