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Abstract: Let g = kan be the Iwasawa decomposition of the semisimple real
Lie algebra g, G a Lie group with Lie algebra g, G = KAN the correspond-

ing Iwasawa decomposition on the group level, Φ the root system of the pair
(g, a), and Π the base of Φ that corresponds to n. In the structure theory of
semisimple Lie groups one attaches to every subset Θ of Π a a parabolic sub-

group P (Θ) of G, and a semisimple Lie subgroup G(Θ) of P (Θ). We describe
in terms of set of matrices, for every Θ ⊆ Π, the structure of the subsemi-
groups of P (Θ) which contain both N and G(Θ) in the case of the special

linear group G = Sl(n, R).

1. Prerequisites

1.1. Actions of semigroups on ordered sets. Let S be a monoid
and (X,≤) be an ordered set. A function ϕ:S × X → X is called an
action of S on (X,≤) if

(i) ϕ(s1, ϕ(s2, x)) = ϕ(s1s2, x), for every s1, s2 ∈ S, and every x ∈ X,
(ii) ϕ(1S , s) = s, for every s ∈ S,
(iii) ϕ(s, x) ≤ ϕ(s, y), whenever x ≤ y in X and s ∈ S.
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We denote by s · x := ϕ(s, x). For every submonoid M of S and every
x ∈ X let

Mx := {s ∈ M | s · x ≤ x}.

It is clear that Mx is a submonoid of S whose group of units H(Mx) is
a subset of the stabilizer of x, i.e., H(Mx) ⊆ {s ∈ S | s · x = x}.
1.2. Notations. Let n be a natural number. In what follows S will
be the semigroup End(Rn) of endomorphisms (linear maps) R

n → R
n

(endowed with the composition of functions), (X,≤) = (S(Rn),⊆),
where (S(Rn),⊆) is the lattice of all vector subspaces of R

n augmented
by the empty set and ordered by inclusion, and the action of End(Rn)
on S(Rn) is the natural action

(f, V ) ∈ End(Rn) × S(Rn) 7−→ f(V ) ∈ S(Rn).

The R vector space End(Rn) endowed with the Lie bracket [f, g] = f ◦
◦ g − g ◦ f is a Lie algebra and is denoted with gl(n, R). The general
linear group Gl(n, R) of automorphisms (bijective endomorphisms) of
R

n is a Lie group with Lie algebra gl(n, R).
For V ∈ S(Rn) denote for simplicity

glV := End(Rn)V , GlV := Gl(n, R)V .

Observe that GlV is the stabilizer of V in S.
If G is a closed subgroup of Gl(n, R) then L(G) ⊆ gl(n, R) denotes

the Lie algebra of G. For a subspace h of gl(n, R) let NG(h) = {g ∈
∈ G | Ad(g)(h) ⊆ h} be the normalizer of h in G. (Ad:G → Aut(L(G))
denotes the adjoint representation of G.) Similarly, if g ⊆ gl(n, R) then
Ng(h) := {X ∈ g | [X, h] ⊆ h} is the normalizer of h in g.
1.3. Lemma. Let G be a closed subgroup of Gl(n, R) with Lie algebra

L(G) = g, and consider V ∈ S(Rn). Then GV is a closed subgroup of

Gl(n, R) with L(GV ) = gV .

Proof. It is clear that GV is a closed subgroup of Gl(n, R). The equal-
ity L(GlV ) = glV is a consequence of the properties of the exponential

function. (Recall that f(v) = limt→0
etf (v)−v

t
, for every f ∈ gl(n, R)

and v ∈ R
n.) Since GV = G ∩ GlV and L(GV ) = L(G) ∩ L(glV ) the

assertion follows. ♦

1.4. Further notations. Let {e1, . . . , en} be the canonical base of
R

n. For every natural number k ∈ {1, . . . , n − 1} put

Vk := span{e1, . . . , ek}.

For a Lie subalgebra g of gl(n, R), a closed subgroup G of Gl(n, R), and
a nonempty subset I ⊆ {1, . . . , n − 1} denote by
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gI :=
⋂

i∈I

gVi
, GI :=

⋂

i∈I

GVi
.

If I = ∅ put gI := g and GI = G. For simplicity let again

glI :=
⋂

i∈I

glVi
, GlI :=

⋂

i∈I

GlVi
.

