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Abstract: It is proved that
∑

n≤x

τ(n + τ(n)) = Dx log x + O

(

x(logx)

log log x

)

with positive constants D > 0, δ > 0, where τ(m) is the number of divisors

of m.

1. As usual, τ(n), ω(n), Ω(n) denote the number of divisors, the
number of distinct prime factors, the number of prime factors with
multiplicity of n.

Let furthermore ϕ(n) be Euler’s totient function. For the sake of
simplicity we shall write x1 := log x; x2 := log x1; x3 := log x2.

A. Ivić [1] formulated the conjecture that

(1.1) D(x) :=
∑

n≤x

τ(n + τ(n)) = Dxx1 + O(x).

We can deduce the somewhat weaker assertion, namely that
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D(x) = Dxx1 + O

(

xx1

x2

)

,

by using two theorems of N. M. Timofeev and M. B. Khripunova [2],
which are analogons of the Vinogradov–Bombieri theorem and the Brun–
Titchmarsh inequality. We shall formulate them as Lemmas 1, 2.

In [2] they proved the asymptotic of
∑

n<x

τ(n + a) where n runs

over the integers with Ω(n) = k, uniformly as k ≤ (2 − ε)x2, a = 1. In
[4] they proved the asymptotic of

∑

n<N
Ω(n)=k

τ(N − n)

uniformly as k ≤ (2−ε) log log N , or (2+ε) log log N < k < b log log N .

2. Let t ≥ 2, P (t) =
∏

p<t

p, p runs over the set of primes. In what

follows, ε, ε1, ε2, . . . are arbitrarily small positive numbers.
Denote

µ(x, k, t, a, d) = #{n | n ≤ x, Ω(n) = k, (n, P (t)) = 1, n ≡ a(mod d)}.
Lemma 1. Let 2 ≤ t ≤ √

x, k ≤ x2
2, and let

∆k(t) =
∑

d≤Q

max
y≤x

max
(a,d)=1

∣

∣

∣

∣

µ(y, k, t, a, d)−

− 1

ϕ(d)
#{n | n ≤ y, Ω(n) = k, (n, dP (t)) = 1}

∣

∣

∣

∣

.

Then

∆k(t) ≪ Q
√

x exp
(

x2+ε
2

)

+
x

xB
1

,

where ε > 0 and B is an arbitrary positive constant.
Lemma 2. Suppose k ≤ (2 − ε)x2, 0 < ε < 1, d ≤ x

1

2
+α(k), 2 ≤ t ≤

≤ xβ(k), α(k) = 1/3k, and β(k) =
1

10
exp(−k/2). Then there exists a

constant c(ε, ε1) such that

µ(x, k, t, a, d) ≤ c(ε, ε1)
x

ϕ(d)x1
(1 + ε1)

k

(

log x1

log t

)k−1

(k − 1)!

where 0 < ε1 < 1.
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Lemma 3. Let z > 0, 1 < β, Q(y) := y log
y

e
+ 1. Then

∑

k≥βz

e−z · zk

k!
<

√
βe−Q(β)z

(β − 1)
√

2π
.

The proof can be found in [3]. Here the authors proved also that

#{n ≤ x | ω(n) = k} ≤ c0x

x1

(x2 + c)k−1

(k − 1)!
(x ≥ 3, k ≥ 1)

which is called as Hardy–Ramanujan inequality.

3. Let (a, d) = 1,

(3.1) S(y; l,K, a, d) :=
∑

n≤y
ω(n)=l

(n,K)=1
n≡a(mod d)

|µ(n)|.

Let χ be a Dirichlet-character mod d. Since

∏

(p,K)=1

(

1 +
zχ(p)

ps

)

=
∏

(p,K)=1

1

1 − zχ(p)
ps

·
∏

(p,K)=1

(

1 − z2χ2(p)

p2s

)

holds for z ∈ C, |z| ≤ 1, therefore

(3.2)χ

∑

n≤x
ω(n)=l

(n,K)=1

χ(n)|µ(n)| =
∑

mr2≤x
(mr,K)=1

Ω(m)+2ω(r)=l

(−1)ω(r)|µ(r)|χ(m)χ2(r).

