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Abstract: Shift radix systems provide a unified notation to study several im-
portant types of number systems. However, the classification of such systems

is already hard in two dimensions. In this paper, we consider a symmetric
version of this concept which turns out to be easier: the set of such number
systems with finite expansions can be completely classified in dimension two.

1. Introduction

Shift radix systems, defined in [4], provide a unified notation for
canonical number systems (for short CNS) as well as β-expansions.
Both concepts are generalisations of the well-known b-ary expansions
of integers.

Let d ≥ 1 be an integer and r = (r1, . . . , rd) ∈ Rd. With r we
associate a mapping τ̃r : Zd → Zd in the following way: if z =
= (z1, . . . , zd) ∈ Zd then let
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(1.1) τ̃r(z) = (z2, . . . , zd,−⌊rz⌋),

where rz = r1z1 + · · · + rdzd is the inner product of the vectors r and
z. Then (Zd, τ̃r) is called a shift radix system (for short SRS) on Zd.
From (1.1) it follows that τ̃r(z) = (z2, . . . , zd+1) if and only if

(1.2) 0 ≤ r1z1 + r2z2 + · · · + rdzd + zd+1 < 1.

It is an important problem for CNS and β-expansions to deter-
mine whether or not each number admits a finite expansion. In SRS
language, it translates to one question:

For which r, do all orbits of (Zd, τ̃r) end in 0 = (0, . . . , 0)?
Unfortunately, already for d = 2, this seems to be a hard problem,

though in [5], a partial answer is given. A main difficulty arises when
the polynomial xd + rdx

d−1 + · · ·+ r1 has a root close to the unit circle.
In the present paper, we will study a ‘symmetric’ version of SRS.

We consider a mapping

(1.3) τr(z) = (z2, . . . , zd,−⌊rz + 1
2⌋)

instead of (1.1). Therefore, we obtain a condition

(1.4) −1
2 ≤ r1z1 + r2z2 + · · · + rdzd + zd+1 < 1

2

instead of (1.2). Then (Zd, τr) is called a symmetric shift radix system
(for short SSRS) on Zd. Let

Dd := {r∈Rd : ∀z ∈ Zd, the sequence (τk
r
(z))∞k=0 is eventually periodic},

D0
d := {r∈Rd : ∀ z ∈ Zd, ∃ k > 0 : τk

r
(z) = 0}.

Our aim is to describe as precisely as possible the sets Dd and D0
d. For

d = 1, we have:

(1.5) D1 = [−1, 1] and D0
1 =

(
−1

2 , 1
2

]
.

Since τr(x) = −⌊rx + 1
2⌋, both equalities are almost trivial. In fact,

to deduce the second one, we just have to look at orbits τn
r
(±1), n =

= 1, 2, . . . .1

Curiously the minor change from (1.1) to (1.3) affects substan-
tially the behaviour of the system. The above finiteness problem for
d = 2 is satisfactory settled in Th. 5.2 by giving an exact shape (Fig. 1)
of D0

2, which forms the main result of this paper. The difficulty in d = 2

1This can also be seen as a corollary of Th. 5.2.
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disappears in this case. An essential reason is that the corresponding
roots stay far inside the unit circle when we deal with D0

2. Ths. 2.2 and
3.8 illustrate the strength of this result.

On the other hand the change from (1.1) to (1.3) gives rise to
changes of the digit sets of the number systems. They are symmetric
canonical number systems and symmetric β-expansions. By considering
a ternary expansion using digits {−1, 0, 1} instead of {0, 1, 2}, we can
easily imagine this change in the case of canonical number systems. We
shall discuss basic facts on the symbolic system associated with this
expansion in §3. See [10, 17, 22, 23] for results on usual β-expansions.

Note that

(1.6) τ ′
r
(z) = (z2, . . . , zd,−

⌈
rz − 1

2

⌉
)

defines a slightly different system. However, it is isomorphic to the one
obtained from τr through an involution correspondence Zd ∋ z 7→ −z ∈
∈ Zd. Obviously, the sets Dd and D0

d are identical for both systems.

2. SSRS and symmetric CNS

The only difference between symmetric CNS and usual CNS is the
set of digits. Let

P (x) = xd + bd−1x
d−1 + · · · + b0 ∈ Z[x]

with b0 6= 0 and R = Z[x]/P (x)Z[x]. Define a digit set N =

=
[
− |b0|

2 , |b0|
2

)
∩ Z which consists of |b0| consecutive integers.

We say that an element of R has a finite representation, if it
admits a representation of the form

ℓ0 + ℓ1x + · · · + ℓhxh

with ℓj ∈ N for 0 ≤ j ≤ h. This representation, if it exists, is unique
since N forms a complete residue system of R/xR. Actually the dig-
its are determined from ℓ0 to ℓh by the so called backward division
algorithm: letting

z = z(0) = z0 + z1x + · · · + zd−1x
d−1 ∈ R, zj ∈ Z,

we first get ℓ0 ∈ N by z0 ≡ ℓ0 (mod b0). Then ℓ0 is a unique choice in
N such that z(0) − ℓ0 ≡ 0 (mod x) and one put z(1) := (z(0) − ℓ0)/x.
Iterate this process and define z(n) ∈ R by z(n) := (z(n−1) − ℓn−1)/x
with zn−1 ≡ ℓn−1 (mod b0). Then we obtain
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z(0) = ℓ0 + ℓ1x + · · · + ℓn−1x
n−1 + xnz(n).

Thus, z admits a finite representation, if and only if there is an n with
z(n) = 0.

The numbers ℓj = ℓj(z), j ≥ 0, are called the digits of z with
respect to (P (x),N ). The pair (P (x),N ) is called symmetric canonical
number system (for short SCNS) in R, if each z ∈ R has a finite repre-
sentation. In other words, a SCNS requires, that for each initial value
z ∈ R, the backward division algorithm terminates in finitely many
steps.
Theorem 2.1 (cf. [4, Th. 3.1]). Let P (x) := xd + bd− 1x

d−1 + · · · +

+ b0 ∈ Z[x] and N = [− |b0|
2 , |b0|

2 ) ∩ Z.2 Then (P (x),N ) is a SCNS if
and only if

(r1, . . . , rd) :=
(

1
b0

, bd−1

b0
, . . . , b1

b0

)

∈ D0
d.