1.5. Remark. If I = {i1, . . . , ik} with 1 ≤ i1 < · · · < ik ≤ n − 1 then
we recall that the nested sequence of subspaces

{0} ⊂ Vi1 ⊂ . . . ⊂ Vik
⊂ R

n

is called a flag in R
n. Hence GlI can be seen as the stabilizer of the

above flag.
1.6. Corollary. Let G be a closed subgroup of Gl(n, R) with Lie algebra

g, and I ⊆ {1, . . . , n − 1}. Then GI is a closed subgroup of Gl(n, R)
with L(GI) = gI .

Proof. The assertion follows from 1.3 taking into account the fact that
the Lie algebra of the intersection of a family of closed subgroups of
Gl(n, R) is the intersection of the family of the Lie algebras of these
subgroups. ♦

1.7. Convention. Throughout this paper we identify every element
of End(Rn) with its matrix relative to the canonical base of R

n. Thus,
according to the context we are working within, we regard an element
of End(Rn) either as a linear map or as a n×n matrix with real entries.
1.8. Remarks. 1) For every i, j ∈ {1, . . . , n} with i 6= j define the
matrix Eij ∈ gl(n, R) be 1 in the (i, j)th place and 0 elsewhere. If i > j
and k ∈ {1, . . . , n− 1} then it follows easily that Eij ∈ glVk

if and only
if k < j or k ≥ i.

2) If I = ∅ then glI = gl(n, R), and if I = {1, . . . , n − 1} then
glI consists of all upper triangular matrices. If I ⊆ {1, . . . , n − 1} then
clearly every upper triangular matrix belongs to glI .

3) Let I = {i1, . . . , ik} with 1 ≤ i1 < · · · < ik ≤ n− 1. Put i0 = 0
and ik+1 = n. Then every element X ∈ glI [X ∈ GlI ] is a matrix of the
following type: Along the main diagonal there are k+1 block matrices,
denoted by X1, . . . , Xk+1, such that for every j ∈ {1, . . . , k + 1} the
matrix Xj is an element of gl(ij − ij−1, R) [Gl(ij − ij−1, R)]. [Note
that the determinant of X is the product of the determinants of these
block matrices along the main diagonal. Thus detX 6= 0 if and only if
det Xj 6= 0, for every j ∈ {1, . . . , k+1}.] The entries above these blocks
are reals, and those below the blocks are all equal to zero. Hence
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X =















X1 ∗ ∗ . . . ∗
0 X2 ∗ . . . ∗
0 0 X3 . . . ∗
· · · · ·
· · · · ·
· · · · ·
0 0 0 . . . Xk+1















,

where the stars ∗ stay for real matrices of suitable dimension. Define
the map

pr:GlI →
k+1
∏

j=1

Gl(ij − ij−1, R) by pr(X) = (X1, . . . , Xk+1),

where X ∈ GlI is a matrix of the type described above. It is clear that
pr is a group homomorphism.

For the next proposition we recall that Sl(n, R) is the special linear
group of n × n matrices with real entries and with determinant 1. Its
Lie algebra is sl(n, R) := {X ∈ gl(n, R) | tr(X) = 0}.
1.9. Proposition. Let G ∈ {Gl(n, R),Sl(n, R)} and g := L(G). If

I ⊆ {1, . . . , n − 1} then the following assertions hold:

a) gI is a self-normalizing Lie subalgebra of g, i.e., Ng(gI) = gI .

b) GI = NG(gI).
Proof. The assertions trivially hold if I = ∅. Assume that I 6= ∅.

a) We already know from Cor. 1.6 that gI is a Lie subalgebra of g.
Suppose now that there is an endomorphism f ∈ Ng(gI) \ gI . Then
we find indices k, j ∈ I with k < j such that f(ek) /∈ Vj . Let f(ek) =
= t1e

1 + · · · + tnen with t1, . . . , tn ∈ R According to the choice of k
there exists an index j0 > j such that tj0 6= 0. Define g ∈ End(Rn) by

g(eℓ) =











0n if ℓ ∈ {1, . . . , n} \ {k, j0}

−eℓ if ℓ = k

eℓ if ℓ = j0.

