Mathematica Pannonica

18/1 (2007), 19–26

THE SEMIGROUP OF RIGHT IDEALS OF A RING

Henry E. Heatherly

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010, USA

Ralph P. Tucci

Department of Mathematics and Computer Science, Loyola University New Orleans, New Orleans, LA 70118, USA

Received: January 2007

 $MSC\ 2000 \colon$ 16 D 25, 16 E 50, 20 M 17, 20 M 18

Keywords: Right ideals, regular, strongly regular, inverse semigroup, band.

Abstract: The structure of the multiplicative semigroup of all right ideals of a ring is investigated. Of particular interest is the case when such a semigroup is von Neumann regular. Examples are given which illustrate and delimit the theory developed.

1. Introduction

This paper investigates connections between the structure of a ring and that of its multiplicative group of right ideals. Here R is a ring with unity, $1 \neq 0$, and $\mathbb{R}(R)$ is the semigroup, under right ideal multiplication, of all right ideals of R. Observe that R is a right identity for $\mathbb{R}(R)$ and the zero ideal (0) of R is the zero for the semigroup $\mathbb{R}(R)$.

In Sec. 2 the Green's relations for $\mathbb{R}(R)$ are characterized and some radical-like ideals of $\mathbb{R}(R)$ are discussed. In Sec. 3 von Neumann regularity and some related conditions are considered. Recall that a semigroup S is regular (von Neumann regular) if for each $s \in S$ there

E-mail addresses: heh5820@louisiana.edu, tucci@loyno.edu

exists $s' \in S$ such that s = ss's. Such a regular semigroup is inverse if s' is unique. It is well known that S is inverse if and only if it is regular and the idempotents of S commute with each other; see [2, Th. 1.17]. If every element of a semigroup S is idempotent, then S is called a band. A commutative band is called a semilattice.

In Sec. 4 the concept of an "almost" property is introduced and $\mathbb{R}(R)$ is characterized when it is almost a rectangular band, which in turn is equivalent to the ring R being simple. Examples are given throughout which illustrate and delimit the theory developed.

2. General results

A semigroup S is ordered if S is a partially ordered set and the multiplication in S is consistent with the partial order; i.e., if $s, t, a \in S$ and $s \leq t$, then $as \leq at$ and $sa \leq ta$. A semigroup S is left ordered if $st \leq s$ for each $s, t \in S$.

Of course, $\mathbb{R}(R)$ is a partially ordered set under set inclusion, but it is not an ordered semigroup. If H, K are right ideals of R, we do not have, in general, that $HK \subseteq K$. However, we still have the following result.

Theorem 2.1. (a) The semigroup $\mathbb{R}(R)$ is a left ordered semigroup under set inclusion of right ideals.

(b) The element R is the unique maximum element of $\mathbb{R}(R)$, and the zero ideal of R is the unique minimum element of $\mathbb{R}(R)$.

(c) If $\mathbb{R}(R)$ has DCC on chains of elements, then it has ACC on chains of elements.

Proof. The proofs of (a) and (b) are immediate from the definitions.

(c) This is the Hopkins–Levitzki Theorem; see [5, Th. 18.13]. \Diamond

We next describe the Green's relations for $\mathbb{R}(R)$. Here we use the standard notation for the Green's relations in a semigroup as found in [2, Sec. 2.1].

Theorem 2.2. In $\mathbb{R}(R)$,

(a) $\mathcal{J} = \mathcal{D} = \mathcal{L};$

(b) $\mathcal{R} = \mathcal{H} = \epsilon$, the equality relation.

Proof. (a) Let $H, K \in \mathbb{R}(R)$ such that $H\mathcal{J}K$. Then there exist X, Y, U, W such that H = XKY and K = UHW. We show that $\mathbb{R}(R)H = \mathbb{R}(R)K$. For any $A \in \mathbb{R}(R)$ we have $AH = AXKY \subseteq \subseteq AKY \subseteq AK$. Dually, $AK = AUHW \subseteq AHW \subseteq AH$. This implies

that AH = AK. Hence $\mathbb{R}(R)H \subseteq \mathbb{R}(R)K$. The same argument shows that $\mathbb{R}(R)K \subseteq \mathbb{R}(R)H$. Therefore $H\mathcal{L}K$. Since $\mathcal{D} \subseteq \mathcal{J}$, we have $\mathcal{J} = \mathcal{D} = \mathcal{L}$.