We omit the proof since it is identical to [4, Th. 3.1]. When b0 is
negative, the corresponding system comes from (1.6) instead of (1.4).

Generalising a result of Kátai [18] for Gaussian integers, we have
Theorem 2.2. 1. (x+a,N ) is a SCNS if and only if a ≥ 2 or a < −2.

2. (x2 + Ax+ B,N ) is a SCNS if and only if one of the following
condition holds

(a) |A| < 1 + B/2 and |B| ≥ 2,
(b) A = 1 + B/2 and |B| > 2.

This is a consequence of Ths. 5.2 and 2.1 for d ∈ {1, 2}. For
instance, if d = 2 we have

−
1

B
−

1

2
<

A

B
≤

1

B
+

1

2
and

1

B
≤

1

2
.

Example 2.3. (x2 + 2x + 2, {−1, 0}) is a SCNS while (x2 − 2x + 2,
{−1, 0}) is not. These correspond to ( 1

2 , 1) ∈ D0
2 and (1

2 ,−1) 6∈ D0
2 in

Fig. 1. For example, compare

1 − x ≡ −1 − x − x2 − x3 − x4 (mod x2 + 2x + 2)

and

1 − x ≡ −1 − x − · · · − xn−1 + xn(1 − x) (mod x2 − 2x + 2).

2Instead, one may take (−
|b0|
2

,
|b0|
2

]∩Z which corresponds to the isomorphic

system by the involution z 7→ −z.
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3. SSRS and symmetric ββ-expansions

β-expansions of real numbers were introduced by Rényi [23]. Since
then, their arithmetic, diophantine and ergodic properties have been
extensively studied by several authors (cf. for instance [1, 2, 9, 10, 15,
22, 26]). For a recent survey, we refer to Ch. 7 in Lothaire [21]. In the
present paper, we consider a symmetric version of this concept.

Let β > 1 be a fixed real number. Define3

Tβ : [−1
2 , 1

2 ) → [−1
2 , 1

2 ) by

x 7→ βx − ⌊βx + 1
2⌋.

For every x ∈ [− 1
2 , 1

2 ), Tβ generates an expansion

x =
∞∑

j=1

dj(x)

βj
,

where dj = dj(x) = ⌊βT j−1
β (x) + 1

2⌋ for every j ≥ 1. We shall consider
the digits dj as functions of x. When the argument is clear, we shall
write dj instead of dj(x). We will call this expansion a symmetric β-

expansion of x in base β. Each dj(x) is contained in N = (−β+1
2 , β+1

2 )∩
∩ Z, the digit set. Define a map

d : [− 1
2 , 1

2 ) → N N by

x 7→ d1(x)d2(x) · · · .

By considering formally an orbit starting from 1
2 , we also define an

expansion d
(

1
2

)
.

It should be noticed that when 1 < β < 2, the dynamical system
([−1

2 , 1
2 ), Tβ) does not have an invariant measure which is absolutely

continuous to the Lebesgue measure, since each orbit of x 6= 0 even-
tually falls into [− 1

2 , β
2 − 1) ∪ [1 − β

2 , 1
2 ). Hence no x 6= 0 has a finite

expansion. We do not address to the ergodic study of this system, e.g.,
the construction of the invariant measure for β ≥ 2, in the present
paper.

For β > 1 and x ∈ [− 1
2 , 1

2 ), we will call an infinite series of the

form x =
∑∞

j=1 sj/βj , sk ∈ N a representation of x in base β. In
general, there exist infinitely many representations of x in base β.

3An isomorphic system using (1.6) is defined by x 7→ βx + ⌊−βx + 1

2
⌋ which

acts on (− 1

2
, 1

2
].
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Let us treat hereafter W = N N as a shift space, endowed with
the lexicographical order < lex and the product topology. Let σ be the
one sided shift on W, that is, σ(s1s2 · · · ) = (s2s3 · · · ). The language
L(U) of a subshift U is the set of all words which appear as subwords
of an element of U .

A sequence (si)
∞
i=1 ∈ W is called admissible, if there exists a num-

ber x ∈ [− 1
2 , 1

2 ) such that si = di(x) holds for each i ≥ 1. This means,

that (si)
∞
i=1 is realized as a symmetric β-expansion x =

∑∞
j=1 sj/βj .

Let A be the set of all admissible sequences. The symmetric β-
shift S is defined to be the closure of A by the topology of W. Then S
is a subshift of the full shift W.

The mapping d : [− 1
2 , 1

2 ) → A is continuous and fulfils d ◦ Tβ =
= σ ◦ d, which shows that the following diagram is commutative:

[−1
2 , 1

2 )

d




y

A

Tβ

−→

−−−−−−−−−→
σ

[−1
2 , 1

2 )



y
d

A.

An infinite sequence s = (si)
∞
i=1 ∈ W is admissible (i.e., s ∈ A) if and

only if

(3.1) −
1

2βn−1
≤

∞∑

i=n

si

βi
<

1

2βn−1
for every n ≥ 1.

It is easy to see that d is an order-preserving map:

x < y ⇐⇒ d(x) < lexd(y)

for x, y ∈ [− 1
2 , 1

2 ). For s = (si)
∞
i=1 ∈ W, we write −s = (−si)

∞
i=1.

Theorem 3.1. An infinite sequence s = (si)
∞
i=1 ∈ W is admissible

(i.e., s ∈ A) if and only if

d(−1
2 ) ≤ lexσ

n(s) < lex − d(−1
2 )

for all n = 0, 1, · · · .
Proof. Since d is order-preserving, the necessity of this inequality is
obvious. Let us prove that σm(s) < lex − d(−1

2 ) for m ≥ n ≥ 1 implies

sn

β
+

sn+1

β2
+ · · · <

1

2
.

Let −d(−1
2 ) = t̄1t̄2 · · · . Decompose σn(s) into admissible blocks in the

following manner: σn(s) = sn+1sn+2 · · · = w
(n)
1 w

(n)
2 · · · with w

(n)
i ∈

∈ N ∗ such that w
(n)
i = t̄1 · · · t̄ℓv with v ∈ N and v < lext̄ℓ+1. In other
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words, each word w
(n)
i coincides with the prefix of −d(− 1

2 ) apart from

the last digit of w
(n)
i and all blocks are chosen to have maximal length

with this property. By definition of the symmetric β-expansion, we
have

−
1

2βn
<

1

2
−

n∑

i=1

t̄i
βi

≤
1

2βn
.