It is clear that g ∈ sl(n, R)I . Also,

[f, g](ek) = f(g(ek)) − g(f(ek)) =

= −f(ek) + tkek − tj0e
j0 = −2tj0e

j0 +
∑

i 6=k,j0

tie
i /∈ Vj ,

which contradicts the fact that f ∈ Ng(gI). Hence gI is self-normalizing.
b) We argue again by contradiction. Suppose that there is an

automorphism f ∈ NG(gI) \ GI . Then we find an index j ∈ I and
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an element v ∈ Vj such that f(v) /∈ Vj . Let f(v) = t1e
1 + · · · +

+ tnen, t1, . . . , tn ∈ R, and j0 > j be so that tj0 6= 0. Since f is an
automorphism, the condition f(Vj) 6⊆ Vj implies that Vj \ f(Vj) 6= ∅.
Fix a vector w ∈ Vj \ f(Vj), and define h ∈ End(Rn) by

h(ek) =

{

0n if k ∈ {1, . . . , n} \ {j0}

w if k = j0
.

Then h ∈ sl(n, R)I and (f−1 ◦ h ◦ f)(v) = tj0f
−1(w) /∈ Vj , hence f /∈

/∈ NG(gI). The contradiction we have obtained yields the asserted
equality. ♦

2. Semisimple Lie algebras and semisimple Lie groups

In this section we recall some basic facts concerning the structure
of semisimple Lie groups and their Lie algebras (for details we refer, for
ex., to [1], [2] or [3]).

2.1. Some notation. Throughout this section g will denote a semisim-
ple real Lie algebra and G a connected Lie group with finite center hav-
ing g as Lie algebra. As usual, κ: g×g → R denotes the Killing form of g,
and ad: g → gl(g) the adjoint representation of g. Let τ : g → g be a Car-
tan involution with the corresponding Cartan decomposition g = k⊕ s,
where k and s are the +1, resp., −1 eigenspaces of τ . (Note that k is a
subalgebra and s is a vector subspace of g.) In what follows g is assumed
to be equipped with the scalar product 〈·, ·〉 : g × g → R defined as

〈X,Y 〉 = −κ(X, τ(Y )), for all X,Y ∈ g.

2.2. The root space decomposition of g. Fix a maximal abelian
subspace a of s. The definition of 〈·, ·〉 implies that the set {ad(H) |
| H ∈ a} is a commuting family of self-adjoint (hence diagonable) trans-
formations of g. Thus g can be written as the (orthogonal) direct sum
of simultaneous eigenspaces

g = g0 ⊕
⊕

α∈Φ

gα, where α ∈ a∗,

gα = {X ∈ g | ad(H)(X) = α(H)X for all H ∈ a},

and Φ = {α ∈ a∗ \ {0} | gα 6= {0}}. Any α ∈ Φ is called a root of

(g, a), gα is the corresponding root space, and Φ is the root system of

the pair (g, a). In fact, Φ is a root system in a∗ (when a∗ is equipped
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with the scalar product obtained by transferring to a∗ the restriction
〈·, ·〉 |a×a).
2.3. The Iwasawa decompositions. Choose a base Π for Φ. Let
Φ+, respectively, Φ− be the set of positive, respectively, negative roots
relative to Π, and define n =

⊕

α∈Φ+ gα. Then n and a⊕ n are subalge-
bras of g with n nilpotent and a⊕n solvable, and the following so-called
Iwasawa decomposition holds for g

g = k ⊕ a ⊕ n.

Let K, A, and N be the analytic subgroups of G with Lie algebras k, a,
and n. Then K is compact, and A and N are simply connected. The
diffeomorphism (k, a, n) ∈ K × A × N 7→ kan ∈ G gives rise to the
decomposition G = KAN , called the Iwasawa decomposition of G.
2.4. Parabolic subalgebras and parabolic subgroups. Let Θ be
a subset of Π and consider the parabolic set P(Θ) in Φ defined by

P(Θ) := Φ+ ∪ Φ(Θ), where Φ(Θ) := Φ ∩ span(Θ).

(We recall that span(Θ) stays for the intersection of all vector subspaces
of a∗ containing Θ.) Define now

p(Θ) := g0 ⊕
⊕

α∈P(Θ)

gα, P (Θ) := NG(p(Θ)).