(b) Let $H, K \in \mathbb{R}(R)$ such that $H\mathcal{R}K$. Then there exist $X, Y \in \mathbb{R}(R)$ such that H = KX and K = HY. Then $H \subseteq K$ and $K \subseteq H$, so that H = K. Since $\mathcal{H} \subseteq \mathcal{R}$, we have $\mathcal{R} = \mathcal{H} = \epsilon$. \diamond

We next consider some "radical-like" ideals of $\mathbb{R}(R)$. First some terminology is needed.

Definition 2.3. Let S be a semigroup with zero. An element $s \in S$ is a *left (right) zero-divisor* in S if there exists a nonzero $t \in S$ such that st = 0 (respectively, ts = 0). An ideal I of S is completely prime if S/I has no zero-divisors; i.e., if $s, t \in S$ such that st = 0, then s = 0 or t = 0. We denote by $D_l(S)$ and $D_r(S)$ the sets of left and right zero-divisors in S, respectively.

Proposition 2.4. (a) $D_l(\mathbb{R}(R))$ is a completely prime ideal of $\mathbb{R}(R)$. (b) $D_l(\mathbb{R}(R)/D_l(\mathbb{R}(R))) = 0$.

(c) $D_r(\mathbb{R}(R))$ is a completely prime ideal of $\mathbb{R}(R)$.

(d) $D_r(\mathbb{R}(R)/D_r(\mathbb{R}(R))) = 0.$

Proof. Let $H \in D_l(\mathbb{R}(R))$. Then there exists $0 \neq K \in \mathbb{R}(R)$ such that HK = 0. For each $X \in \mathbb{R}(R)$ we have (XH)K = X(HK) = 0 and $(HX)K \subseteq H = 0$, so $D_l(R)$ is an ideal of $\mathbb{R}(R)$. If $HK \in D_l(\mathbb{R}(R))$ for $0 \neq H, K \in \mathbb{R}(R)$, then there exists $0 \neq Y \in \mathbb{R}(R)$ such that HKY = 0. Either KY = 0, in which case $K \in D_l(\mathbb{R}(R))$, or $KY \neq 0$, in which case $H \in D_l(\mathbb{R}(R))$; thus $D_l(\mathbb{R}(R))$ is completely prime.

Part (b) follows immediately from part (a). The proofs of (c) and (d) are strictly analogous to those of parts (a) and (b), respectively. \diamond

The beginning of insight into the structure of $\mathbb{R}(R)$ in connection with the ideal structure of R is given by the next result, whose proof follows from routine considerations.

Proposition 2.5. Each of the following is a right ideal in the semigroup $\mathbb{R}(R)$:

(a) $\mathbb{I}(R)$, the set of all ideals of R (which is a monoid);

(b) the set of all nilpotent (right, two-sided) ideals of R;

(c) the set of all nil (right, two-sided) ideals of R;

(d) the set of all minimal (right, two-sided) right ideals of R and (0).

Furthermore, the set of all nilpotent right ideals of R is an ideal of $\mathbb{R}(R)$.

For a semigroup S with zero we use N(S) for the set of all nilpotent elements of S. Observe that $N(\mathbb{R}(R)/N(\mathbb{R}(R))) = 0$.

In light of Prop. 2.4, it is natural to ask if $N(\mathbb{R}(R))$ is completely prime. The next example shows that this is not the case.

Example 2.6. The ideal $N(\mathbb{R}(R))$ is not completely prime.

Let
$$R = \begin{pmatrix} Z & Z_4 \\ 0 & Z_4 \end{pmatrix}$$
, let $H = \begin{pmatrix} 0 & Z_4 \\ 0 & Z_4 \end{pmatrix}$, and let $K = \begin{pmatrix} (2) & (2) \\ 0 & (\bar{2}) \end{pmatrix}$.

Then $HK = \begin{pmatrix} 0 & (2) \\ 0 & (\overline{2}) \end{pmatrix}$, which is nilpotent. Hence, $HK \in N(\mathbb{R}(R))$

but neither H nor K is nilpotent, so $H, K \notin N(\mathbb{R}(R))$.

Corollary 2.7. If $\mathbb{R}(R)$ is 0-simple, then R is semiprime.

Proof. If $N(R) = \mathbb{R}(R)$, then R would be nilpotent, contrary to R having unity. Otherwise, the only nilpotent right ideal of R is the zero ideal; i.e., R is semiprime. \Diamond

The converse of Cor. 2.7 is false, as the case where R is the sum of two fields illustrates.

