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1. Introduction

This paper continues the investigation, began in [11], of connec-
tions between the structure of a ring and that of its multiplicative semi-
group of right ideals. Here “ring” will mean ring not necessarily with
identity, and R will always denote a non-zero ring. We use R(R) for the
multiplicative semigroup of right ideals of R. In [11, Th. 3.1] we showed,
for rings with identity, that the semigroup R(R) is von Neumann regular
if and only if it is a band (every element is an idempotent). The same ar-
gument holds for rings without identity. Rings for which every right (left)
ideal is idempotent are called right (left) weakly regular rings in [14]. We
abbreviate “right weakly regular” by r.w.r. There are many interesting
equivalent conditions to a ring being right weakly regular, some of which
are discussed in Sec. 2. In various guises these rings have been studied
since at least 1950 [2].

In this paper we investigate the structure of the ring R and the
semigroup R(R) when R(R) is a band, i.e., when R is right weakly reg-
ular. Note that the zero ideal is the zero for the semigroup R(R). If R
has unity or if R is r.w.r., then R is a right identity for R(R).

In Sec. 2 we present relevant background material on r.w.r. rings,
including some methods for constructing such rings. In Sec. 3 we develop
conditions for right and two-sided ideals in the context of the r.w.r. condi-
tion. Sec. 4 focuses on the structure of the semigroup R(R), ending with a
ring-semigroup decomposition theorem. Examples are given throughout
which illustrate and delimit the theory developed.

2. General results and examples

We use 〈b〉r and 〈b〉 for the right ideal and two-sided ideal of R
generated by b, respectively. The first result below gives some useful and
illuminating equivalent conditions to being right weakly regular.

Proposition 2.1. The following are equivalent:
(a) R is r.w.r.;
(b) if b ∈ R, then b ∈ (bR)2;
(c) if H,K ∈ R(R) and H ⊆ K, then HK = H;
(d) every principal right ideal of R is idempotent;
(e) if b ∈ R, then b ∈ b〈b〉;
(f) every factor ring of R is r.w.r.
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Proof. The equivalence of (a), (b), and (c) is proved in [14, Prop. 1].
Assume (d) and let B ∈ R(R). For any b ∈ B we have 〈b〉r = (〈b〉r)

2 =
= bRbR + bRb + b2R + Zb2 ⊆ bR, where Z is the ring of integers; so
〈b〉r = bR. Thus 〈b〉r = (bR)2 and so b ∈ (bR)2; so (d) implies (b).
Since (a) implies (d) is immediate, we have that (a) through (d) are
equivalent. Observe that if R is r.w.r., then 〈b〉r = bR. So assuming
(a) we have b〈b〉 = b2R + bRb + bRbR. Since b ∈ (bR)2 we have that
b is in b〈b〉. Thus (a) implies (e). Assume (e) and let b ∈ R. From
b〈b〉 ⊆ bR we have b is in bR and b〈b〉r = bR. A routine calculation
then yields b〈b〉 ⊆ (bR)2 and hence bR ⊆ (bR)2; so bR = (bR)2 and
consequently 〈b〉r = (〈b〉r)

2. Thus (e) implies (d), and hence (a) through
(e) are equivalent. The equivalence of (a) and (f) is immediate. ♦

Corollary 2.2. If R is a r.w.r. ring, then R is a right identity for R(R).

Proof. Use Prop. 2.1. (c)with K = R. ♦

Further equivalent conditions to R being r.w.r. when R has unity
can be found in [8, Th. 8], [9, Lemma 1], [14, Rem. 3], and [19, p. 171].

Brown and McCoy [2, Ex. 2] briefly commented on rings that
satisfy condition (e) in Prop. 2.1. [2, Ex. 2]. They noted that the class of
all such rings, which we call W , is a hereditary Amitsur–Kurosh radical
class. This is proved explicitly in [1, Prop. 1] and discussed in [18, p. 197].
(Of course, Brown and McCoy did not use the terminology “hereditary
Amitsur–Kurosh radical” in 1950.) We will use W1 for the class of all
rings with unity that are in W . Observe that W1 as well as W is closed
under homomorphic images. The next result addresses closure under
direct products.

Proposition 2.3. Let Λ be a nonempty index set.
(a) If Rλ ∈ W1 for each λ ∈ Λ, then the direct product

∏

Rλ, λ ∈ Λ, is
in W1.

(b) If Rλ ∈ W for each λ ∈ Λ, then
∏

Rλ, λ ∈ Λ, is in W.