Note that p(∅) = g0 ⊕ n and p(Φ) = g. For every Θ ⊆ Π, the vector
space p(Θ) is a self-normalizing subalgebra of g, and P (Θ) is a closed
subgroup of G with Lie algebra p(Θ). The subalgebras p(Θ), Θ ⊆ Π, are
the parabolic subalgebras of g, and P (Θ), Θ ⊆ Π, the standard parabolic

subgroups of G.
2.5. The subalgebras g(Θ) of g and the subgroups G(Θ) of G.
Let Θ be a subset of Π. Write g(Θ) for the Lie algebra generated by the
root spaces gα, α ∈ Φ(Θ), where Φ(Θ) is the set defined in the above
paragraph. An easy computation yields that

g(Θ) =
(

⊕

α∈Φ(Θ)

gα
)

⊕
(

∑

α∈Φ(Θ)

[gα, g−α]
)

.

The Lie algebra g(Θ) is semisimple and the corresponding analytic sub-
group G(Θ) is closed in G.

3. Applications in the case of sl(nnn, R) and Sl(nnn, R)

Sl(n, R) is a connected semisimple Lie group with finite center and
with Lie algebra sl(n, R). Our first task is to identify within sl(n, R)
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and Sl(n, R) the elements presented in the previous section for arbitrary
semisimple Lie algebras and Lie groups. Throughout this section the
letter g will stay for the Lie algebra sl(n, R), and G for the Lie group
Sl(n, R). We start by specifying a Cartan involution in g: Define τ : g →
→ g by τ(X) = −Xt, where Xt is the transpose of X. For showing
that τ is a Cartan involution we need a little preparation.
3.1. Lemma. The map σ: g × g → R defined by σ(X,Y ) = tr(XY t)
has the following properties:

(i) σ is a scalar product on g.

(ii) (adX)∗ = ad(Xt), where (adX)∗ denotes the adjoint of adX
relative to the scalar product σ.

Proof. Assertion (i) is a direct consequence of the properties of the
trace function tr: its linearity, tr(XY ) = tr(Y X), tr(X) = tr(Xt), and
tr(XXt) = 0 if and only if X = 0.

(ii) The following equalities hold for every X,Y, Z ∈ g

σ(adX(Y ), Z) = tr(XY Zt − Y XZt) = tr(Y ZtX − Y XZt) =

= tr(Y (XtZ − ZXt)t) = σ(Y ad(Xt)(Z)).

Thus (adX)∗ = ad(Xt). ♦

3.2. Lemma. Let κ: g × g → R be the Killing form of g. The map

κτ : g× g → R defined by κτ (X,Y ) = −κ(X, τ(Y )), for every X,Y ∈ g,

is a scalar product.

Proof. The bilinearity of κτ follows from that of κ. Since

κ(ϕ(X), ϕ(Y )) = κ(X,Y ) for every X,Y ∈ g

and every Lie algebra automorphism ϕ of g, we get that

κτ (Y,X) = −κ(Y, τ(X)) = −κ(τ(Y ), τ(τ(X))) =

= −κ(τ(Y ), X) = −κ(X, τ(Y )) = κτ (X,Y )

for every X,Y ∈ g. Thus κτ is symmetric. Pick now an arbitrary
X ∈ g. According to Lemma 3.1 we have that

κτ (X,X) = tr(adX ad(Xt)) = tr(adX(adX)∗).

Hence κτ (X,X) ≥ 0 and κτ (X,X) = 0 if and only if X = 0, showing
that κτ is a scalar product. ♦

3.3. Corollary. The map τ:g→g, X 7→−Xt, is a Cartan involution. ♦

The Cartan decomposition corresponding to τ is

g = so(n, R) ⊕ s,

where so(n, R) = {X ∈ g | X + Xt = 0}, s = {X ∈ g | X = Xt}.
The subset a ⊆ s consisting of all diagonal matrices of trace 0 is a
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maximal abelian subspace of s. (Note that every matrix X ∈ g having
the property that [X, a] = {0} belongs to a.) The dimension of a is
n − 1. For simplicity we write (d1, . . . , dn), d1, . . . , dn ∈ R, for the
diagonal matrix X = (xij) with xii = di, i = 1, n. For i ∈ {1, . . . , n}
let fi ∈ a∗ be defined by

fi(d1, . . . , dn) = di.

For each H ∈ a and every i, j ∈ {1, . . . , n} with i 6= j we have that

adH(Eij)=(fi(H) − fj(H))Eij ,

so Eij is a simultaneous eigenvector for all adH, H ∈ a. It follows that
the root system of the pair (g, a) is

Φ = {fi − fj | i, j ∈ {1, . . . , n}, i 6= j}.