This implies that
ki∑

v=1

ci,v

βv
≤

ki∑

v=1

t̄i
βv

−
1

βki
<

1

2

(

1 −
1

βki

)

for w
(n)
i = ci,1 · · · ci,ki

. Therefore
∞∑

i=1

si+n

βi
<

1

2

(

1 −
1

βk1

)

+
1

2βk1

(

1 −
1

βk2

)

+

+
1

2βk1+k2

(

1 −
1

βk3

)

+ · · · =
1

2
.

In a similar manner, we prove that d(− 1
2 ) ≤ lexσ

m(s) for m ≥ n ≥ 1
implies

−
1

2
≤

sn

β
+

sn+1

β2
+ · · · . ♦

A word w1 · · ·wm ∈ N ∗ is admissible if it is contained in the
language L(S). The next corollary gives a combinatorial criterion for
words to be admissible.
Corollary 3.2. Let d(− 1

2 ) = t1t2 · · · and −d(− 1
2 ) = t̄1t̄2 · · · . A word

s1 · · · sm ∈ N ∗ is admissible if and only if

(3.2) t1 · · · tm−n+1 ≤ lexsn · · · sm ≤ lext̄1 · · · t̄m−n+1

for 1 ≤ n ≤ m.
Proof. If the word s1 · · · sm is admissible, then by definition, there
exists an admissible sequence v1v2 · · · ∈ A, such that s1 · · · smv1v2 · · ·
is admissible. Thus the necessity of (3.2) follows from

d(−1
2 ) ≤ lexσ

n(s1 · · · smv1v2 · · · ) < lex − d(−1
2 ) for n ≥ 0.

Now we prove the sufficiency of (3.2). Similarly as in the proof of
Th. 3.1, one can decompose s1 · · · sm into admissible blocks in two ways

s1 · · · sm = w1w2 · · ·wp = w′
1w

′
2 · · ·w

′
q

by d(−1
2 ) and −d(−1

2 ) respectively. In other words, each proper prefix
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of wi (resp. w′
i) is a prefix of t1t2 · · · (resp. t̄1t̄2 · · · ) and the wi (resp.

w′
i) are chosen to have maximal length with this property. Only the

last wp and w′
q can coincide with a prefix of t1t2 · · · (resp. t̄1t̄2 · · · ).

We wish to find an extension v1v2 · · · ∈ A such that s1 · · · smv1v2 · · · is
admissible.

If wp (resp. w′
q) is not a prefix of t1t2 · · · (resp. t̄1t̄2 · · · ) simulta-

neously, then t1 · · · tm < lexs1 · · · sm < lext̄1 · · · t̄m. Thus any v1v2 · · · ∈
∈ A works, since t1t2 . . . ≤ lexσ

n(s1 · · · smv1v2 · · · ) < lext̄1t̄2 · · · for any
n ≥ 0.

Now assume that wp = t1 · · · tk and w′
q is not a prefix of t̄1t̄2 · · · .

Then w′
q = t̄1 · · · t̄k′−1 sm with sm < t̄k′ . Thus s1 · · · smv1v2 · · · <

< lext̄1t̄2 · · · for any v1v2 · · · ∈ A. In this case we take v1v2 · · · =
= tk+1tk+2 · · · ∈ A. Then s1 · · · smv1v2 · · · is admissible. Similarly
if w′

q = t̄1 · · · t̄k and wp is not a prefix of t1t2 · · · , we take v1v2 · · · =
= t̄k+1t̄k+2 · · · .

Finally if wp = t1 · · · tk and w′
q = t̄1 · · · t̄k′ , then without loss of

generality we assume that k ≥ k′. Then w′
q is a suffix of wp. In this

case we take v1v2 · · · = tk+1tk+2 · · · . Then, s1 · · · smv1v2 · · · must be
admissible since t1t2 · · · and t̄1 · · · t̄k′tk+1tk+2 · · · are suffixes of d(− 1

2 ).
♦

The sequence d(x) associated with x is said to be finite if there
exists m ≥ 0, such that dj = 0 for j ≥ m. It is called eventually periodic
if there exist m ≥ 0 and p > 0, such that dj+p = dj for j ≥ m. If d(x)
is finite, we can write d(x) = d1 · · · dm−1 for simplicity.

An eventually periodic word in N N is denoted by

b1 · · · bk (bk+1 · · · bk+ℓ)
ω

with the period bk+1, . . . , bk+ℓ. Obviously, if d( 1
2 ) is finite or eventually

periodic, then β must be an algebraic integer. Note that −Tβ(x) =
= Tβ(−x) holds when Tβ(x) 6= − 1

2 . Therefore, if Tn
β (x) 6= −1

2 for all

n ≥ 0, then d(x) = −d(−x).
An important consequence is that there exists m ≥ 0 such that

d(−1
2 ) = ±σmd( 1

2 ).

Especially, d(− 1
2 ) is finite if and only if d( 1

2 ) is finite. The same
is valid for eventual periodicity. Furthermore, there is a direct relation
between d( 1

2 ) and d(− 1
2 ), even when Tm

β ( 1
2 )=−1

2 holds for some m>0:

Lemma 3.3. Let d(− 1
2 ) = t1t2 · · · and −d(− 1

2 ) = t̄1t̄2 · · · . The
following statements are equivalent:



Symmetric shift radix systems 109

(1) There exists an m > 0 such that Tm
β

(
1
2

)
= −1

2 .

(2) d
(
−1

2

)
is purely periodic, i.e., d

(
−1

2

)
= (t1 · · · tℓ)

ω
.

(3) d
(

1
2

)
has the form d

(
1
2

)
= t̄1 · · · t̄ℓ−1(t̄ℓ + 1) (t1 · · · tℓ)

ω
.

