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Eötvös Loránd University, Department of Computer Algebra, and
Research Group of Applied Number Theory of the Hungarian Acad-
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1. Introduction

Let q ≥ 2 be an integer, Aq := {0, 1, . . . , q − 1}, n =
∞
∑

j=0

εj(n)qj ,

εj(n) ∈ Aq (j = 0, 1, . . . ) be the q-ary expansion of n. Let N0 = N ∪
∪ {0} = set of nonnegative integers. Let Aq, Mq be the q-additive, q-
multiplicative functions, respectively. We say that f : N0 → R belongs
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to Aq if f(0) = 0, and f(n) =
∞
∑

j=0

f(εj(n)qj) (n ∈ N), furthermore g :

: N0 → C belongs to Mq if g(0) = 1, and g(n) =
∞
∏

j=0

g(εj(n)qj) (n ∈ N).

We say that g ∈ Mq, if g ∈ Mq and |g(n)| = 1 (n = 1, 2, 3, . . . ).

Let α(n) =
∞
∑

j=0

εj(n), βl(n) = #{j | εj(n) = l} (l = 1, 2, . . . , q−1).

Let N be a fixed integer. For some positive integers r1, r2, . . . , rq−1

let r = (r1, r2, . . . , rq−1),

B = B(N |r) = {n < qN | βl(n) = rl, l = 1, . . . , q − 1}.
Let r0 := N − (r1 + r2 + . . . + rq−1). It is clear that B is empty if

r0 < 0, and that

(1.1) B(N |r) := #(B(N |r)) =
N !

r0!r1! . . . rq−1!
,

if r0 ≥ 0.
Let δj(= δj,N ) =

rj

N (j = 0, 1, . . . , q − 1). Let 0 < ε < 1
2q be a

fixed number, and assume that

(1.2)ε δj ≥ ε (j = 0, . . . , q − 1).

Let δ(N) = (δ1, . . . , δq−1). Let f ∈ Aq,

(1.3) FB(N |r)(y) :=
1

B(N |r)#{n ∈ B(N |r), f(n) < y}.

Let furthermore

(1.4) QB(N |r)(D) := sup
y∈R

(

FB(N |r)(y + D) − FB(N |r)(y)
)

.

A direct consequence of the 3 series theorem of Kolmogorov is
that f ∈ Aq has a limit distribution, i.e. that

lim
N→∞

1

qN
#{n < qN | f(n) < y} = F (y) (almost all y),

F is a distribution function, if and only if

(1.5)
∞
∑

j=0

q−1
∑

b=1

f(bqj) is convergent,

and
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(1.6)

∞
∑

j=0

∑

f2(bqj) is convergent.

First we shall give necessary and sufficient conditions for the ex-
istence of such distribution function Fξ(y) depending on the parameter

ξ = (ξ1, ξ2, . . . , ξq−1), where ξi ≥ ε (i = 1, . . . , q − 1), ξ0 := 1 − (ξ1 +
+ . . . + ξq−1) ≥ ε, for which

(1.7) lim
N→∞
δj→ξj

FB(N,r)(y) = Fξ(y) (almost all y)

is satisfied.
Theorem 1. Let f ∈ Aq. If there exists some ξ1, . . . , ξq−1 satisfying
ξi ≥ ε (i = 0, 1, . . . , q − 1), for which (1.7) holds, then (1.5), (1.6) are
satisfied. If (1.5), (1.6) hold, then (1.7) holds true for all choices of
ξi satisfying ξi ≥ ε (i = 0, . . . , q − 1). Fξ(y) := P (Θξ < y), where

η0, η1 . . . are independent random variables, P (ηj = f(aqj)) = ξa (a =
= 0, 1, . . . , q − 1), Θξ =

∑∞
j=0 ηj.

Theorem 2. Let g ∈ Mq, and for ξi ≥ ε (i = 0, . . . , q − 1) let

(1.8) MN,ξ(g) :=

N−1
∏

j=0

(

ξ0 + ξ1g(1 · qj) + . . . + ξq−1g((q − 1)qj)
)

.

Assume that

(1.9)
∞
∑

j=0

q−1
∑

a=1

(g(aqj) − 1) is convergent.