Proof. (a) Let x = (. . . , xλ, . . .), where xλ ∈ Rλ, be an arbitrary element
in

∏

Rλ. Using (b) in Prop. 2.1., we have that xλ is in (xλRλ)
2. So x is

in (x
∏

Rλ)
2 and hence

∏

Rλ is in W1.
The proof for (b) is strictly analogous. ♦

The classes W and W1 are not closed under taking subrings. For
example, the rational number field Q, which is in W1, has the ring of
integers, Z, as a subring, and Z is not in W1. The class W is not closed
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under taking right ideals. For example, for any skewfield F the set B =

=

[

F F
0 0

]

is a right ideal of the full ring of 2× 2 matrices over F , which

is a regular ring and hence is r.w.r. Since

[

0 F
0 0

]

is a nilpotent ideal of

B, we see that B is not r.w.r.
For convenience, if I is a (left, right, two-sided) ideal of a ring R

and I ∈ W, then we say I is a r.w.r. (left, right, two-sided) ideal. Since
W is an Amitsur–Kurosh radical class, each ring R has a unique largest
r.w.r. ideal, the sum of all the r.w.r. ideals, which we denote by W(R).
For more concerning this radical see [1], [2], and [18, p. 197].

The class W is broad and varied. It contains all rings which are
regular, biregular, or simple with unity. The following omnibus result
gives several conditions useful in building further examples of r.w.r. rings.
(These, of course, can be combined with direct products, direct sums, and
homomorphic images to obtain even more examples.)

Proposition 2.4. Let R be r.w.r.
(a) R can be embedded as an ideal in a r.w.r. ring with unity.
(b) The full n × n matrix ring over R, Mn(R), is r.w.r. for each n.
(c) If R has unity, G is a locally finite group, and the order of each

element of G is a unit in R, then the group ring R[G] is r.w.r.
(d) If R has unity and M is a finitely generated unitary right R-module,

then EndR(M) is r.w.r.

Proof. (a) In [14, Prop. 20] this result is stated and it is remarked that
it can be proved by adapting ideas of Fuchs and Halperin [7]. Details of
a proof of this and more general results will be given in [12].

(b) Embed R as an ideal in a ring R1 which has unity and is r.w.r.
Then Mn(R1) is r.w.r. by [19, Prop. 20.4(2)]. Since Mn(R) is an ideal of
Mn(R1) and since any ideal of a r.w.r. ring is r.w.r., we have that Mn(R)
is r.w.r.

(c) This is given in [8, Th. 9].
(d) This is proved in [19, Prop. 20.4 (3)]. ♦

Example 2.5. Let T1 ⊂ T2 ⊂ · · · ⊂ Tn ⊂ Tn+1 ⊂ · · · be a strictly
increasing family of r.w.r. rings, and let T = ∪∞

n=1Tn. Lift the operations
on the Tn to T to obtain a ring. If x ∈ T , then x is in some Tn. Since
Tn is r.w.r. we have that x ∈ (xTn)2 and hence x ∈ (xT )2; so T is r.w.r.
In particular this can be done where A is any r.w.r. ring and Tn is the
full ring of n× n matrices over A. Then Tn embeds in Tn+1 as the upper
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n × n block. In this case T can be viewed as a certain ring of infinite
matrices.

It is immediate from the definition that a r.w.r. ring is semiprime.
Ramamurthi [14] showed that if R is r.w.r., then its Jacobson radical,
J(R), is zero. Consequently, every r.w.r. ring is isomorphic to a subdirect
product of primitive r.w.r. rings. The converse does not hold since the
ring of integers, Z, is isomorphic to a subdirect product of fields. A dis-
cussion of W as an Amitsur–Kurosh radical class is given in [18, p. 197],
where it is noted that W(R) is always contained in the maximal biregular
ideal of R, B(R), and that B(R/W(R)) = 0.

3. Ideals and right ideals

Proposition 3.1. Let R be a simple ring. Then the following are equiv-
alent:
(a) R is r.w.r.;
(b) r ∈ rR for each r ∈ R;
(c) R is a right identity for R(R);
(d) R(R) \ {0} is a left zero semigroup; i.e., HK = H for each nonzero

H,K ∈ R(R).

Proof. The equivalence of (a) and (b) is established in [1, Cor. 1].
Cor. 2.2. gives (a) implies (c). Assume (c) and let H,K ∈ R(R) with
K 6= 0. Then HK = (HR)K = H(RK) = HR = H. So (c) implies (d).
Next, (d) implies (a) is immediate, completing the logical circuit. ♦

The obvious left-sided version of Prop. 3.1. holds, so a simple ring
with unity is both r.w.r. and l.w.r. (left weakly regular). Andruskiewicz
and Puczylowski gave an example of a simple ring that is r.w.r. but not
l.w.r. [1]. They also give an example of a r.w.r ring with unity that is not
l.w.r. The following example illustrates that there are non-trivial simple
rings which are neither r.w.r. nor l.w.r.