Proof. The expansion d( 1
2 ) can not be purely periodic. In fact, d( 1

2 ) =

= (a1 · · · ap)
ω

implies T p
β ( 1

2 ) = 1
2 which is impossible. Therefore (2)

implies d
(
−1

2

)
6= −d

(
1
2

)
and consequently (1). Assume (1). Take the

smallest m, such that Tm
β ( 1

2 ) = −1
2 . This means that βTm−1

β ( 1
2 ) ∈

∈ 1
2 +Z. Then Tm

β (−1
2 )=Tβ(Tm−1

β (−1
2 ))=Tβ(−Tm−1

β ( 1
2 ))=−1

2 , which

shows (2). Suppose (2) is valid. Take the smallest m such that Tm
β (−1

2 )=

= −1
2 . Then Tm

β ( 1
2 ) = Tβ(Tm−1

β ( 1
2 )) = Tβ(−Tm−1

β (−1
2 )) = −1

2 which

shows (3) (and also (1)). The expansion of (3) gives βℓ
(
1
2−

∑ℓ
i=1 t̄iβ

−i
)
=

= 1
2 which shows (2). ♦

Remark 3.4. Notice that if d(− 1
2 ) is purely periodic, then the norm

of β is odd. Therefore, if the norm of β is even, then −d( 1
2 ) = d(− 1

2 ).
Now we discuss basic symbolic dynamical properties of the sym-

metric β-shift. Recall that a subshift U of the full shift W is of finite
type if it can be described by a finite set of forbidden blocks. A subshift
U is called sofic if each element is recognised by a finite automaton (cf.
[20, 21]).
Theorem 3.5. The symmetric β-shift S is sofic if and only if d(− 1

2 )
is eventually periodic.
Proof. We follow the classical technique described in [14]. For an
introduction to automata theory, we refer to [13, 24]. The proof of
Th. 3.1 also implies that s ∈ S if and only if

(3.3) d(−1
2 ) ≤ lexσ

n(s) ≤ lex − d(−1
2 )

holds for all n ≥ 0.
Assume that d(− 1

2 ) = t1 · · · tN (tN+1 · · · tN+p)
ω
, such that tk+p =

= tk for all k ≥ N + 1. Construct an automaton S1 as follows: The
set of states is given by {s1, . . . , sN+p} and the labels are taken from
N . The initial state is s1. For j < N + p, draw an arrow from sj to
sj+1 labeled by tj , while arrows with greater labels lead to s1. Draw an
arrow from sN+p to sN+1 labeled by tN+p, while arrows with greater
labels lead back to s1. This automaton can check if a given sequence
s ∈ W fulfils d(− 1

2 ) ≤ lexσ
n(s) for all n ≥ 0. Analogously, we construct

an automaton S2 that checks if σn(s) ≤ lex−d(−1
2 ) holds for all n ≥ 0.

Finally, using S1 and S2, we construct a product automaton S1 × S2
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that checks if d(− 1
2 ) ≤ lexσ

n(s) ≤ lex −d(−1
2 ) holds for all n ≥ 0. This

shows that S is sofic.
Recall that we denote by L(S) the language of S. Suppose that

d(−1
2 ) = t1t2 · · · is not eventually periodic. Then the sequences

tktk+1tk+2 · · · are pairwise different for all k ≥ 1. Therefore, for all
pairs j, ℓ ≥ 1, j 6= ℓ, there exist p ≥ 0, such that tj+p 6= tℓ+p and
w := tj · · · tj+p−1 = tℓ · · · tℓ+p−1 (with the convention that, if p = 0,
then w is equal to the empty word). Without loss of generality, we
assume that tj+p > tℓ+p. Then t1 · · · tj−1w tℓ+p < lexd(−1

2 ), and there-
fore t1 · · · tj−1w tℓ+p /∈ L(S) and t1 · · · tℓ−1w tℓ+p ∈ L(S). Thus, the
number of right congruence classes modulo L(S) is infinite. Therefore,
L(S) is not recognisable by a finite automaton. ♦

Recall that a subshift U is M -step if it can be described by a
collection of forbidden blocks all of which have length M + 1. If a
subshift U is of finite type, then there is an M ≥ 0 such that U is
M -step (cf. [20, Prop. 2.1.7]).
Theorem 3.6. The symmetric β-shift S is of finite type if and only if
d(−1

2 ) is purely periodic.4

Proof. Suppose that d(− 1
2 ) = (t1 · · · tm)

ω
. Then the set

U =
⋃

1≤i≤m

{±u ∈ N i : u < lext1 · · · ti}

is a finite set of forbidden words. From (3.3), it is easy to show that
s ∈ W is an element of S if no subword of s is contained in U .

If S is of finite type, then it is sofic. Thus by Th. 3.5, d(− 1
2 )

must be eventually periodic. Set t̄i = −ti and assume that there exists
N ≥ 1 that

−d(−1
2 ) = t̄1 · · · t̄N (t̄N+1 · · · t̄N+p)

ω

where t̄k+p = t̄k for all k ≥ N + 1 and t̄N 6= t̄N+p. Since d(− 1
2 ) is not

purely periodic, we have −T k
β (−1

2 ) < 1
2 and σk(−d(−1

2 )) < lex−d(−1
2 )

for k ≥ 1. By the admissible block decomposition as in the proof of
Th. 3.1, for each positive integer s, there exists a k ∈ {1, 2, . . . , p} such
that
σn((t̄N+1 · · · t̄N+p)

st̄N+1 · · · t̄N+k−1(t̄N+k + 1)) ≤ lext̄1 · · · t̄sp+N+k−n

for each n ≤ sp + N + k − 1. Here we used an abusive terminology of

4Unlike usual β-expansion, if d(− 1

2
) is finite, then it is not of finite type.

This fact follows from the proof below with tN+1 · · · tN+p = 0p.
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σ acting on finite words by σ(w1 · · ·wm) = w2 · · ·wm. By Cor. 3.2, we
have

(t̄N+1 · · · t̄N+p)
st̄N+1 · · · t̄N+k−1(t̄N+k + 1) ∈ L(S).

Since S is of finite type, it must be M -step with some M ≥ 0. Take a
positive integer s such that sp ≥ max(N + p,M). Then the two words
t̄1 · · · t̄N (t̄N+1 · · · t̄N+p)

s and (t̄N+1 · · · t̄N+p)
st̄N+1 · · · t̄N+k−1(t̄N+k +1)

are both in L(S). However

t̄1 · · · t̄N (t̄N+1 · · · t̄N+p)
pt̄N+1 · · · t̄N+k−1(t̄N+k + 1) 6∈ L(S).