Thus, counting
1

ϕ(d)
·
∑

χ

(3.2)χ, we obtain

(3.3)

S[y; l,K, a, d] =
∑

r2≤y
(r,Kd)=1

(−1)ω(r)|µ(r)| · µ
( y

r2
, l − 2ω(r), 2, ba, d

)

,

where ba (mod d) is defined by r2ba ≡ a(mod d).

Let
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(3.4) T (y; l,K, d) :=
∑

n≤y
ω(n)=l

(n,Kd)=1

|µ(n)| =
∑

a
(a,d)=1

S[y; l,K, a, d].

It is clear that

(3.5)

∣

∣

∣

∣

S[y; l,K, a, d] − 1

ϕ(d)
T (y; l,K, d)

∣

∣

∣

∣

≤

≤
∑

r2≤y
(r,Kd)=1

|µ(r)|
∣

∣

∣µ
( y

r2
, l − 2ω(r), 2, ba, d

)

−

− 1

ϕ(d)
#

{

n ≤ y

r2
, Ω(n) = l − 2ω(r) (n, d) = 1

}∣

∣

∣
.

Furthermore, from (3.4) and (3.3) we deduce that
(3.6)

T (y; l,K, d) =

=
∑

r2≤y
(r,Kd)=1

(−1)ω(r)|µ(r)|#
{

n ≤ y

r2

∣

∣

∣ Ω(n) = l − 2ω(r), (n,Kd) = 1
}

.

4. Theorem. We have

(4.1) D(x) = Dxx1 + O

(

xx1

x2

)

.

Proof. Let us write every n in the form n = Km, where K is square-
full, m is square-free and (K,m) = 1. We say that K is the square-full
and m is the square-free part of n.

If n = Km, ω(m) = t, then τ(n + τ(n)) = τ(Km + τ(K) · 2t).

Let

(4.2) EK,t(x) =
∑

m≤x/K
ω(m)=t

τ(Km + τ(K) · 2t),

where in the summation we assume furthermore that (m,K) = 1, m is
square-free.

It is clear that
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(4.3) D(x) =
∑

K≤x

∞
∑

t=0

EK,t(x),

where K runs over the square-full integers.
We shall prove that

(4.4)
∑

K≥x4

1

∑

t

EK,t(x) +
∑

K≤x4

1

∑

t≥βx2

EK,t(x) ≪ x · x1−δ
1 ,

where β is an arbitrary constant larger than 1/ log 2.
Since τ(n) = O(nε), therefore

∑

K≥x1/4

∑

t

EK,t(x) = O(x1/4).

Let K ≤ x1/4. By using the Hölder inequality

(4.5)

EK,t(x) ≤









∑

m≤x/K
ω(m)=t

1









1/2






∑

m≤x/K

τ2(Km + τ(K) · 2t)







1/2

≪

≪
(

x

Kx1

)1/2 (

(x2 + c)t−1

(t − 1)!

)1/2

·
( x

K
x3

1

)1/2

=

=
x

K
x1 ·

(x2 + c)(t−1)/2

(t − 1)!1/2
.

Here we used the Hardy–Ramanujan inequality and the known
inequality

max
t≤x1

∑

m≤x/K

τ2(Km + τ(K) · 2t) ≤ cx

K
x3

1,

where c does not depend on K and t.
Since

∑

t≥0

(x2 + c)(t−1)/2

(t − 1)!1/2
≪ x

1/2
1 · x1/4

2 ≪ x1,

we obtain that

(4.6)
∑

K≥x4

1

∑

t

EK,t(x) = O(x).