The corresponding root spaces are gfi−fj = REij . Also, g0 = a. We
thus get the following root space decomposition of g

g = a ⊕
⊕

i 6=j

REij .

For every i ∈ {1, ..., n−1} let αi := fi−fi+1. The set Π = {α1, ..., αn−1}
is a base of Φ. Indeed, Π is a vector space base of a∗ since it consists
of n − 1 linearly independent elements. Also, if i, j ∈ {1, . . . , n} are so
that i < j then

(∗) fi − fj =

j−1
∑

k=i

αk.

It follows that
Φ+ =

{

fi − fj | i, j ∈ {1, . . . , n}, i < j
}

,

Φ− =
{

fi − fj | i, j ∈ {1, . . . , n}, i > j
}

.

So, n =
⊕

α∈Φ+ gα is the subspace of g consisting of all strictly upper
triangular matrices, and

g = so(n, R) ⊕ a ⊕ n

is the Iwasawa decomposition of g. The corresponding Iwasawa decom-
position of G is G = KAN , where

K = SO(n, R) = {g ∈ G | ggt = 1},

A = {(d1, . . . , dn) ∈ G | di > 0, i = 1, n},

and N consists of all upper triangular matrices with real entries and
with 1 on the main diagonal.
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3.4. Lemma. For a nonempty set J ⊆ {1, . . . , n − 1} the following

assertions hold:

(i) There exist nonzero real numbers tj, j ∈ J , such that
∑

j∈J tjαj ∈
∈ Φ if and only if J consists of consecutive natural numbers.

(ii) If
∑

j∈J tjαj ∈ Φ for some nonzero real numbers tj, j ∈ J , then

either tj = 1 for all j ∈ J , or tj = −1 for all j ∈ J .

Proof. The assertions follow from (∗) and from the fact that Π =
= {α1, . . . , αn−1} is a base of Φ. ♦

3.5. Notation. For every nonempty subset J ⊆ {1, . . . , n− 1} denote
by ΘJ := {αj | j ∈ J} and by Φ(J) := Φ(ΘJ) = Φ ∩ span(ΘJ).
Put Φ(∅) := ∅. Also, let p(J) [P (J)] stay for the parabolic subalgebra
[subgroup] p(ΘJ) [P (ΘJ)]. Similarly, g(J) [G(J)] denotes the set g(ΘJ)
[G(ΘJ)] defined in 2.5.
3.6. Definition. Let ∅ 6= I ⊆ N. A partition I = ∪p

k=1Ik of I into p
disjoint nonempty subsets is called the partition of I into maximal sets

of consecutive numbers if the following conditions are satisfied:
(i) For every k ∈ {1, . . . , p} the set Ik consists of consecutive natural

numbers.
(ii) For every k ∈ {1, . . . , p−1} the inequality min(Ik+1)−max(Ik) ≥

≥ 2 holds.
3.7. Example. If I = {1, 2, 3, 7, 9, 10} then I = {1, 2, 3}∪{7}∪{9, 10}
is the partition of I into maximal sets of consecutive numbers.
3.8. Proposition. Let ∅ 6= J ⊆ {1, . . . , n − 1} and J = ∪p

k=1Jk be

the partition of J into maximal sets of consecutive numbers. Then the

following equality holds

Φ(J) =

p
⋃

k=1

{fi − fj | i, j ∈ [min(Jk),max(Jk) + 1] ∩ N, i 6= j} .

Proof. Consider an element α = fi − fj ∈ Φ(J), i, j ∈ {1, . . . , n},
i 6= j. Then there exist a subset Z of J and nonzero real numbers tz,
z ∈ Z, such that α =

∑

z∈Z tzαz. According to Lemma 3.4, we find an
index k ∈ {1, . . . , p} such that Z ⊆ Jk and i, j ∈ [min(Jk),max(Jk)+1].
This proves the inclusion

Φ(J) ⊆

p
⋃

k=1

{fi − fj | i, j ∈ [min(Jk),max(Jk) + 1] ∩ N, i 6= j} .