Then

(1.2)ε sup

∣

∣

∣

∣

∣

∣

1

B(N, r)

∑

n∈B(N,r)

g(n) − MN,δ(N)(g)

∣

∣

∣

∣

∣

∣

→ 0 (N → ∞).

Consequently, if rj = r
(N)
j (j = 1, . . . , q − 1) are so chosen that

r
(N)
j /N → ξj (j = 1, . . . , q − 1) then

(1.10)
1

B(N, r(N))

∑

n∈B(N,r(N))

g(n) = M∞,ξ(g),

where M∞,ξ is the limit of MN,ξ (defined by (1.8)) for N → ∞.
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Theorem 3. Let f ∈ Aq, f(bqj) be bounded for j ∈ N0, b ∈ Aq. Let

(1.11) τb = τ
(N)
b :=

1

N

N−1
∑

j=0

f(bqj),

f̃(bqj) = f(bqj) − τb, b ∈ Aq, j = 0, 1, . . . , N − 1, f̃ be extended to N0

as a q-additive function.
Let r1, . . . , rq−1 be satisfying (1.2)ε,

σ2
N (δN ) :=

1

B(N |r)
∑

n∈B(N |r)

f̃2(n).

We have

σ2
N (δN ) =

N

N − 1

N−1
∑

l=0





∑

b∈Aq

rb

N

(

f̃(bql) − ml

)2



 , ml =
∑

b∈Aq

rl

N
f̃(bql).

Assume that

σ2
N

(

1

q
, . . . ,

1

q

)

→ ∞ (N → ∞).

Let h = hN ∈ Aq, h(n) := f̃(n)

σN (δN )
. Then

max
(1.2)ε

max
y∈R

∣

∣

∣

∣

1

B(N |r)#{n ∈ B(N |r), h(n) < y} − Φ(y)

∣

∣

∣

∣

→ 0

as N → ∞.

2. Lemmata

Lemma 1. Let f ∈ Aq, D > 0 be fixed. If f ∈ Aq, lim sup
bqj→∞

|f(bqj)| =

= ∞, then

max
(1.2)ε

QB(N |r)(D)

B(N |r) → 0 (N → ∞).

Proof. Let b∗∈ Aq\{0} be such coefficient for which lim sup
j→∞

|f(b∗qj)|=
= ∞. By changing the sign of f , if needed, we may assume that
lim sup

j→∞
f(b∗qj) = ∞.

Let l1 < l2 < . . . be such a sequence of integers for which 2D ≤
≤ f(b∗ql1), f

(

b∗qlh+1
)

≥ 2f(b∗qlh).
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Let N be a large integer, T be defined such that lT ≤ N − 1 <
< lT+1. Then T = TN → ∞. We may assume that TN | log N → 0
(say). Let

U = {l1, l2, . . . , lT }, V = {0, 1, . . . , N − 1}\U.

Consider all those n ∈ B(N, r) for which f(n) ∈ [y, y + D]. Let
s0, s1, . . . , sq−1 be nonnegative integers such that s0 + s1 + . . .+ sq−1 =
= T . Let

E(U)
s0,s1,...,sq−1

=







m | m =

T
∑

j=1

εlj (m)qlj , βb(m) = sb, b ∈ Aq







F (U)
s0,...,sq−1

=

{

ν | ν =
∑

r∈V

εr(ν)qr, βb(ν) = rb − sb, b ∈ Aq

}

.

We have

#F (U)
s0,...,sq−1

= B(N−T | r−s) =
(N − T )!

(r0−s0)!(r1−s1)! . . . (rq−1−sq−1)!

#E(U)
s0,...,sq−1

= B(T |s) =
T !

s0!s1! . . . sq−1!
.

It is clear that every n ∈ B(N |r) can be written uniquely as n = m+ν,

where m ∈ E(U)
s0,...,sq−1 and ν ∈ F (U)

s0,...,sq−1 . Let us fix a ν with

ν =
∑

r∈V

εr(ν)qr, βb(ν) = rb − sb, b ∈ Aq.

Let Us0,sb∗
be an arbitrary subset of U having exactly s0 + sb∗

elements,

Us0,sb∗
=

{

j1 < j2 < . . . < js0+sb∗

}

,

Hs0,sb∗
= U\Us0,sb∗

, Hs0,sb∗
=

{

k1 < k2 < . . . < kT−(s0+sb∗ )

}

.