This is a contradiction. ♦

For a real number x, there exists m ≥ 0 ∈ Z that β−mx ∈ [−1
2 , 1

2 )
with d(β−mx) = x1x2 · · · . Following the usual convention to express
real numbers, we write:

(3.4) x = x1 · · ·xm.xm+1xm+2 · · ·

using the ‘decimal’ point. For the integer part x1 · · ·xm, the leading
zeros may be omitted.

The sequence (3.4) is called a symmetric β-expansion of x. In the
sequel, we will use the following notations:

Per(β) = {x ∈ R : x has eventually periodic symmetric β-expansion},

Fin(β) = {x ∈ R : x has finite symmetric β-expansion}.

Recall that a Pisot number is an algebraic integer β > 1 for which
all algebraic conjugates γ with γ 6= β satisfy |γ| < 1. If β is a Pisot
number, then Per(β) = Q(β) which follows by a similar proof as in [9,
26]. Especially S is sofic when β is a Pisot number.

Following [15], we say that β has the symmetric finiteness property
if

Fin(β) = Z[β−1]. (SF)

A similar proof as in [15] allows us to show, that if β has the property
(SF), then β is a Pisot number. Moreover the weaker condition Z ∩
∩ [0,∞) ⊂ Fin(β) implies the same fact (cf. [3]). For symmetric SRS,
we can show:

Theorem 3.7. Let β be a Pisot number with the minimal polynomial
Xd − a1X

d−1 − · · · − ad. Set

rd−j+1 =
aj

β
+

aj+1

β2
+ · · · +

ad

βd−j+1
for 2 ≤ j ≤ d.

Then β has the property (SF) if and only if r = (r1, . . . , rd−1) ∈ D0
d−1.
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This is merely a reformulation of [4, Th. 2.1] originally due to
Hollander [16]. Using (1.5) and Ths. 5.2 and 3.7, we can show:

Theorem 3.8. 1. The quadratic Pisot number β with the minimal
polynomial X2 − aX − b has the property (SF), if and only if

−
1

2
<

b

β
≤

1

2
.

2. The cubic Pisot number β with the minimal polynomial X3 −
− AX2 − BX − C has the property (SF), if and only if

−
C

β
−

1

2
<

B

β
+

C

β2
≤

C

β
+

1

2
and

C

β
<

1

2
.

The first statement is an application of (1.5) and Th. 3.7 with
d = 2, r1 = b/β. The second statement follows from Ths. 5.2 and 3.7
with d = 3, r1 = C/β and r2 = B/β + C/β2. Note that C/β 6= 1

2 since
C is an integer.

In both quadratic and cubic cases of Th. 3.8, each right inequality
can not be an equality, taking the degree of β into consideration.

Example 3.9. (x3 − 3x2 − 2x − 1, {−2,−1, 0, 1, 2}) has the prop-
erty (SF) since (0.276, 0.627) ∈ D0

2 in Fig. 1. We have d(−1/2) =
= ((−2)1(−1)(−1)111)

ω
and for example

d(β2 − 4β + 1) = (−1)(−1).

On the other hand, (x3 − 3x2 − 3x− 1, {−2,−1, 0, 1, 2}) does not have
the property (SF), since (0.260, 0.847) 6∈ D0

2. We have d(−1/2) =
= ((−2)011)

ω
and

d(β2 − 4β + 1) = (2(−2))
ω

.

Both of them are of finite type by Th. 3.6.

Th. 3.8 is substantially stronger than the one in [3] where the
cubic Pisot units with (F) are classified. The characterisation problem
of cubic Pisot numbers with (F) is still open for the usual β-expansion.
Some partial answers for this problem are given in [5].

4. Basic properties of symmetric SRS

Let us first study Dd. For r = (r1, . . . , rd) ∈ Rd, let
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R(r) =










0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1

−r1 −r2 · · · −rd−1 −rd










.

For M ∈ Rd×d, denote by ̺(M) the spectral radius of M , i.e., the
maximum absolute value of all eigenvalues of M . For any δ > ̺(M),
we can fix a vector norm ‖·‖M,δ with ‖Mv‖M,δ ≤ δ‖v‖M,δ. For instance,
if ||| · ||| denotes the euclidean norm, then

(4.1) ‖x‖M,δ :=
∞

max
k=0

{
1

δk
|||Mkx|||

}

has the desired property. This maximum exists since lim
k→∞

|||Mkx|||/δk =

= 0. For a similar definition, see the formula (3.2) of [19]. Note that
‖ · ‖M,δ depends on M and δ. For simplicity, we write

(4.2) ̺(r) := ̺(R(r)) and ‖x‖r,δ := ‖x‖R(r),δ.

Let Ed = {r ∈ Rd : ̺(r) < 1}. It is known that the closure Ed is a
regular set, i.e., the set coincides with the closure of its interior (cf. [4,
Lemma 4.3]). Furthermore, Ed coincides with {r ∈ Rd : ̺(r) ≤ 1}.
Thus

Ed ⊂ Dd ⊂ Ed.

It seems to be a hard problem to characterise the set Dd ∩∂Ed (cf. [5]).
In the non symmetric case (1.1), some partial results have been proved
by Akiyama et al. [6].

Now we turn to the study of D0
d. Similarly as in [4], we can deduce

a bound for the periodic orbits. Let r ∈ Rd with ̺(r) < δ < 1. If a is
periodic for τr, then

‖a‖r,δ ≤
1

2(1 − δ)
=: K.

Simply by testing all a ∈ Zd with ‖a‖r,δ ≤ K, this estimate provides
an algorithm to determine whether r ∈ E is contained in D0

d or not.
However, we do not use this method in the present paper because

we develop an efficient alternative way. Let ei = (0, . . . , 0, 1, 0, . . . , 0)
be the i-th unit vector. For a given r = (r1, . . . , rd), we say that a
finite set V(r) ⊂ Zd is a set of witnesses for r, if {ei,−ei} ⊂ V(r) for
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1 ≤ i ≤ d, and for each (z1, . . . , zd) ⊂ V(r), the element (z2, . . . zd+1)
belongs to V(r) provided that

(4.3) −1 < r1z1 + · · · + rdzd + zd+1 < 1.