For the converse inclusion pick k ∈ {1, . . . , p} and i, j ∈
∈ [min(Jk), (max Jk) + 1] with i < j. Then fi − fj = αi + · · ·+ αj−1 ∈
∈ Φ(J) and fj − fi ∈ Φ(J). ♦
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3.9. Corollary. Let ∅ 6= J ⊆ {1, . . . , n − 1} and i, j ∈ {1, . . . , n − 1}
with i > j. Then fi − fj ∈ Φ(J) if and only if N ∩ [j, i − 1] ⊆ J . ♦

3.10. Lemma. Let J be a nonempty and proper subset of {1, ..., n−
−1}, J = ∪p

ℓ=1Jℓ the partition of J into maximal sets of consecutive

numbers, and I = {i1, . . . , ik} = {1, . . . , n − 1} \ J with i1 < · · · < ik.
Put i0 = 0 and ik+1 = n. Then the following assertions hold:

(i) For every ℓ ∈ {1, . . . , p} there exists exactly one index m ∈
∈ {1, . . . , k + 1} such that min(Jℓ) − 1 = im−1 and max(Jℓ) +
+ 1 = im.

(ii) If m ∈ {1, . . . , k + 1} is such that im − im−1 ≥ 2 then there

exists an index ℓ ∈ {1, . . . , p} such that min(Jℓ) − 1 = im−1 and

max(Jℓ) + 1 = im.

(iii) The equality

p
∑

ℓ=1

(

(max(Jℓ) − min(Jℓ) + 2)2 − 1
)

=
k=1
∑

m=1

(

(im − im−1)
2 − 1

)

holds.

Proof. (i) Pick ℓ ∈ {1, . . . , p}.
Case 1 . If min(Jℓ) = 1 then obviously ℓ = 1 and max(Jℓ)+1 = i1.

Thus, in this case, we can choose m = 1.
Case 2 . If min(Jℓ) > 1 and max(Jℓ) < n−1, then we find an index

m ∈ {2, . . . , k−1} such that min(Jℓ)−1 = im−1 and max(Jℓ)+1 = im.
Case 3 . If max(Jℓ) = n − 1 then ik = min(Jℓ) − 1. Hence m =

= k + 1.
(ii) If m = 1 then J1 = {1, . . . , i1 − 1}, thus ℓ = 1 satisfies the

required conditions. If 2 ≤ m ≤ k then there exists an index ℓ ∈
∈ {1, . . . , p} such that Jℓ = {im−1 + 1, . . . , im − 1}. Finally, if m = k +
+ 1 then Jp = {ik + 1, . . . , n − 1}, hence ℓ = p satisfies the required
conditions.

The equality (iii) follows from (i) and (ii). ♦

In the next theorem we first establish the connection between the
parabolic subalgebras p(J) [parabolic subgroups P (J)] of g [G] an the
subalgebras [subgroups] introduced in the first section. Afterwards we
characterize g(J) [G(J)] as a suitable set diagg(I) [diagG(I)].
3.11. Notation. For a subset I ⊆ {1, . . . , n − 1} we define the set
diagg(I) [diagG(I)] in the following way: If I = ∅ then diagg(I) = g

[diagG(I) = G]. If I 6= ∅ let I = {i1, . . . , ik} with 1 ≤ i1 < · · · < ik ≤
≤ n− 1. Put i0 = 0, ik+1 = n, and define diagg(I) [diagG(I)] to be the
set consisting of all matrices
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













X1 0 0 . . . 0
0 X2 0 . . . 0
0 0 X3 . . . 0
· · · · ·
· · · · ·
· · · · ·
0 0 0 . . . Xk+1















,

where Xj ∈ sl(ij − ij−1, R) [Xj ∈ Sl(ij − ij−1, R)], for every j ∈
∈ {1, . . . , k + 1}. It is clear that diagg(I) is a subalgebra of g, and
that diagG(I) is a subgroup of G. Note that for I = {1, . . . , n − 1} the
set diagg(I) [diagG(I)] consists only of the zero [identity] matrix.

In the next theorem we first establish the connection between the
parabolic subalgebras p(J) [parabolic subgroups P (J)] of g [G] an the
subalgebras [subgroups] introduced in the first section. Afterwards we
characterize g(J) [G(J)] as a suitable set diagg(I) [diagG(I)].

3.12. Theorem. Let J ⊆ {1, . . . , n − 1} and I = {1, . . . , n − 1} \ J .

Then the following assertions hold:

(i) p(J) = gI . (iii) g(J) = diagg(I).

(ii) P (J) = GI . (iv) G(J) = diagG(I).