We shall write every m ∈ E(U)
s0,...,sq−1 as κ+ρ, where κ =

sb∗
∑

h=1

b∗qrh ,

r1 < r2 < . . . < r∗sb
is an arbitrary sequence of the elements of Us0,s∗

b
,

and ρ =
∑

εp(ρ)qp, where p runs over all elements of Hs0,sb∗
, εp(ρ) ∈

∈ Aq\{0, b∗}, and βl(ρ) = sl if l ∈ Aq\{0, b∗}.
Let Hs0,sb∗

be fixed, and r
(i)
1 < r

(i)
2 < . . . < r

(i)
sb∗

(i = 1, 2) be

two subsequences and κ(1), κ(2) be the corresponding integers: κ(j) =

=
sb∗
∑

h=1

b∗qr
(j)
h (j = 1, 2).
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From the definition of the sequence U we obtain that |f(κ(1)) −
− f(κ(2))| > D.

Assume that f(n) ∈ [y, y + D], in ∈ B(N |r). Then n can be
written in the form

n = κ + ρ + ν.

Let ν be fixed, βl(ν) = rν − sν , s0, . . . , sq−1 are determined by ν.

We can form exactly

(

T
s0 + sb∗

)

different sets Us0 , sb∗ .

Assume that Us0,sb∗
is fixed. Then the number of ρ is

(T − (s0 + sb∗))!
∏

j 6=0,b∗
sj !

.

Let us assume now that ν, ρ, s0, s
∗
b and Us0,s∗

b
are fixed. Then no

more than one κ is appropriate. Thus we have

QB(N,r)(d) ≤

≤
∑

s0,...,sq−1

(N − T )!

(r0 − s0)! . . . (rq−1 − sq−1)!

(

T
s0 + sb∗

)

(T − (s0 + sb∗))!
∏

j 6=0,b∗
sj !

,

(2.1)

QB(N,r)(D)

B(N |r) ≤

≤ 2
∑

s0+···+sq−1=T

T !

s0!...sq−1!

(r0

N

)s0

...
(rq−1

N

)sq−1

· s0!sb∗ !

(s0+s∗b)!
.

We subdivide the sum on the right hand side of (2.1) as
∑

1 +
∑

2 +
+

∑

3 +
∑

4, where in
∑

1 s0 = 0, in
∑

2 s∗b = 0; in
∑

3 s0 + s∗b ≤ H
and s0, sb∗ ≥ 1; and in

∑

4 : s0 + s∗b > H, s0sb∗ 6= 0.

One can see easily that
∑

1,
∑

2,
∑

3 = oN (1).

Since s0!sb∗ !
(s0+sb)!

= 1
(

s0 + sb

s0

) ≤ 1
s0+sb

≤ 1
H , we obtain that

∑

4 ≤ 2/H.

Since H is an arbitrary large fixed number, therefore Lemma 1 is true.

Lemma 2. Let f ∈ Aq, f̃ be defined as in Th. 3.

Let ml :=
∑

b∈Aq

rb

N f̃(bql). Then
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(2.2)
1

B(N |r)
∑

n∈B(N |r)

f̃2(n) =
N

N − 1

N−1
∑

l=0

∑

b

rb

N

(

f̃(bql) − ml

)2

.

Proof. Since

1

B(N |r)
∑

n∈B(N |r)

f̃(n) =
N−1
∑

j=0

∑

b∈Aq

f̃(bqj)
rb

N
= 0,

we have
1

B(N |r)
∑

n∈B(N |r)

f̃2(n) =
∑

b1 6=b2

rb1

N

rb2

(N − 1)

∑

l1 6=l2

f̃(b1q
l1)f̃(b2q

l2)+

+
∑

b∈Aq

(rb − 1)rb

(N − 1)N

∑

l1 6=l2

f̃(bql1)f̃(bql2) +
∑

b

rb

N

N−1
∑

l=0

f̃2(bql).

Since
N−1
∑

j=0

f̃(bqj) = 0 (b ∈ Aq), therefore

∑

= −
∑

b1 6=b2

rb1

N
· rb2

(N − 1)

N−1
∑

l=0

f̃(b1q
l)f̃(b2q

l)+

+
∑

b

rb

N

(

1 − rb−1

N − 1

)

∑

l

f̃2(bql)

whence we obtain that

∑

=
N

N − 1

N−1
∑

l=0

∑

b

rb

N

(

f̃(bql) − ml

)2

,

thus Lemma 2 is true.