Example 3.2. Let R be a simple ring, not necessarily having unity, and
let R2 6= 0. If J(R) = R, then R cannot be in W . (Recall from [14,
Prop. 14] that if R ∈ W, then J(R) = 0, where J(R) is the Jacob-
son radical.) Examples of such rings were given by Sasiada [15]. (Also
see [16], [18, Sec. 32].) Even more extraordinary examples exist: the nil
simple algebras constructed by Smoktunowicz [17].
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Corollary 3.3. Let R have a right (left) unity and let M be a maximal
ideal of R. Then:
(a) R/M is both r.w.r. and l.w.r.;
(b) if M ∈ W, then R ∈ W.
Proof. Since R/M is a simple ring with a right (left) unity, it has unity
and hence is both r.w.r. and l.w.r. Consequently, when M is also r.w.r.
we have R is r.w.r. ♦

Corollary 3.4. Every ring with a right (left) unity has a nonzero homo-
morphic image which is r.w.r. and l.w.r.
Proof. Every ring with a right (left) unity has a maximal ideal. ♦

Since W is an hereditary Amitsur–Kurosh radical, the sum of r.w.r.
ideals is r.w.r. The analogous result does not hold for right ideals, as the
next example shows.
Example 3.5. Let S = {a, b} be the semigroup with both elements
being right identities, i.e., the left zero semigroup of order two, and form
the semigroup ring Z2[S]. The principal right ideals 〈a〉r and 〈b〉r are
r.w.r. and their sum is Z2[S], which is not r.w.r. since it has a nilpotent
ideal, 〈a + b〉r.

Next, embed A = Z2[S] as an ideal in the ring A1, using the Dorroh
extension and Z2 × A to get a ring with unity. Since right ideals in A
are also right ideals in A1, this gives an example of a ring with unity in
which the sum of two r.w.r. right ideals is not r.w.r.

The next results achieve a middle ground between the result for
r.w.r. ideals and that for r.w.r. right ideals.
Proposition 3.6. Let I and B be a r.w.r. ideal and a r.w.r. right ideal
of R, respectively. Then I + B is a r.w.r. right ideal of R.
Proof. Note that (I+B)/I ∼= B/B∩I. Since B/B∩I is a homomorphic
image of B, we have that B/B∩ I and hence I +B/I are r.w.r. This and
I r.w.r. imply that I + B is r.w.r. (Recall that if I is an ideal of a ring R
such that I and R/I are r.w.r., then R is r.w.r. [14, Prop. 5].) ♦

Proposition 3.7. Let B be a r.w.r. right ideal in R, and let ΩB be the
set of all r.w.r. right ideals of R that contain B. Then (ΩB,⊆) has a
maximal element. In particular, any ring R contains a r.w.r. right ideal
which is maximal among all r.w.r. right ideals of R.
Proof. Let C be a chain in (ΩB,⊆) and let T = ∪C. Let t ∈ T . There
exists A ∈ C such that t ∈ A. Then t ∈ (tA)2, and hence t ∈ (tT )2. Thus
T ∈ ΩB. By Zorn’s Lemma (ΩB,⊆) has a maximal term.

Since the zero ideal is trivially r.w.r., using B = 0 gives that there
is a maximal element in the set of all r.w.r. right ideals of R. ♦
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Corollary 3.8. Let D be a maximal term in the set of all r.w.r. right
ideals. Then either D = 0, W(R) ⊆ D, or R is r.w.r.

Proof. If D 6= 0 and W(R) * D, then maximality of D yields D +
+ W(R) = R. ♦

Since W1 contains all simple rings and is closed under finite direct
sums, we see that all semiprime rings with d.c.c. on right (left) ideals are
in W1. This result can be improved. Recall that R is called an MHR-
ring if R has d.c.c. on principal right ideals [13, p. 348]. Such rings are
also called “semiperfect rings” [6]. A semiprime MHR-ring is regular [13,
pp. 350, 364]. Of course, a similar result holds if MHR is replaced by
d.c.c. on principal left ideals.

4. The semigroup structure of R(R)

A semigroup S is a left normal band if S is a band satisfying hkl =
= hlk for all h, k, l ∈ S [10, p. 133].