Proof. (i) If J = ∅ then p(J) = a ⊕ n, and if J = {1, . . . , n − 1}
then p(J) = g. Thus, in both of these cases, according to 2) of 1.8,
the equality p(J) = gI holds. Assume now that J is a nonempty and
proper subset of {1, . . . , n − 1}. By definition,

p(J) = (a ⊕ n) + (⊕α∈Φ(J)g
α).

We prove first that p(J) ⊆ gI . Since a⊕n ⊆ gI (by assertion 2) of 1.8),
we have only to prove that Eij ∈ sl(n, R)I whenever i, j ∈ {1, . . . , n −
− 1} are so that i > j and fi − fj ∈ Φ(J). Pick k ∈ I and indices
i, j ∈ {1, . . . , n − 1} so that i > j and fi − fj ∈ Φ(J). It follows from
Cor. 3.9 that N ∩ [j, i − 1] ⊆ J . Hence k < j or k ≥ i, so Eij ∈ Vk

by assertion 1) of 1.8. This proves the inclusion p(J) ⊆ gI . For the
converse inclusion pick an element X ∈ gI . According to the root space
decomposition of g we find X0 ∈ a and Xα ∈ gα, α ∈ Φ, such that
X = X0 +

∑

α∈Φ Xα. We show that Xα = 0 for every α ∈ Φ− \ Φ(J).
Pick an element α ∈ Φ− \ Φ(J). Let i, j ∈ {1, . . . , n − 1}, i > j, be so
that α = fi − fj , and t ∈ R so that Xα = tEij . Applying once again
Cor. 3.9, we find an index ℓ ∈ (N ∩ [j, i − 1]) \ J . It follows that ℓ ∈ I,
thus X ∈ gVℓ

, so X(ej) ∈ Vℓ. On the other hand,
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X(ej) ∈ Rej + tei +
∑

k>j,k 6=i

Rek,

hence t = 0 (note that ℓ < i), i.e., Xα = 0. Since α ∈ Φ− \ Φ(J) was
arbitrary, we finally obtain the converse inclusion gI ⊆ p(J).

(ii) By definition, P (J) = NG(p(J)), so the equality follows from
(i) and from assertion b) of Prop. 1.9.

(iii) If J = ∅ then I = {1, . . . , n − 1}, and g(J) = {0} = diagg(I).

If J = {1, . . . , n−1} then I = ∅ and Φ(J) = Φ. Since
∑

α∈Φ[gα, g−α] =
= a, it follows from the formula in 2.5 that g(J) = g, thus g(J) =
= diagg(I). Suppose now that J is a nonempty and proper subset of

{1, . . . , n−1}, that J = ∪p
ℓ=1Jℓ is the partition of J into maximal sets of

consecutive numbers, and let I = {i1, . . . , ik} with 1 ≤ i1 < · · · < ik ≤
≤ n− 1. Put i0 = 0 and ik+1 = n. For every m∈{1, ..., k+1} denote by
I(m) := {im−1+1, . . . , im}. Pick now an arbitrary index j ∈ J . Then we
find a natural number m ∈ {1, . . . , k + 1} such that j ∈ I(m). Since j /∈
/∈ {i1, . . . , ik+1}, the natural number j+1 lies also in the set I(m), hence

gαj = REj,j+1 ⊆ diagg(I).

It follows that g(J)⊆diagg(I), because diagg(I) is a Lie subalgebra of g.
We prove next that the (real) vector spaces g(J) and diagg(I) have the
same dimension. It follows right from the definition of diagg(I) that

dim(diagg(I)) =

k+1
∑

m=1

((im − im−1)
2 − 1).

Note that

dim

(

∑

α∈Φ(J)

[gα, g−α]

)

≥ dim

(

∑

α∈J

[gα, g−α]

)

= card(J),

hence, according to the formula in 2.5 and to the fact that the root
spaces gα, α ∈ Φ, are one-dimensional, the inequality

dim(g(J)) ≥ card(Φ(J)) + card(J)

holds. In view of Prop. 3.8, we obtain further that

card(Φ(J)) =

p
∑

ℓ=1

(max(Jk) − min(Jk) + 2)
(

max(Jk) − min(Jk) + 1
)

=

=

p
∑

ℓ=1

(

(max(Jk) − min(Jk) + 2)2 − 1
)

− card(J),

thus
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dim(g(J)) ≥

p
∑

ℓ=1

(

(max(Jk) − min(Jk) + 2)2 − 1
)

.