Observe that if $\mathbb{R}(R)$ is 0-simple and $(\mathbb{R}(R), \supseteq)$ satisfies the DCC, then R is right Artinian and semisimple. So, by the Artin–Wedderburn Theorem, R is regular and $\mathbb{R}(R)$ is a band.

Finally, we note that if R_1 and R_2 are isomorphic rings, then $\mathbb{R}(R_1) \cong \mathbb{R}(R_2)$. The converse fails badly; e.g., if R_1 and R_2 are non-isomorphic skew fields then $\mathbb{R}(R_1) \cong \mathbb{R}(R_2)$.

3. Von Neumann regular

In this section we consider the consequences of $\mathbb{R}(R)$ being regular (von Neumann regular) together with some related conditions. Recall that if the ring R is regular, then every right ideal of R is idempotent, [6, p. 2]. Hence R regular implies $\mathbb{R}(R)$ regular. However, the converse does not hold. If R is a simple ring, then every one-sided ideal of Ris idempotent; see Prop. 4.3 below, or [9, Cor. 18]. For example, the n-th Weyl algebra, W_n , over a field of characteristic zero is a simple ring without divisors of zero and is not regular; see [7, p. 19]. We use J(R) for the Jacobson radical of R.

Theorem 3.1. If $\mathbb{R}(R)$ is regular, then $\mathbb{R}(R)$ is a band and J(R) = 0. **Proof.** Let $H, K \in \mathbb{R}(R)$ such that H = HKH. Then $H \subseteq HK \subseteq H$, or H = HK, which is an idempotent. So $\mathbb{R}(R)$ regular implies $\mathbb{R}(R)$ is a band.

Now let $r \in J(R)$. Then $rR = (rR)^2$ and hence r = rxry for some $x, y \in R$. But $xry \in J(R)$, so 1 - xry is invertible in R, and hence r = 0. \diamond

Rings in which every right ideal is idempotent have been investigated by Courter [3] and Ramamurthi [9], albeit not in the context of studying the semigroup $\mathbb{R}(R)$. Ramamurthi called such rings "right weakly regular", and he showed that such a ring has zero Jacobson radical.

Proposition 3.2. Let $\mathbb{R}(R)$ be regular.

(a) If R/P is regular for each prime ideal P of R, then R is regular.

(b) If R has bounded index of nilpotence, then R has no nil one-sided ideals.

Proof. (a) By Th. 3.1, $\mathbb{R}(R)$ is a band, so every right ideal of R is idempotent. This and the given condition on prime ideals imply that R is regular by [6, Th. 1.17].

(b) A ring of bounded index with a non-zero nil right ideal has a non-zero nilpotent ideal. This would be contrary to $\mathbb{R}(R)$ a band. \Diamond

Recall that S is π -regular if for each $s \in S$ there exist $n \in \mathbb{N}$ (\mathbb{N} being the set of natural numbers), $t \in S$ such that $s^n = s^n t s^n$. Recall also that the class of π -regular rings includes all regular rings and all nil rings, and is closed under direct sums and homomorphic images. **Proposition 3.3.** If $\mathbb{R}(R)$ is π -regular, then:

(a) for each $H \in \mathbb{R}(R)$ there exists $n \in \mathbb{N}$ such that H^n is idempotent;

(b) every cyclic subsemigroup of $\mathbb{R}(R)$ is finite.

Proof. Let $H \in \mathbb{R}(R)$. Then $H^n = H^n K H^n$ for some $n \in \mathbb{N}$ and some $K \in \mathbb{R}(R)$. As in the proof of Th. 3.1, we have that H^n is an idempotent. Hence the subsemigroup of $\mathbb{R}(R)$ generated by H is finite. \Diamond

Lemma 3.4. Let $\mathbb{R}(R)$ be commutative. If $r, s \in R$, then there exists $x \in R$ such that rs = sx.

Proof. From (rR)(sR) = (sR)(rR) we get $rs \in sRrR$ and hence rs = surv for some $u, v \in R$. Use x = urv.

Theorem 3.5. The following are equivalent:

- (a) $\mathbb{R}(R)$ is inverse;
- (b) $\mathbb{R}(R)$ is a semilattice;
- (c) R is strongly regular.

