DIE ÄNDERUNG DER ISOTROPEN DISTANZ UND DES WINKELS NACH ANWENDUNG EUKLIDISCHER SCHIE-BUNG UND DREHUNG

Özcan Gelişgen

Osmangazi Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü, Türkei

Münevver Özcan

Osmangazi Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü, Türkei

jus, a especialistici della manalalia del el G

Herrn Prof. Dr. Rüstem Kaya zum 60. Geburtstag gewidmet

Received: June 2006

MSC 2000: 51 N 25

Keywords: Isotropic plane, distance, span.

Abstract: In this paper we study the variation of the isotropic distance and angle under translations and rotations.

Einleitung

Die Distanz zwischen den Punkten $X=(x_1,y_1)$ und $Y=(x_2,y_2)$ in der isotropen Ebene $I_2:=\mathbb{P}_2(\mathbb{R})\setminus f$ wird definiert mit

$$d_I:I_2\times I_2\to\mathbb{R}$$

$$d_I(X,Y) = \left\{ egin{array}{ll} d(X,Y) = x_2 - x_1, & \mbox{für } XY \mbox{ nicht isotrope Gerade} \\ s(X,Y) = y_2 - y_1, & \mbox{für } XY \mbox{ isotrope Gerade,} \end{array}
ight.$$

wobei d der isotrope Abstand (isotrope Länge) der nicht parallelen

Punkte X,Y und s die Spanne der parallelen Punkte X,Y ist. Das Verhältnis zwischen der euklidischen und der isotropen Distanz ist

$$d_E(X,Y) = \left\{ egin{array}{ll} \sqrt{1+m^2} & |d(X,Y)| \,, & ext{ für } XY ext{ nicht isotrope Gerade} \\ \sqrt{1+m^{-2}} & |s(X,Y)| \,, & ext{ für } XY ext{ isotrope Gerade}. \end{array}
ight.$$

Sind $g_1(u_1, v_1) \dots y = u_1x + v_1$ und $g_2(u_2, v_2) \dots y = u_2x + v_2$ zwei nicht isotrope Geraden der isotropen Ebene, so heisst der Ausdruck $\varphi_I(g_1, g_2) := \measuredangle(g_1, g_2) := u_2 - u_1$ ihr isotroper Winkel. Er wird auch karakterisiert mit: φ_I ist die isotrope Spanne $s(S_1, S_2)$ jener beiden Punkte $S_1 \in g_1$ und $S_2 \in g_2$, die vom Schnittpunkt S der beiden Geraden den isotropen Abstand $d(S, S_1) = d(S, S_2) = 1$ haben. In der ebenen isotropen Bewegungsgeometrie (I_2, \mathcal{L}_3) ist die 3-gliedrige Untergruppe $\mathcal{L}_3 \subset \mathcal{G}_5$ die Gruppe der Gestalt

$$\left\{egin{array}{l} \overline{x}=a+x \ \overline{y}=b+cx+y \end{array}
ight., \quad a,b,c\in\mathbb{R},$$

welche isotrop längentreu, spannentreu und winkeltreu ist. Die folgende Arbeit ist der Untersuchung der Änderung der isotropen Distanz und des isotropen Winkels nach Anwendung einer euklidischen Schiebung oder Drehung gewidmet.

Die Änderung der isotropen Distanz nach Anwendung Euklidischer Schiebung und Drehung

SATZ 1. In der ebenen isotropen Bewegungsgeometrie (I_2, \mathcal{L}_3) sind die euklidischen Schiebungen längentreu und spannentreu.

Beweis. Wenden wir auf die Punkte $X=(x_1,y_1)$ und $Y=(x_2,y_2)$ die euklidische Schiebung

$$\left\{ \begin{array}{ll} x = \overline{x} + a \\ y = \overline{y} + b \end{array} \right. \text{ oder } \left\{ \begin{array}{ll} \overline{x} = x - a \\ \overline{y} = y - b \end{array} \right.$$

an, dann sind $\overline{X} = (x_1 - a, y_1 - b)$ und $\overline{Y} = (x_2 - a, y_2 - b)$ die Bildpunkte. Fall 1. Sind die Punkte X und Y auf einer gemeinsamen nicht isotropen Gerade, so ist $d_I(X,Y) = d(X,Y) = x_2 - x_1$. Nach der Schiebung erhält man $d_I(\overline{X},\overline{Y}) = d(\overline{X},\overline{Y}) = (x_2 - a) - (x_1 - a) = x_2 - x_1 = d(X,Y) = d(X,Y)$.