3. Proof of Theorem 3

We shall use the Frechet–Shohat theorem. (See [1].)
Let

(3.1) ml :=
∑

b∈Aq

rb

N
f̃(bql),

and

(3.2) gl(b) = f̃(bql) − ml (b ∈ Aq).

For n < qN let
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(3.3) g(n) :=
N−1
∑

j=0

gj(εj(n)).

We have
N−1
∑

l=0

ml =
∑

b∈Aq

rb

N

∑

l

(f(bql) − τb) = 0.

Let

(3.4) K(n) :=
g(n)

σN
(n = 0, 1, . . . , qN − 1),

and

(3.5) Sh(N) :=
1

B(N |r)
∑

n<qN

Kh(n).

We shall prove that

(3.6) max
(1.2)ε

|Sh(N) − µh| → 0 (N → ∞),

where

µh =
1√
2π

∞
∫

−∞

uhe−u2/2du

We have

∑

n∈B(N |r)

Kh(n) =
h

∑

s=1

∑

a1+...+as=h

d(a1, . . . , as)
∑

b1,...,bs∈Aq

∑

l1,...,ls

Ka1(b1q
l1) . . . Kas(bsq

ls)EN (s, b, a, l),

where a1, . . . , as are positive integers, d(a1, . . . , as) the coefficient com-
ing from the polynomial theorem, b1, ..., bs run over the possible values
of Aq, independently, l1, ..., ls run over {0, 1, ..., N −1} such that li 6= lj
if i 6= j, and

EN (s, b, a, l) =
(N − s)!

q−1
∏

b=0

(rb − eb)!

,

where eb := #{b among b1, . . . , bs}.
We have
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(3.7)

ψa(s, b) =
E(s, b, a, l)

B(N |r) =

q−1
∏

b=0

eb−1
∏

j=0

(rb − j) ·
s−1
∏

j=0

1

(N − j)
=

=

q−1
∏

b=0

( rb

N

)eb

·
s−1
∏

j=0

1

(1 − j/N)
·

q−1
∏

b=0

eb−1
∏

j=0

(1 − j/rb) .

Thus

1

B(N |r)
∑

n∈B(N |r)

Kh(n) =

h
∑

s=1

∑

a1,...,as=h

d(a1, . . . , as)H(a1, . . . , as),

H(a1, . . . , as) =
∑

b1,...,bs

T (a1, . . . , as | b1, . . . , bs),

T (a1, ..., as | b1, ..., bs) =
∑

l1,...,ls

Ka1(b1q
l1)...Kas(bsq

ls)ψa(s, b).

(3.8)

Let aj = 1 for some j ∈ {1, . . . , s}. We have
∑

l 6={l1,...,lj−1,lj+1,...,ls}

K(bjq
l) =

= −K(bjq
l1) − . . . − K(bjq

lj−1) − K(bjq
lj+1) − . . . − K(bjq

ls).

Iterating this procedure we can rewrite (3.8) as no more than O(h)
sums of type

(3.9) ψa(s, b) ·
∑

t1,t2,...,tp

p
∏

j=1

(

mj
∏

u=1

Kqu,j (cu,jq
tj )

)

=: Q,

where cu,j ∈ Aq,
mj
∑

u=1
qu,j ≥ 2, and #{cu,j = b | u, j} = eb and the

summation is over those tj ∈ {0, . . . , N − 1} (j = 1, . . . , p) for which
ti 6= tj (i 6= j).

We shall prove that Q = oN (1) if maxj

mj
∑

u=1
qu,j ≥ 3.

Indeed

|K(b1q
t)K(b2q

t)| ≤ K2(b1q
t) + K2(b2q

t),

and in general

|K(b1q
t) . . . K(bvqt)| ≤

(∣

∣Kv(b1q
t)

∣

∣ + . . . +
∣

∣Kv(bvq
t)

∣

∣

)

.

Furthermore max
b,l

|K(bql)| ≤ c
σN

→ 0 (N → ∞), and hence our asser-
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tion directly follows.

It remains to consider the case when
mj
∑

u=1
qu,j = 2 holds for every

j = 1, 2, . . . , p.