Proof. From Th. 3.1 we get (a) implies (b). Assume (b). Then (a) follows immediately. Also, for each $r \in R$ we use Lemma 3.4 to get $r = r^2 xy$ for some $x, y \in R$. Thus R is strongly regular.

Finally, assume R is strongly regular. So R is regular and hence every right ideal is idempotent. (See [6, Th. 3.5 and Cor. 1.2].) Thus $\mathbb{R}(R)$ is a band. Andrunakevic [1] has shown that if R is strongly regular, then $HK = H \cap K$ for all right ideals H, K of R. Thus R is commutative. \Diamond

Corollary 3.6. If $\mathbb{R}(R)$ is a band, then $\mathbb{R}(Z(R))$ is a semilattice and Z(R) is a strongly regular ring, where Z(R) is the center of the ring R. **Proof.** Ramamurthi [9, Prop. 12] showed that if $\mathbb{R}(R)$ is a band, then so is $\mathbb{R}(Z(R))$. Thus $\mathbb{R}(Z(R))$ is a commutative band. By Th. 3.5, Z(R) is strongly regular. \Diamond

Corollary 3.7. The following are equivalent:

- (a) $\mathbb{R}(R)$ is a finite inverse semigroup;
- (b) $\mathbb{R}(R)$ is a semilattice and $(\mathbb{R}(R), \subseteq)$ has DCC;

(c) R is a finite direct sum of skewfields.

Proof. The implication (a) \Rightarrow (b) follows immediately from Th. 3.5. Assume (b). Then R is semiprime and right Artinian, so the Artin–Wedderburn Theorem and Th. 3.5 give (c). Finally, assume (c). Since this gives $\mathbb{R}(R)$ finite and R strongly regular, we immediately get (a). \Diamond **Corollary 3.8.** The following are equivalent:

(a) $\mathbb{R}(R)$ is inverse and $(\mathbb{I}(R), \subseteq)$ has ACC;

(b) R is strongly regular and every one-sided ideal of R is principal.

Proof. Assume (a). Then R is strongly regular and $\mathbb{R}(R) = \mathbb{I}(R)$. Thus every right ideal of R is finitely generated, and since R is also regular, every right ideal of R is principal. Thus (a) implies (b). The converse is immediate. \Diamond

Example 3.9. Here we give an example of a ring R in which every right ideal of R is idempotent but not every left ideal is idempotent.

Let F be a field and let V be a vector space over F with basis $\{x, y\}$. On this basis define a multiplication via $x^2 = x$, yx = y, $xy = 0 = y^2$. Extend this multiplication via linearity to all of V. This yields a ring on V. The non-zero, proper right ideals of the ring V will all be one-dimensional as subspaces, so each of them is idempotent.

Now take F to have characteristic 0. Let S be any non-zero subgroup of (F, +). Then Sy will be a left ideal of the ring V. All of these left ideals are nilpotent.

This ring V has no identity. However, we can embed V in its Dorroh extension using $F \times V = V^1$. Then V is an ideal in V^1 and $V^1/V \cong F$. Since the right ideals of V and F are idempotent, the same is true of V^1 by [9, Prop. 5]. However, the left ideals of V are left ideals of V^1 also, so V^1 has some non-idempotent left ideals. By Th. 3.1 we have that J(R) = 0. However, the Brown–McCoy radical of the ring V^1 in Ex. 3.9 is V, which is non-zero.

Note that this example, using $F = \mathbb{R}$, is given as an example of a ring that has DCC on right ideals, but not DCC on left ideals; see [4, pp. 37–38].

4. Almost rectangular bands

We now consider the case where $\mathbb{R}(R)$ is a band. By Th. 3.1, this condition is equivalent to $\mathbb{R}(R)$ being regular. It is well known that any band S is a semilattice of rectangular bands, by [8, Cor. II.1.7], where a rectangular band is a direct product $A \times B$ with A being a left zero semigroup (st = s for all $s, t \in S$) and B being a right zero semigroup (st = t for all $s, t \in S$). However, we cannot assume that $\mathbb{R}(R)$ is right zero, left zero, or a rectangular band, because $\mathbb{R}(R)$ has a right identity, namely R, and a zero element, namely the zero ideal of R. Therefore we make the following definitions.

Definition 4.1. Let **P** be any semigroup property. A semigroup *S* is a **P**-semigroup if *S* satisfies property **P**. A semigroup *S* is almost **P** if *S* contains a right identity *e* and a zero element 0, and $S \setminus \{0, e\}$ forms a **P**-semigroup.