Fall 2. Seien X und Y Punkte auf einer gemeinsamen isotropen Geraden, so ist $d_I(X,Y) = s(X,Y) = y_2 - y_1$, daher auch $d_I(\overline{X},\overline{Y}) = s(\overline{X},\overline{Y}) = (y_2 - b) - (y_1 - b) = y_2 - y_1 = s(X,Y) = d_I(X,Y)$. Also

ist die euklidische Schiebung in der isotropen Ebene isotrop distanztreu, d.h. längentreu und spannentreu. ◊

Nun untersuchen wir, wie sich die isotrope Distanz einer Strecke [XY] nach Anwendung einer euklidischen Drehung mit einem euklidischen Winkel θ_E ($0 \le \theta_E \le 2\pi$) ändert.

SATZ 2. Sei $d_I(X,Y)=l$ die isotrope Distanz zwischen der verschiedenen Punkten X und Y. Nach Anwendung einer euklidischen Drehung mit einem euklidischen Winkel θ_E $(0 \le \theta_E \le 2\pi)$ in der positiven Richtung ist die isotrope Distanz der Bildstrecke

$$d_I(\overline{X}, \overline{Y}) = \overline{l} =$$

$$= \begin{cases} l\cos\theta_E - |ml|\sin\theta_E, & \text{für } XY \text{ und } \overline{XY} \text{ nicht isotrope Geraden} \\ |ml|\cos\theta_E + l\sin\theta_E, & \text{für } XY \text{ nicht isotrope Gerade und } \overline{XY} \\ & \text{isotrope Gerade} \\ -l\sin\theta_E, & \text{für } XY \text{ isotrope Gerade und } \overline{XY} \text{ nicht} \\ & \text{isotrope Gerade} \\ l\cos\theta_E, & \text{für } XY \text{ und } \overline{XY} \text{ isotrope Geraden,} \end{cases}$$

wobei m die Neigung der Geraden XY ist.

Beweis. Seien $X=(x_1,y_1)$ und $Y=(x_2,y_2)$ zwei verschiedene Punkte in der isotropen Ebene. Nach Anwendung der euklidischen Schiebung

$$\left\{ \begin{array}{l} \overline{x} = x - x_1 \\ \overline{y} = y - y_1 \end{array} \right.$$

erhält man die Bildpunkte $\overline{X} = (\overline{x}_1, \overline{y}_1) = (0,0)$ und $\overline{Y} = (\overline{x}_2, \overline{y}_2) = (x_2 - x_1, y_2 - y_1)$. Unterwirft man die Bildstrecke $[\overline{XY}]$ der euklidischen Drehung um $\overline{X} = (0,0)$ mit $\theta_E = 2\pi$, so entsteht der euklidische Kreis $r = d_E(\overline{X}, \overline{Y})$. Ist α_E der euklidische Winkel zwischen der Geraden \overline{XY} und der positiven x-Achse, dann auch zwischen der Geraden \overline{XY} und der positiven x-Achse. Deswegen kann man $\overline{Y} = (r \cos \alpha_E, r \sin \alpha_E)$ setzen.

Wenden wir auf die Strecke $[\overline{XY}]$ die euklidische Drehung mit dem Winkel θ_E an, dann erhält man die Bildpunkte $\overline{\overline{X}} = (0,0)$ und $\overline{\overline{Y}} = (r\cos(\alpha_E + \theta_E), r\sin(\alpha_E + \theta_E))$. Die isotrope Distanz $d_I(\overline{\overline{X}}, \overline{\overline{Y}})$ wird nun für zwei verschiedene Situationen von $[\overline{XY}]$ berechnet, je nachdem ob $[\overline{XY}]$ isotrope Strecke ist oder nicht. Sei $[\overline{XY}]$ eine nicht isotrope Strecke. Zwei Fälle sind möglich:

Fall 1. Ist nach Anwendung der euklidischen Drehung mit dem Winkel

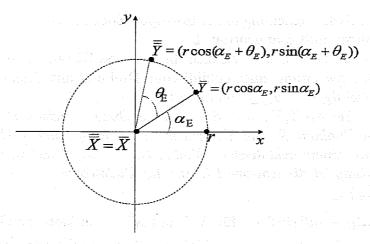


Abb. 1. Anwendung der euklidischen Drehung mit Winkel θ_E auf die Strecke $[\overline{XY}]$.