Let Q be such a sum in which there is an l for which q1,l = q2,l = 1.
Observe that

(3.10) ψa(s, b) =

q−1
∏

b=0

( rb

N

)eb

(

1 + O

(

1

N

))

.

Then

(3.11)

Q

(

cl

dl

∣

∣

∣

∣

.

)

=

= ψa(s, b)
∑

tl

K(clq
tl)K(dlq

tl)
∑∗

t1,...,tl−1,
tl+1,...,tp

∏

j 6=l

mj
∏

u=1

Kqu,j (cu,jq
tj )

and ∗ means that tν 6= tl if ν 6= l.

Let
(3.12)

Q0

(

cl

dl

∣

∣

∣

∣

.

)

=

=
∑

(rcl

N
K(clq

tl)
) rdl

N
K(d1q

tl)
∑∗ ∏

j 6=l

mj
∏

u=1

(rcu,j

N
Kqu,j (cu,jq

tj )
)

.

Then

Q

(

cl

dl

∣

∣

∣

∣

.

)

= Q0

(

cl

dl

∣

∣

∣

∣

.

)

+

+ O

(

1

N

∑

tl

∣

∣

∣

rcl

N
K(clq

tl)
∣

∣

∣

∣

∣

∣

rdl

N
K(dlq

tl)
∣

∣

∣
·

·
∑∗ ∏

j 6=l

mj
∏

u=1

∣

∣

∣

rcu,j

N
K(cu,jq

tj )qu,j

∣

∣

∣

)

.

The error term is clearly oN (1). Furthermore Q0 does not depend
on the numbers ej . In the definition of H(a1, . . . , as) we have to sum
T (a1, . . . , as | b1, . . . , bs) over all possible values of b1, . . . , bs ∈ Aq. Since
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(

q−1
∑

cl=0

rcl

N
K(clq

tl)

) (

q−1
∑

dl=0

rdl

N
K(dlq

tl)

)

= 0,

the effect of these summands can be ignored.
Hence we obtain that (3.6) holds with µh = 0 if h = odd, and for

h = 2s

(3.13)

1

B(N |r)
∑

n∈B(N,r)

K2s(n) = d(2, 2, . . . ,
s
2)

∑

b1,...,bs∈Aq

∑

l1,...,ls

K2(b1q
l1) . . . K2(bsq

ls)ψ2(s, b) + oN (1).

Substituting ψ2(s, b) by
q−1
∏

b=0

(

rb

N

)eb , and omitting the condition on

the right hand side of (3.13), the difference is oN (1). Thus the left hand
side of (3.13) equals to

d(2, . . . , 2)





∑

l

∑

b∈Aq

rbK
2(bql)

N





s

+ oN (1) =
(2s)!

2s
+ oN (1).

This proves the theorem.

4. Proof of Theorem 1, necessity

In Lemma 1 we proved that if f has a limit distribution according
to Th. 1, then f(bqj) is bounded. If (1.6) would be divergent, then we
would be able to show that f satisfied the conditions of Th. 3, which
would imply that QB(N,r)(D) → 0 (N → ∞).

Therefore (1.6) is convergent.
The proof of the convergence of (1.5) easily follows from Lemma 2.

We omit the details.

Proof of Theorem 2 and the sufficiency part of The-
orem 1

Let gR(n) :=
R−1
∏

j=0

g(εj(n)qj). Let g(aqj) = eiψ(aqj), ψ(aqj) ∈

∈ [−π, π]. From (1.9) we obtain that
∑

j

∑

a
ψ(aqj) is convergent, and
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that
∑

j

∑

a
ψ2(aqj) is convergent as well. Hence, by using Lemma 2 we

can deduce that

sup
(1.2)ε

1

B(N, r)

∑

n<qN

|g(n) − gR(n)| ≤ κR(N),

where κR(N) → 0 if R,N → ∞, and this implies Th. 2.
The sufficiency part of Th. 1 can be proved by defining g(n) :=

:= gτ (n) = eiτf(n), and considering

1

B(N |r)
∑

n<qN

gτ (n)

as the characteristic function of the distribution function of f . Since

∞
∑

j=0

q−1
∑

a=0

(gτ (aqj) − 1)

converges, we can apply Th. 1. This completes the proof. ♦
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