Proposition 4.1. If R is r.w.r., then R(R) is a left normal band.

Proof. Let H,K,L ∈ R(R). Observe that KL = (KL)2 ⊆ KLK ⊆ KL,
so KL = KLK. Then from HKL ⊆ HL we have HKLK ⊆ HLK. But
HKLK = H(KLK) = HKL, so HKL ⊆ HLK. Similarly we get
HLK ⊆ HKL, and hence HKL = HLK. ♦

Similarly one can show that the semigroup of left ideals of a left
weakly regular ring is a right normal band, i.e., a band which satisfies
the identity hkl = khl. Observe that a semigroup which is both a left
normal band and a right normal band is a semilattice.

Recall that a variety of semigroups is a non-empty class of semi-
groups which is closed under direct products, subsemigroups, and homo-
morphic images [3, p. 61]. We use LN for the class of all left normal bands,
LZ for the class of all left zero semigroups (i.e., semigroups satisfying
hk = k for all h, k), and SL for the class of all semilattices. Observe that
LN is a variety and LZ and SL are proper subvarieties of LN. (For basic
ideas and terminology on varieties, see [3].) The following result, cited
in Ćirić and Bogdanović, yields insight into the makeup of the class LN.

Proposition 4.2. ([4, p. 53]) The only proper subvarieties of LN are
LZ and SL.

In light of Prop. 4.2. it is natural to ask if it possible that R(R) ∈
∈ SL or R(R) ∈ LZ. The former question has already been answered
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for rings with identity in [11, Th. 3.5]. A minor change in that argu-
ment gives us the same result for rings which do not necessarily contain
identity.

Since a non-trivial left zero semigroup does not have a zero element,
it is not possible for a r.w.r. ring R to satisfy R(R) ∈ LZ. However,
we still have a characterization of R(R) in terms of LZ. Recall from
Prop. 3.1. that for a simple ring R we have that R is r.w.r. if and only if
R(R) is a left zero semigroup with zero adjoined.

We now consider I(R), the semigroup of ideals of a ring R, and
L(R), the semigroup of left ideals of R.

Proposition 4.3. Let I(R) be von Neumann regular. Then:
(a) I(R) is a semilattice with identity;
(b) if B ∈ R(R) ∪ L(R), then B3 = B4;
(c) if R has unity, then B2 = B3 for each B ∈ R(R) ∪ L(R).

Proof. (a) Let I ∈ I(R). Then I = ITI for some T ∈ I(R) and hence
I ⊆ IT ⊆ I, or I = IT . Note that IT is idempotent.

To see that I(R) is commutative, again let I, T ∈ I(R). Then IT =
= IIT = ITI by left normality. But ITI ⊆ TI. Thus, IT ⊆ TI. The
same argument yields TI ⊆ IT . It follows that R is the identity for I(R).

(b) Let B ∈ R(R). Then RB ∈ I(R) and hence B2 ⊆ RB =
= (RB)3 ⊆ RB3. So B3 ⊆ BRB3 ⊆ B4, and hence B3 = B4. Proceed
similarly for B ∈ L(R).

(c) For B ∈ R(R), since R has unity we have B ⊆ RB. Hence
B ⊆ (RB)2 ⊆ RB2, and so B2 ⊆ BRB2 ⊆ B3. So B = B3. Proceed
similarly for B ∈ L(R). ♦

A ring for which every ideal is idempotent is called a fully idempo-
tent ring [5]. (The term “weakly regular” is also used.) We see that R
is fully idempotent if and only if I(R) is von Neumann regular, and in
this case each of the semigroups R(R) and L(R) are π-regular. (Recall
that a semigroup S is π-regular if and only if for each s ∈ S there exists
s′ ∈ S, n ∈ N, such that sn = sns′sn, where n may depend on S.)

A similar argument to that used in part (b) above establishes the
following result.

Corollary 4.4. If I(R) is π-regular, then R(R) and L(R) are π-regular.

Proof. Let B ∈R(R). Then RB ∈ I(R) and hence there exists T ∈ I(R)
and some n ∈ N such that (RB)n = (RB)nT (RB)n and hence (RB)n =
=(RB)nT . Thus (RB)n is idempotent. So B2n⊆(RB)n =(RB)3n⊆RB3n,



Semigroup of right ideals 165

and hence B2n+1⊆BRB3n⊆B3n+1. Since B3n+1⊆B2n+1 we have B2n+1 =
=B3n+1 and so R(R) is π-regular. Proceed similarly for L(R). ♦

Let L2(R) denote the set of squares of left ideals of R.