$$egin{aligned} heta_E \ \overline{|\overline{XY}|} & ext{eine nicht isotrope Bildstrecke, dann ist} \\ d_I(\overline{\overline{X}}, \overline{\overline{Y}}) &= d(\overline{\overline{X}}, \overline{\overline{Y}}) = r\cos(lpha_E + heta_E) - 0 = \\ &= r\coslpha_E\cos heta_E - r\sinlpha_E\sin heta_E = \\ &= r\coslpha_E\cos heta_E - r\sqrt{1-\cos^2lpha_E}\sin heta_E = \\ &= l\cos heta_E - \sqrt{r^2 - l^2}\sin heta_E \end{aligned}$$

und da
$$d_E(\overline{\overline{X}}, \overline{\overline{Y}}) = \sqrt{1+m^2} \left| d_I(\overline{\overline{X}}, \overline{\overline{Y}}) \right|$$
 ist, erhält man
$$\overline{l} = l\cos\theta_E - |ml|\sin\theta_E.$$

Fall 2. Ist nach Anwendung der euklidischen Drehung mit dem Winkel θ_E $[\overline{XY}]$ eine isotrope Bildstrecke, dann ist

$$d_I(\overline{\overline{X}}, \overline{\overline{Y}}) = s(\overline{\overline{X}}, \overline{\overline{Y}}) = r \sin(\alpha_E + \theta_E) - 0 =$$

$$= r \sin \alpha_E \cos \theta_E + r \cos \alpha_E \sin \theta_E =$$

$$= r \sqrt{1 - \cos^2 \alpha_E} \cos \theta_E + l \sin \theta_E$$

und da
$$d_E(\overline{\overline{X}}, \overline{\overline{Y}}) = \sqrt{1+m^{-2}} \left| d_I(\overline{\overline{X}}, \overline{\overline{Y}}) \right|$$
 ist, erhält man $\overline{l} = |ml| \cos \theta_E + l \sin \theta_E$.

Sei $[\overline{XY}]$ eine isotrope Strecke, dann ist $\alpha_E = \pi/2$ oder $\alpha_E = 3\pi/2$, also $\overline{Y} = (0, r)$ oder $\overline{Y} = (0, -r)$. Sei $\alpha_E = \pi/2$. Ist $\alpha_E = 3\pi/2$, so ist der folgende Beweis leicht zu wiederholen. Wieder sind zwei Fälle möglich.

Fall 1'. Sei $\overline{Y} = (0, r)$. Wird durch die euklidische Drehung mit dem Winkel θ_E $[\overline{XY}]$ auf die nicht isotrope Bildstrecke $[\overline{\overline{XY}}]$ transformiert, so ist

$$\begin{split} d_I(\overline{\overline{X}}, \overline{\overline{Y}}) &= d(\overline{\overline{X}}, \overline{\overline{Y}}) = r\cos\left(\frac{\pi}{2} + \theta_E\right) - 0 = \\ &= r\cos\frac{\pi}{2}\cos\theta_E - r\sin\frac{\pi}{2}\sin\theta_E = -r\sin\theta_E \end{split}$$

und mit r = l erhält man

$$\bar{l} = -l\sin\theta_E.$$

Auch wenn $\overline{Y} = (0, -r)$ ist, erhält man dasselbe Ergebnis. Fall 2'. Wird durch die euklidische Drehung mit dem Winkel θ_E $[\overline{XY}]$ auf die isotrope Bildstrecke $[\overline{\overline{XY}}]$ transformiert, so ist

$$\begin{split} d_I\Big(\overline{\overline{X}}, \overline{\overline{Y}}\Big) &= s(\overline{\overline{X}}, \overline{\overline{Y}}) = r\sin\Big(\frac{\pi}{2} + \theta_E\Big) - 0 = \\ &= r\sin\frac{\pi}{2}\cos\theta_E - r\cos\frac{\pi}{2}\sin\theta_E = r\cos\theta_E \end{split}$$

und mit r = l erhält man

$$\bar{l} = l \cos \theta_E$$
. \Diamond

FOLGERUNG 1. Seien X,Y Punkte mit isotroper Distanz $d_I(X,Y) = l$ in der isotropen Ebene und sei α_E der euklidische Winkel zwischen der Geraden XY und der x-Achse. Ist $d_I(\overline{X}, \overline{Y}) = \overline{l}$ die isotrope Distanz nach Anwendung der euklidischen Drehung mit Winkel θ_E in der positiven Richtung, so ist

$$0 < \overline{l} < r$$
 für $-rac{\pi}{2} - lpha_E < heta_E < rac{\pi}{2} - lpha_E$ $-r < \overline{l} < 0$ für $rac{\pi}{2} - lpha_E < heta_E < rac{3\pi}{2} - lpha_E$

 $mit \ 0 < \alpha_E < \pi/2 \ und \ r = d_E(X, Y).$

FOLGERUNG 2. Die isotrope Distanz der Punkte X und Y in der isotropen Ebene ist nach Anwendung der euklidischen Drehung mit dem Winkel $k\pi$, $k \in Z$ als absoluter Wert eine Invariante.