Using assertion (iii) of Lemma 3.10, we conclude that dim(g(J)) ≥
≥ dimg(I), hence g(J) = diagg(I).

(iv) This equality follows from (iii) and from the fact that the
analytic subgroup corresponding to diagg(I) is diagG(I). ♦

3.13. Notation. Let I = {i1, . . . , ik} ⊆ {1, . . . , n − 1} with 1 ≤ i1 <
< · · · < ik ≤ n − 1. Put i0 = 0 and ik+1 = n. We consider the
semigroup R

k+1 endowed with componentwise multiplication. Define

δI :
k+1
∏

j=1

Gl(ij − ij−1, R) → R
k+1 by δI(X1, . . . , Xk+1) =

= (detX1, . . . ,det Xk+1).

An easy computation yields that δI is a homomorphism. Let

Dk :=

{

(x1, . . . , xk+1) ∈ R
k+1 |

k+1
∏

i=1

xi = 1

}

.

Obviously Dk is a submonoid of R
k+1 and (δI ◦ pr)−1(Dk) ⊆ G.

3.14. Theorem. Let I = {i1, . . . , ik} be a nonempty subset of

{1, . . . , n − 1} and M ⊆ GI . Then M is a subsemigroup which con-

tains N and diagG(I) if and only if there exists a submonoid S of Dk

such that M = (δI ◦ pr)−1(S), i.e.,

M = {(pr)−1(X1, . . . , Xk+1) | (X1, . . . , Xk+1) ∈ δ−1
I (S)},

where pr is the map defined in remark 3) of 1.8.

Proof. (⇐) Denote by 1k the identity of Dk. Since
∏k+1

j=1 Sl(ij −

− ij−1, R) = δ−1
I (1k) it follows that diagG(I) ⊆ M . It is also clear that

N ⊆ M and that M is a subsemigroup of GI .
(⇒) Let M=pr(M). This set is a subsemigroup of

∏k+1
j=1 Gl(ij −

ij−1, R), hence S = δI(M) is a subsemigroup of Dk. We show first that

M = δ−1
I (S). Consider (Z1, . . . , Zk+1) ∈ δ−1

I (S) and (X1, . . . , Xk+1) ∈
∈ M such that detXj = detZj for every j ∈ {1, . . . , k + 1}. Thus, for

every j ∈ {1, . . . , k + 1}, the matrix X−1
j Zj belongs to Sl(ij − ij−1, R).

Since
k+1
∏

j=1

Sl(ij − ij−1, R) = pr(diagG(I)) ⊆ M,

we conclude that
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(Z1, . . . , Zk+1) = (X1, . . . , Xk+1)(X
−1
1 Z1, . . . , X

−1
k+1Zk+1) ∈ M.

This proves the equality M = δ−1
I (S). Finally we have to prove that

M = {(pr)−1(X1, . . . , Xk+1) | (X1, . . . , Xk+1) ∈ M}.

For this it suffices to show that if (X1, . . . , Xk+1) ∈ δ−1
I (S) and if Y ∈

∈ GI is so that pr(Y ) = (X1, . . . , Xk+1), then Y ∈ M . Let X ∈ M
be so that pr(X) = (X1, . . . , Xk+1). It follows that X−1Y ∈ N ⊆ M ,
hence Y = X(X−1Y ) ∈ M . ♦

3.15. Remark. The proof of the above theorem shows in particular
that a subset S of Gl(n, R) is a subsemigroup containing Sl(n, R) if
and only if there exists a submonoid D of the multiplicative group of
nonzero reals such that S = det−1(D).
3.16. Examples. We keep the notations of Th. 3.14 and show how
one can construct subsemigroups M of GI with k ‘independent factors’
on the main diagonal: For every j ∈ {1, . . . , k} consider a subsemigroup
Sj of Gl(ij − ij−1, R) containing Sl(ij − ij−1, R) (by the above remark
we know how one obtains such subsemigroups). Consider now M to be
the set of all matrices of the following type















X1 ∗ ∗ . . . ∗
0 X2 ∗ . . . ∗
0 0 X3 . . . ∗
· · · · ·
· · · · ·
· · · · ·
0 0 0 . . . Xk+1















,

where Xj ∈ Sj , j = 1, k, Xk+1 ∈ det−1( 1
det X1... det Xk

), and the stars ∗
stay for arbitrary real matrices of suitable dimension.
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