If ρ(r) < 1, then V(r) can be constructed by successive addition of new
elements (z2, . . . , zd+1). For simplicity, we write V = V(r) when r is
fixed. Let G(V) be a directed graph with vertices V and edges defined
by (z1, . . . , zd) → (z2, . . . , zd+1) if and only if

(4.4) −1
2 ≤ r1z1 + · · · + rdzd + zd+1 < 1

2 .

Note that the set of vertices V is exactly the same as in [4, Th. 5.1].
However, the edges are defined in a different manner. By definition, for
each vertex there exists exactly one outgoing edge.

Theorem 4.1. Let r ∈ Rd. If every walk in the graph G(V(r)) falls
into the trivial cycle 0 → 0, then r belongs to D0

d.

Proof. The proof is a generalisation of ideas from [4, 7, 8, 11, 12]. Let
r = (r1, . . . , rd). We say that a ∈ Zd is SSRS-finite, if there is a k ≥ 0
such that τk

r
(a) = 0.

Suppose that a is SSRS-finite and b ∈ V. We will prove that
a + b is SSRS-finite. Denote by τr(a) = (a2, . . . , ad+1) and τr(b) =
= (b2, . . . , bd+1). Since ad+1 = −⌊ra + 1

2⌋, bd+1 = −⌊rb + 1
2⌋, we

obtain

−1
2 ≤ r1a1 + · · · + rdad + ad+1 < 1

2 and(4.5)

−1
2 ≤ r1b1 + · · · + rdbd + bd+1 < 1

2 .(4.6)

Thus

−1 ≤ r1(a1 + b1) + · · · + rd(ad + bd) + ad+1 + bd+1
︸ ︷︷ ︸

=: ξ

< 1.

We distinguish between three cases.

(i) If 1
2 ≤ ξ, then 0 < r1b1 + · · · + rdbd + bd+1 implies

−1 < r1b1 + · · · + rdbd + bd+1 − 1 < 1

and

−1
2 ≤ r1(a1 + b1) + · · · + rd(ad + bd) + ad+1 + bd+1 − 1 < 1

2 .

Thus take η = (b2, . . . , bd, bd+1 − 1) ∈ V.

(ii) If ξ < −1
2 , then r1b1 + · · · + rdbd + bd+1 < 0 implies
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−1 < r1b1 + · · · + rdbd + bd+1 + 1 < 1

and

−1
2 ≤ r1(a1 + b1) + · · · + rd(ad + bd) + ad+1 + bd+1 + 1 < 1

2 .

In this case, we take η = (b2, . . . , bd, bd+1 + 1) ∈ V.
(iii) If −1

2 ≤ ξ < 1
2 , then take η = (b2, . . . , bd, bd+1) ∈ V.

Therefore, in any case, there exists η ∈ V such that τr(a + b) =
= τr(a) + η with η =: η(1) ∈ V. Repeating this argument, we find
that

τk
r
(a + b) = τk

r
(a) + η(k)

with η(k) ∈ V. Since a is SSRS-finite, there is a k such that τk
r
(a) = 0.

By the assumption of the theorem, we conclude that a + b is SSRS-
finite. Since V contains the i-th unit vectors, the proof is finished. ♦

The set D0
d can be constructed from Dd by cutting out countable

many families of convex polyhedra. The following technique was devel-
oped in [4, 16, 25]. Consider a finite sequence a1, . . . , aL of integers.
Define aj (j ∈ Z) by periodicity aj = aj+L. This gives a periodic bi-
infinite word designated by π = [a1, . . . , aL]

∞ ∈ ZZ which is called a
cycle of length L. We define the set:

(4.7)
P (π) =

{
r ∈ Rd : −1

2 ≤ r1a1+j + · · · + rdad+j + ad+j+1 <

< 1
2 for j ∈ Z

}
.

Since each of these inequalities gives an upper (resp. lower) halfspace
in Rd, the system (4.7) defines a (possibly degenerated) convex poly-
hedron. A cycle π = [a1, . . . , ad]

∞
of period L is called primitive,5 if

the vectors (a1+j , . . . , ad+j) are pairwise different for j = 0, . . . , L − 1.
Using this terminology, we trivially have

D0
d = Dd \

⋃

π

P (π),

where π runs through all non zero primitive cycles π = [a1, . . . , aL]
∞

of arbitrary length. Unfortunately since the set of periods is infinite,
this expression is far from being practical.

As an analogy of Th. 5.2 in [4], the next theorem gives an efficient
algorithm for a closed set H ⊂ Ed to construct H ∩D0

d. The basic idea
is to collect and merge all possible graphs G(V(r)) which correspond

5Remark that this definition depends on the dimension d.
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to points r ∈ H. This allows us to apply Th. 4.1 not only for a single
point r but also for the set H. The proof given below is rewritten from
the one in [4] in order to make clearer the convergence of the algorithm.
Theorem 4.2. Let r1, . . . , rk ∈ Dd and let H be the convex hull of
r1, . . . , rk. Assume that H is contained in the interior of Dd and suf-
ficiently small in diameter. Then there exists an algorithm to construct
a finite directed graph G = (V,E) with vertices V ⊂ Zd and edges
E ⊂ V × V which satisfy

(i) ±ei ∈ V for all i = 1, . . . , d,
(ii) G(V(s)) is a subgraph of G for all s ∈ H,
(iii) H ∩D0

d = H \
⋃

π P (π), where π are taken over all nonzero prim-
itive cycles of G.

Proof. For z ∈ Zd, let

m(z) = min
1≤i≤k

{−⌊riz⌋}

ξ1(z) = min{m(z),−M(−z)},

M(z) = max
1≤i≤k

{−⌊riz⌋} ,

ξ2(z) = max{−m(−z),M(z)}.

Set V1 = {±ei : i = 1, . . . , n} and define inductively6

Vi+1 = Vi∪
{
(z2, . . . , zd, j) : z = (z1, . . . , zd) ∈ Vi

and j ∈ [ξ1(z), ξ2(z)] ∩ Z
}
.

Assume for the moment that there exists a finite limit set V =
⋃

i Vi,
i.e., there exists i with Vi+1 = Vi := V . Draw edges

z = (z1, . . . , zd) → (z2, . . . , zd, j)

according to the SSRS algorithm, i.e.,

min
1≤i≤k

{
−⌊riz + 1

2⌋
}
≤ j ≤ max

1≤i≤k

{
−⌊riz + 1

2⌋
}
.