Beweis. Nach Anwendung der euklidischen Drehung mit Winkel $k\pi$, $k \in \mathbb{Z}$ ändern sich die Typen der Geraden nicht, d.h. die Bildgerade einer isotropen bzw. nicht isotropen Geraden ist wieder eine isotrope bzw. nicht isotrope Gerade. Daher muss

 $ar{l} = l \cos \theta_E - |ml| \sin \theta_E$, für XY nicht isotrope Gerade $ar{l} = l \cos \theta_E$, für XY isotrope Gerade

sein. Wegen $\theta_E=k\pi$ erhält man in beiden Fällen $\bar{l}=\pm l$ und somit auch $|\bar{l}|=|l|$. \Diamond

FOLGERUNG 3. Die isotropen Distanzen senkrechter und waagerechter Geraden sin Invariante bezüglich der euklidischen Drehung mit dem Winkel $(2k+1)\frac{\pi}{2}$, $k \in \mathbb{Z}$.

Die Änderung des isotropen Winkels nach Anwendung Euklidischer Schiebung und Drehung

In der isotropen Ebene lässt sich jede nicht isotrope Gerade $g \subset I_2$ in der Normalform y = ux + v oder mit den Geradenkoordinaten g(u,v) darstellen. Der folgende Satz sagt aus, dass der isotrope Winkel nach Anwendung der euklidischen Schiebung eine Invariante ist.

SATZ 3. In der ebenen isotropen Bewegungsgeometrie (I_2, \mathcal{L}_3) sind die euklidischen Schiebungen winkeltreu.

Beweis. Nach Anwendung einer euklidischen Schiebung ist die Bildgerade einer nicht isotropen Gerade $g(u, v) \dots y = ux + v$

$$\overline{y} + b = u(\overline{x} + a) + v \Rightarrow \overline{y} = u\overline{x} + ua + v - b.$$

Daher erhält man als Bildgeraden der nicht isotropen Geraden $g_1(u_1, v_1)$ und $g_2(u_2, v_2)$

$$\overline{g_1}(u_1, v_1) \dots \overline{y} = u_1 \overline{x} + u_1 a + v_1 - b$$

$$\overline{g_2}(u_2, v_2) \dots \overline{y} = u_2 \overline{x} + u_2 a + v_2 - b.$$

Der isotrope Winkel der Geraden $g_1(u_1, v_1)$ und $g_2(u_2, v_2)$ ist

$$\overline{\varphi_I} := \measuredangle(\overline{g_1}, \overline{g_2}) = u_2 - u_1 = \measuredangle(g_1, g_2) = \varphi_I,$$

woraus folgt, dass der isotrope Winkel invariant ist. \Diamond

SATZ 4. Sei φ_I der isotrope Winkel der nicht isotropen Geraden $g_1(u_1, v_1)$ und $g_2(u_2, v_2)$ in der istropen Ebene. Nach Anwendung einer euklidischen Drehung mit dem Winkel θ_E ist der Bildwinkel der nicht isotropen Bildgeraden \overline{g}_1 und \overline{g}_2

$$\overline{arphi}_I = rac{(1+\mathrm{tg}^2 heta_E)\;arphi_I}{(1-u_1\mathrm{tg} heta_E)(1-u_2\mathrm{tg} heta_E)}.$$

Beweis. Seien $g_1(u_1, v_1)$ und $g_2(u_2, v_2)$ zwei verschiedene nicht isotrope Geraden und P = (a, b) ihr Schnittpunkt. Nach Anwendung einer

geeigneten Schiebung können die Bildgeraden \overline{g}_1 , \overline{g}_2 so gelegt werden, dass ihr Schnittbildpunkt $\overline{P} = O = (0,0)$ ist. Nach Satz 3 ist $\angle(g_1,g_2) = \angle(\overline{g}_1,\overline{g}_2)$ erreichbar. Seien θ_E^1 bzw. θ_E^2 die euklidischen Winkel der Geraden g_1 bzw. g_2 mit der x-Achse.