Lemma 4.2. The semigroup $\mathbb{R}(R)$ is almost a rectangular band if and only if $\mathbb{R}(R)$ is almost left zero.

Proof. If $\mathbb{R}(R)$ is almost left zero, then it is almost a rectangular band. Conversely, suppose that $\mathbb{R}(R)$ is almost a rectangular band. By Th. 2.2, $\mathcal{L} = \mathcal{J}$. Since a rectangular band is simple, then every pair of elements in $\mathbb{R}(R)$ is \mathcal{L} -related by Th. 2.2.

As mentioned above, any rectangular band can be represented as a direct product $A \times B$, where A is a left zero semigroup and B is a right zero semigroup. Then $(a, b)\mathcal{L}(c, d)$, which implies that b = d. Hence the set B is a singleton, which implies that $A \times B$ is left zero. Therefore $\mathbb{R}(R)$ is almost left zero. \diamond

Proposition 4.3. $\mathbb{R}(R)$ is almost left zero if and only if R is simple. **Proof.** Let R be simple, and let $H, K \in \mathbb{R}(R)$. Then RK is a non-zero ideal of R and hence RK = R, so HK = (HR)K = H(RK) = HR = H.

Conversely, take $\mathbb{R}(R)$ to be almost left zero. Let H be a nonzero right ideal of R and let I be a non-zero proper ideal of R. Then $H = HI \subseteq I$, so every proper right ideal of R is contained in I and I is the only proper non-zero ideal of R. Consequently I is a unique maximal ideal of R and I = J(R). However, by Th. 3.1, J(R) = 0. Thus R has no proper non-zero ideals. \Diamond

We summarize the previous results.

Theorem 4.4. The following are equivalent.

- (a) The semigroup $\mathbb{R}(R)$ is almost a rectangular band.
- (b) The semigroup $\mathbb{R}(R)$ is almost left zero.
- (c) The ring R is simple.

We now consider the case in which $\mathbb{R}(R)$ is almost right zero. Note that such a semigroup is an almost rectangular band by definition. **Theorem 4.5.** The following are equivalent.

(a) $\mathbb{R}(R)$ is almost right zero.

- (b) $\mathbb{R}(R)$ is a two-element semilattice.
- (c) R is a division ring.

Proof. (a) \Rightarrow (c). Assume that $\mathbb{R}(R)$ is almost right zero. Let H and K be proper right ideals of R; that is, $0 \neq H, K \neq R$. Then $H = KH \subseteq K$ and $K = HK \subseteq H$ so that H = K. Therefore R has only one proper right ideal H, which must therefore be minimal. Since every element of $\mathbb{R}(R)$ is idempotent, then R is semiprime. Hence H = eR for some idempotent R. But then (1 - e)R is a right ideal of R distinct from H, a contradiction. Therefore R has no proper right ideals, and hence is a division ring.

The implications (c) \Rightarrow (b) and (b) \Rightarrow (a) are immediate. \Diamond

For similar results, see [9, Lemma 16, Th. 17, Cors. 17 and 18].

References

- ANDRUNAKEVIC, V. A: Strictly Regular Rings, Bul. Akad. Štiince RSS Moldaven 6 (1964), 75–77.
- [2] CLIFFORD, A. H. and PRESTON, G. B.: The Algebraic Theory of Semigroups, Vol. I, Amer. Math. Soc., Providence, R.I., 1961.
- [3] COURTER, R. C.: Rings All Of Whose Factor Rings Are Semi-Prime, Canad. Math. Bull. 12 (1969), 417–426.
- [4] DIVINSKY, N.: Rings and Radicals, U. Toronto Press, Toronto, 1965.
- [5] FAITH, C.: Algebra II Ring Theory, Springer-Verlag, New York, 1976.
- [6] GOODEARL, K.: Von Neumann Regular Rings, Pittman, San Francisco, 1979.
- [7] MCCONNELL, J. C. McConnell and ROBSON, J. C.: Noncommutative Noetherian Rings, John Wiley and Sons, New York, 1987.
- [8] PETRICH, M. and REILLY, N. R.: Completely Regular Semigroups, John Wiley and Sons, New York, 1999.
- [9] RAMAMURTHI, V. S.: Weakly Regular Rings, Canad. Math. Bull. 16 (1973), 317–321.