We claim that this finite graph G := (V,E) has the desired properties.
In fact, the condition (i) is trivial. For s ∈ H, the graph G(V(s))

was given by the algorithm:

V1(s) = {ei,−ei : i = 1, . . . , n}

Vi+1(s) = Vi(s) ∪
{
(z2, . . . , zd, j) : z = (z1, . . . , zd) ∈ Vi(s)

and − 1 < sz + j < 1
}

together with the corresponding edges. The inequality −1 < sz+ j < 1
only gives

6In fact, ξ1(z) = −M(−z) and ξ2(z) = M(z) always hold. See [4].
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j ∈ [ξ1(z), ξ2(z)] ∩ Z

since s is a convex linear combination of ri’s. Hence we see that G(V(s))
is a subgraph of G which shows the property (ii). Now let us prove (iii).
Obviously

H \
⋃

π

P (π) ⊃ H ∩ D0
d.

Take r ∈ H \ D0
d. In view of Th. 4.1 since H ⊂ Dd, there exists a non

zero primitive cycle π in G(V(r)) and r ∈ P (π). By using (ii), π is a
non zero primitive cycle of (V,E) as well. This shows that

r 6∈ H \
⋃

π

P (π)

which proves the claim.
Finally it remains to show the existence of i with Vi+1 = Vi,

i.e., the convergence of our procedure, provided the diameter of H is
sufficiently small. According to (4.1), we start with an arbitrary point
r ∈ Ed with ρ(r) < δ < 1 and choose a norm ‖ · ‖r,δ, such that R(r) is
contractive. For a matrix M , the same symbol ‖M‖r,δ stands for the
operator norm, that is,

‖M‖r,δ = sup
v6=0

‖Mv‖r,δ

‖v‖r,δ

.

Take H small enough such that r ∈ H and for any s ∈ H, we have

‖R(s) − R(r)‖r,δ < δ1 < 1 − δ.

This is possible since ‖ · ‖r,δ is continuous. Put δ2 = δ1 + δ < 1. Then,
by induction, for any si ∈ H and v ∈ Rd, we have

(4.8) ‖R(sk) · · ·R(s2)R(s1)v‖r,δ < δk
2‖v‖r,δ.

Since j ∈ [ξ1(z), ξ2(z)]∩Z, the mapping (z1, . . . , zd) → (z2, . . . , zd, j) is
given by

(z2, . . . , zd, j)
t = R(s)(z1, . . . , zd)

t + u

with |||u||| ≤ 1
2 and s ∈ H. Successive applications of this mapping yield

elements of the form

R(sk) · · ·R(s1)(z1, . . . , zd)
t + R(sk) · · ·R(s2)u1+

+R(sk) · · ·R(s3)u2 + · · · + uk

with bounded ui’s. By using the estimate (4.8), the set Vi (i = 1, 2, . . .)
must be uniformly bounded. Thus there exists i such that Vi = Vi+1. ♦
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This algorithm is quite sensitive to the choice of the initial con-
vex hull H. Let us denote by G(H) the corresponding graph by this
algorithm. (It might be an infinite graph.) If the convex hull H is sub-
divided into several convex hulls

⋃

i Hi, then G(H) ⊃
⋃

i G(Hi) but it is
usually not equal. For example, let d = 2 and Hi (i = 1, 2) be segments
from ( 1

2 , 0) to ( 1
2 , 1) and from (1

2 , 0) to ( 1
2 ,−1). Then G(H1 ∪ H2) is

infinite7 since one can easily show that (n − 1, n) ∈ Vn+1 for n ≥ 2,
but both G(Hi) are finite graphs with 19 vertices. Especially G(H) is
usually larger than

⋃

r∈H G(V(r)). Therefore subdivision of the initial
convex hull H is meaningful not only by the requirement of Th. 4.2 but
also from the computational point of view. Even if we get a finite graph
G(H) given by the algorithm, further subdivision of H may drastically
help us to create smaller graphs. This is practically important since it
is hard to list up all the primitive cycles out of a large graph.

Since for each compact set A ⊂ Ed we can find a finite covering of A
by sufficiently small convex hulls containing open balls, Th. 4.2 theoret-
ically gives an algorithm to construct A ∩D0

d. The clue of convergence
is the smallness of H with respect to the norm ‖ · ‖r,δ. This criterion
is not easily checked. However from the proof, H must be smaller if
it is located closer to the boundary ∂Ed since δ becomes larger. When
implementing Th. 4.2 in a computer language equipped with interrup-
tion, there is no need to care on the smallness of H. Perform ‘trial and
error’. If we get a finite graph G(H), then we are ready. If the graph
grows too large, then interrupt and restart with a smaller H.

5. Two dimensional symmetric SRS

In this section, we give a complete description of D0
2. We already

know that

D2 ⊂ ∆ := (E2)
ω

= {(x, y) ∈ R2 : x ≤ 1, |y| ≤ x + 1}.

First we show
Proposition 5.1. D0

2 ⊂ ∆
2 :=

{
(x, y) ∈ R2 : x ≤ 1

2 , |y| ≤ x + 1
2

}
.

Proof. We give cycle π’s so that F = ∆ \ ∆
2 is completely covered by

the cutout P (π)’s. The purpose is almost fulfilled by the following five
cycles.

• π1 = [−1]
∞

gives P (π1) =
{
(x, y) : − 3

2 < y + x ≤ −1
2

}
.

7This also shows the necessity of subdivision in the proof of Th. 5.2.
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• π2 = [1,−1]
∞

gives P (π2) =
{
(x, y) : 1

2 < y − x < 3
2

}
.

• π3 = [−1, 0, 1]
∞

gives
P (π3) =

{
(x, y) : 1

2 < x ≤ 3
2 , 1

2 ≤ y < 3
2 , −1

2 < y − x ≤ 1
2

}
.

• π4 = [0,−1, 0, 1]
∞

gives
P (π4) =

{
(x, y) : 1

2 < x < 3
2 , −1

2 < y < 1
2

}
.

• π5 = [1, 1, 0,−1,−1, 0]
∞

gives
P (π5) =

{
(x, y) : 1

2 < x < 3
2 ,−3

2 < y < − 1
2 ,−1

2 < y + x < 1
2

}
.