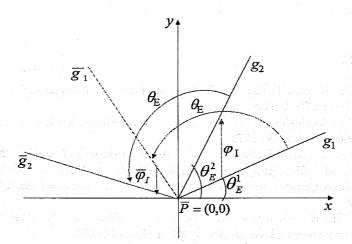


Abb. 2. Anwendung der euklidischen Drehung mit Winkel θ_E auf den isotropen Winkel.

Da die euklidischen Tangens der Geraden g_1 bzw. g_2 und der x-Achse die Neigungen u_1 , u_2 der Geraden sind, erhält man nach Anwendung der euklidischen Drehung mit dem Winkel θ_E : $u_1 = \theta_E^1 + \theta_E$, $u_2 = \theta_E^2 + \theta_E$. Der isotrope Winkel ist

$$\overline{\varphi}_{I} = \measuredangle(\overline{g}_{1}, \overline{g}_{2}) = \operatorname{tg}(\theta_{E}^{2} + \theta_{E}) - \operatorname{tg}(\theta_{E}^{1} + \theta_{E}) =$$

$$= \frac{\operatorname{tg}\theta_{E}^{2} + \operatorname{tg}\theta_{E}}{1 - \operatorname{tg}\theta_{E}^{2}\operatorname{tg}\theta_{E}} - \frac{\operatorname{tg}\theta_{E}^{1} + \operatorname{tg}\theta_{E}}{1 - \operatorname{tg}\theta_{E}^{1}\operatorname{tg}\theta_{E}} =$$

$$= \frac{(1 + \operatorname{tg}^{2}\theta_{E})(\operatorname{tg}\theta_{E}^{2} - \operatorname{tg}\theta_{E}^{1})}{(1 - \operatorname{tg}\theta_{E}^{2}\operatorname{tg}\theta_{E})(1 - \operatorname{tg}\theta_{E}^{1}\operatorname{tg}\theta_{E})}.$$

Setzt man $u_1 = \operatorname{tg}\theta_E^1$, $u_2 = \operatorname{tg}\theta_E^2$ und $\varphi_I = \operatorname{tg}\theta_E^2 - \operatorname{tg}\theta_E^1$, so ist

$$\overline{\varphi}_I = \frac{(1 + \operatorname{tg}^2 \theta_E) \, \varphi_I}{(1 - u_1 \operatorname{tg} \theta_E)(1 - u_2 \operatorname{tg} \theta_E)}. \quad \diamondsuit$$

FOLGERUNG 4. Der isotrope Winkel der nicht isotropen Geraden g_1 und g_2 in der isotropen Ebene ist nach Anwendung der euklidischen Drehung mit dem Winkel $k\pi$, $k \in \mathbb{Z}$ eine Invariante.

Beweis. Da nach Anwendung der euklidischen Drehung mit dem Winkel $k\pi, k \in \mathbb{Z}$ sich die Typen der Geraden nicht ändern, erhält man nach einiger Rechnung,

$$\overline{\varphi}_I = \varphi_I$$

wobei $\theta = k\pi$. \Diamond

Literatur

- [1] BALDUS, R. und LÖBELL, F.: Nichteuklidische Geometrie, Sammlung Göschen, Band 970, Berlin, 1964.
- [2] BENZ, W.: Vorlesungen über Geometrie der Algebren, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [3] KAYA, R.: Analitik Geometri, Bilim Teknik Yayınevi (7. baskı), 2002.
- [4] ÖZCAN, M., EKMEKÇ.I, S. and BAYAR, A.: A Note on the Variation of the Taxicab Lengths under Rotations, *Pi Mu Epsilon Journal*, **11** (2002), 7, 381–384.
- [5] SACHS, H.: Ein isotropes Analogon zu einem Satz von Abramescu und einige Grenzwertformeln, Arch. d. Math. 23 (1972), 661–668.
- [6] SACHS, H.: Ebene Isotrope Geometrie, Vieweg-Verlag, Braunschweig-Wiesbaden, 1987.
- [7] STRUBECKER, K.: Geometrie in einer isotropen Ebene, Math.-Naturwiss. Unterricht (MNU) 15 (1962), 297–306, 343–351, 385–394.
- [8] TÖLKE, J.: Bemerkungen zum isotropen Analogen der Kubik von Cazamian, Journal of Geometry 73 (2002), 194–198.