Let K ≥ x4
1. From (4.5) we obtain that
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(4.7)
∑

t≥αx2

EK,t(x) ≤ cxx1

K

∑

t≥αx2

(x2 + c)
t−1

2

(t − 1)!1/2
≪ x

K
· 1

x2
1

,

if α is large enough.

Let β > 1/ log 2. We shall estimate
∑

βx2≤t≤αx2

EK,t(x).

If ω(m) = t ≥ βx2, then τ(m) = 2t ≥ 2βx2 , consequently
(4.8)

∑

βx2≤t≤αx2

EK,t(x) ≤ 2−βx2

∑

βx2≤t≤αx2

∑

m≤x/K

τ(m)τ(Km + 2tτ(K)).

One can prove elementarily that the inner sum on the right-hand

side of (4.8) is less than ≪ x

K
x2

1, consequently the left-hand side of

(4.8) is less than ≪ x

K
x2−β log 2

1 · x2.

We proved (4.4). Thus

(4.9) D(x) =
∑

K≤x4

1

∑

t<βx2

EK,t(x) + O
(

x · x1−δ
1

)

with a suitable δ > 0, if β >
1

log 2
.

Observing that
∑

t≤βx2

∑

m≤ x
K

τ(Km + τ(K) · 2t) ≪ x

K
· x1 · x2,

if K ≤ x4
1, and that

∑

K>y

1/K ≪ 1√
y
, therefore

D(x) =
∑

K≤x4

2

∑

t≤βx2

EK,t(x) + O

(

xx1

x2

)

.

Finally it remained to give the asymptotic of EK,t(x) under the
condition K ≤ x4

2, t ≤ βx2. This is the number of solutions of

Km + τ(K) · 2t = uv ≤ x + τ(K) · 2t,

where u, v run over the positive integers, m over the square-free integers
coprime to K, and with ω(m) = t. If we multiply the number of
solutions by 2, we can assume that u < v. The contribution of the
solutions with u = v can be ignored.

Let Q :=
√

x · e−x1−2ε
1 , where ε > 0 is the same as in Lemma 1.
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Let us overestimate first
(4.10)u

∑

t≤βx2

#
{

m ≤ x

K

∣

∣

∣
Km + τ(K) · 2t ≡ O(modu), Ω(m) = t

}

.

By using Lemma 2 (substituting t = 2 defined there), we deduce
that (4.10)u is less than

cx

Kϕ(u)x1

∑

t≤βx2

(1 + ε1)
t−1 · xt−1

2

(t − 1)!
≤ cx

Kϕ(u)x1
exp((1 + ε1)x2) =

=
cx

Kϕ(u)
xε1

1 .

Furthermore
∑

Q≤u≤
√

2x2

1

ϕ(u)
≪ log

√
2x2

Q
≪ x1−2ε

1 .

Since ε = ε1 can be chosen, we obtain that
(4.11)

D(x) =
∑

K≤x4

2

∑

t≤βx2

∑

u≤Q

#

{

m ≤ x

K

∣

∣

∣Km + τ(K) · 2t ≡ 0(modu),

ω(m) = t, (K,m) = 1, µ(m) 6= 0

}

−

−
∑

K≤x4

2

∑

t≤βx2

#

{

m≤u2−τ(K)·2t

K

∣

∣

∣Km+τ(K) · 2t ≡ 0(modu),

ω(m) = t, (K,m) = 1, µ(m) 6= 0

}

+ O

(

xx1

x2

)

.

Now we can apply (3.5), (3.6) and Lemma 1 in the usual way. We
obtain our theorem quite directly. We omit the details. ♦

5. The following assertion can be proved similarly:
∑

n≤x

τ(n + f(n)) = Dfx log x + O

(

x(log x)

log log x

)

with some constants Df > 0, δ > 0 if f(n) = ω(n), Ω(n), τ(τ(n)),

2ω(n), τk(n), where τk(n) is the number of solutions of n = u1 . . . uk

in positive integers u1, . . . , uk. Similar theorems can be proved if we
substitute τ(m) by 2ω(m).
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