Then

F \
( 5⋃

i=1

P (πi)
)

=
{
(1, 1

2 ), (1, 3
2 )

}
∪

{
(x, y) : 1

2 < x ≤ 1, y = − 1
2

}

︸ ︷︷ ︸

=:M

.

It is easily proved that

(1, 1
2 ) = P ([0, 1,−1,−1, 1, 0,−1]

∞
),

(1, 3
2 ) = P ([0, 1,−2, 2,−1,−1, 2,−2, 1, 0,−1, 1,−1]

∞
),

M = P ([0, 1, 0,−1,−1]
∞

). ♦

Theorem 5.2. Define two segments by L1 =
{
(x, y) : |x| ≤ 1

2 , y =

= −x− 1
2

}
and L2 =

{
( 1
2 , y) : 1

2 < y < 1
}
. Then D0

2 = ∆
2 \ (L1 ∪L2).

Proof. In light of Prop. 5.1, we subdivide the triangle ∆
2 into small ones

and apply Th. 4.2. Let T (a, b, c) be the triangle of vertices a, b and c.
Applying Th. 4.2 for ∆1 = T ((− 1

2 , 0), (0,− 1
2 ), (0, 1

2 )), the associated
graph (V1, E1) is given by

V1 ={(0,1),(1,0),(0,−1),(−1,0),(−1,−1),(1,−1),(0,0),(−1,1),(1,1)}

and
E1 = {(−1,−1) → (−1,−1), (−1,−1) → (−1, 0), (0,−1) → (−1,−1),

(0,−1) → (−1, 0), (1,−1) → (−1,−1), (1,−1) → (−1, 0),

(−1, 0) → (0,−1), (−1, 0) → (0, 0), (0, 0) → (0, 0),

(1, 0) → (0, 0), (−1, 1) → (1,−1), (−1, 1) → (1, 0), (0, 1) → (1,−1),

(0, 1) → (1, 0), (1, 1) → (1,−1), (1, 1) → (1, 0)}.

This graph has exactly one non-trivial8 strongly connected component
(cf. Fig. 2):

(−1,−1) ← (−1,−1) → (−1, 0) ↔ (0,−1) → (−1,−1).

This yields three primitive cycles: π1 = [−1]
∞

, θ1 = [0,−1]
∞

and
θ2 = [−1,−1, 0]

∞
. Since

8The 0-cycle always forms a single component.
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P (π1) =
{
(x, y) : − 3

2 < x + y ≤ −1
2

}
,

P (θ1) =
{
(x, y) : − 1

2 < y ≤ 1
2 ,−3

2 < x ≤ −1
2

}
and

P (θ2) = ∅,

we have shown that ∆1 ∩ D0
2 = ∆1 \ L1.

We proceed in a similar manner with

∆2 = T (( 1
2 , 0), (0,− 1

2 ), (0, 1
2 ))

∆3 = T (( 1
2 , 0), (0, 1

2 ), ( 1
2 , 1

2 ))

∆4 = T (( 1
2 , 1), (0, 1

2 ), ( 1
2 , 1

2 ))

∆5 = T (( 1
2 , 0), (0,− 1

2 ), ( 1
2 ,−1

2 ))

∆6 = T (( 1
2 ,−1), (0,−1

2 ), ( 1
2 ,−1

2 )).

The corresponding graphs (Vi, Ei) (i = 2, . . . , 6) are depicted in
Figures 3, 4, 5, 6 and 7.

The triangle ∆2 only gives π1 which shows ∆2 ∩ D0
2 = ∆2 \ L1.

The triangle ∆3 gives rise to the primitive cycle [−1,−1, 1]
∞

. Since
P ([−1,−1, 1]

∞
) = ∅, we have ∆3 ⊂ D0

2. The triangle ∆4 only gives
θ3 = [0,−1, 1]

∞
and P (θ3) =

{
(x, y) : 1

2 ≤ x < 3
2 , 1

2 < y ≤ 3
2 , −1

2 ≤

≤ y−x < 1
2

}
. Thus we have ∆4 ∩D0

2 = ∆4 \L2. Both ∆5 and ∆6 only

give π1. Thus (∆5 ∪ ∆6) \ L1 ⊂ D0
2. Summing up, we have shown the

result. ♦

Remark 5.3. The referee pointed out that in the last proof, several
regions could be merged like ∆3 ∪∆4 and ∆1 ∪∆2 ∪∆5 ∪∆6 to obtain
the same result. This comment is correct and we will have two larger
graphs with 19 vertices. As we discussed the end of §4, this algorithm
is rather sensitive to the choice of subdivisions and under this choice
we have to study all primitive cycles in these new graphs. This may
be finished automatically by computer. However by our choice, the
graphs are smaller and all computation can be confirmed possibly by
hand. The reader may easily list up all primitive cycles by observing
the graphs listed below. In this sense, we believe that our choice is
more handy than the suggestion by the referee.
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(1,2)

(−1,0)

L2
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∆1 ∆
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∆6

∆3

∆
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4

��
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��
��
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��

Figure 1. The sets D0
2

and E2

(−1,1) (0,1)

(−1,0) (0,0) (1,0)

(0,−1) (1,−1)

(−1,0)

(−1,−1) (0,−1)(−1,−1)

(1,1)

Figure 2. The graph (V1, E1)

(1,−1)(−1,−1)

(1,0)(0,0)(−1,0)

(−1,1) (0,1) (1,1)

(0,−1) (−1,−1)

Figure 3. The graph (V2, E2)
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(−1,1) (0,1) (1,1)

(−1,0) (0,0) (1,0)

(−1,−1) (0,−1) (1,−1)

(−1,1)

(−1,−1) (1,−1)

Figure 4. The graph (V3, E3)

(−1,1) (0,1)

(−1,0) (0,0) (1,0)

(0,−1) (1,−1)

(−1,1)

(0,−1)

(1,0)

Figure 5. The graph (V4, E4)

(−1,1) (0,1) (1,1)

(−1,0) (0,0) (1,0)

(−1,−1) (0,−1) (1,−1) (−1,−1)

Figure 6. The graph (V5, E5)

(0,1) (1,1)

(−1,0) (0,0) (1,0)

(−1,−1) (0,−1) (−1,−1)

Figure 7. The graph (V6, E6)
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