Corollary 4.5. If R is a r.w.r. ring with identity, then L2(R) is a sub-
semigroup of L(R) and is a homomorphic image of L(R).

Proof. (a) We show that for each L, T ∈ L(R) we have L2T 2 = (LT )2,
which establishes that L2(R) is a subsemigroup and that the mapping
L → L2 is a homomorphism from L(R) to L2(R). Observe that L2T 2 =
= L(RL)(RT )RT = (LR)(LR)(TR)T = (LR)(TR)(LR)T , since R(R) is
left normal. But (LR)(TR)(LR)T = LTLT , giving the desired result. ♦

Finally, we present decompositions for R in terms of R(R) and for
R(R) in terms of R.

Lemma 4.6. Let H be a right ideal and I an ideal of a r.w.r. ring R.
Then HI = H ∩ I.

Proof. HI ⊆ H ∩ I = (H ∩ I)2 ⊆ HI; so HI = H ∩ I. ♦

Ramamurthi gives the above result, without proof, for r.w.r. rings
with unity [14, Remark 3(b)].

Proposition 4.7. Let R be r.w.r. If R = A ⊕ B, as a direct sum of
ideals, then R(R) is isomorphic as a semigroup to R(A) × R(B).

Proof. Let H be an arbitrary right ideal of R. Then H = HR = H(A⊕
⊕B) = (HA)⊕ (HB) = (H ∩A)⊕ (H ∩B). Define φ : R(R) → R(A)×
×R(B) via φ(H) = (HA,HB). Making use of the fact that R(R) is a left
normal band, we have φ(HK) = (HKA,HKB) = (HKAA,HKBB) =
= (HAKA,HBKB) = (HA,HB)(KA,KB) = φ(H)φ(K) for each K ∈
∈ R(R). If φ(H) = φ(K), then H ∩ A = K ∩ A and H ∩ B = K ∩ B;
so H = (H ∩ A) + (H ∩ B) = (K ∩ A) + (K ∩ B) = K. Next, let
T ∈ R(A), V ∈ R(B). Then T, V and T + V are in R(R). Observe that
φ(T + V ) = ((T + V )A, (T + V )B) = (TA, V B). However, since A and
B are r.w.r., A is a right identity for R(A) and B is a right identity for
R(B). So φ(T + V ) = (T, V ). So φ is the desired isomorphism. ♦

Lemma 4.8. Let A,B ∈ R(R) such that AB = 0. If either (a) R is
r.w.r. or (b) R has unity and is fully idempotent, then A ∩ B = 0.

Proof. If R is r.w.r., then A ∩ B = (A ∩ B)2 ⊆ AB = 0. If R has unity
and is fully idempotent, then RARB ⊆ RAB = 0. So A ∩ B ⊆ (RA) ∩
∩ (RB) = [(RA) ∩ (RB)]2 ⊆ RARB = 0. ♦

Proposition 4.9. Let R be r.w.r. If the semigroup R(R) is isomorphic
to S1 × S2, where each Sj is non-trivial, then there exist non-zero ideals
A and B of R such that R = A ⊕ B.
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Proof. Let ψ : R(R) → S1 × S2 be a semigroup isomorphism. Observe
that S1 and S2 are semigroups with zero and that ψ(0) = (0, 0). Since R is
a right identity for R(R) we have ψ(R) = (e1, e2), where ej is a right iden-
tity for Sj, j = 1, 2. Let A,B ∈ R(R) such that ψ(A) = (e1, 0), ψ(B) =
= (0, e2). Then ψ(AB) = ψ(A)ψ(B) = (0, 0) and hence AB = 0. So
A ∩ B = 0. Next, ψ(RA) = ψ(R)ψ(A) = (e1, e1)(e1, 0) = ψ(A), and
hence RA = A and A is an ideal of R. Similarly, B is an ideal of R.

Let ψ(A⊕B) = (a, b) ∈ S1×S2. Then using (A⊕B)B = B, we have
ψ(A⊕B)ψ(B) = ψ((A⊕B)B) = ψ(B) = (0, e2). Also, ψ(A⊕B)ψ(B) =
= (a, b)(0, e2) = (0, be2). So (0, e2) = (0, be2) and hence e2 = be2 = b.
Similarly, e1 = a and consequently ψ(A ⊕ B) = (e1, e2) = ψ(R). So
R = A ⊕ B.

Finally, note that if A = 0, then e1 = 0, forcing S1 = 0. ♦

It is worth noting that in neither Prop. 4.7. or 4.9. are the rings
assumed to have unity.
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