Mathematica PannoniCa '
17/2 (2006), 255-265

ON A SPECIAL FAMILY OF COM-
' PACT CONVEX SETS IN THE
- EUCLIDEAN PLANE R’

- Horst Kramer
Nesselweg 39, D-65527 Niedernhausen, G’er"rnany‘
Received: Septefnber 2006
MSC 2000: 52 A 10

Keywords: Convexity, supporting spheres, nearest point map, fixed points.

Abstract: We are proving the existence of a supporting circle for a family
of compact convex sets K1, Ka, K3 which are verifying the conditions: Ky N
NKs ?’:@, Ko N K3 :;é@, Kz3NKp 7’:@, and K1 ﬂ’Kg NKs=10.

“The reader unfamiliar with the theory of convex sets is referred
to the books [4], [12] or [13]. Let M be a set in the n-dimensional
Euclidean space R™. In the following we shall denote by int M, cl M,
YM, conv M the interior, the closure, the boundary and respectively
the convex hull of the set M. With d(z,y) we denote the Euclidean
distance of the points z and y and with L(z,y) the line determined by
the points z and y. The distance d(z, C) of a point = in R* to the set
C is defined by d(z,C) = inf{d(z,y) : ¥y € C}. A set C is said to be
a Chebyshev set in R? if there exists for every z € R? an unique point
n(z) in C such that d(z,n(z)) = d(zx, C). The resulting map n: R* —
— C is the nearest point map of C. The following theorem was proved
by Motzkin in 1935 in [9], [10] (see also Mani-Levitska [8]):

Theorem 1. A compact subset of the Euclidean plane R? is a Cheby-
shev set if and only if it is convez.
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We need also the following 2 definitions:
Definition 1. The family K of sets in R™ will said to be independent,

if for any n+ 1 pairwise distinct members K, ..., Kn41 of K, any set of
points pi,...,Pnt1, Where p; € K;,5=1,...,n+1 determines a simplex
of dimension n, or equivalently the vectors P2 — pl, «evyPn+1 — D1 aTe

linearly independent. ;
Definition 2. There will be said that a family X of sets in the Eu-
clidean space R™ has a supporting sphere, if there exists a sphere S in
R™ having common points with each member of the family K and the
interior of S contains no point of any member of K. If n = 2 we shall
use instead of supporting sphere the notion of supporting circle.

We need the following theorem of C. Berge [2] (see also Th. 3.7.5
in [11}]):
Theorem 2. If M is a conver set and K;,i = 1,...,m, m > 1 are
closed convezx sets in R™ satisfying

(i) MﬂﬁKi7§® for j=1,...m

i#j

m =
i=1
then M is not contained in the union of the K;: M € - K.

An immediate corollary (see also Cor. to Th. 3.7.5 in [11]) is
Corollary. Let K;, i=1,...,m, m > 2, be closed conver sets in R™.
If their intersection is empty and if the intersection of any m—1 of the
sets K; is not empty, then their union is not convez.

Let us now consider a special family of 3 convex sets in R? which
is not an independent family.

Lemma 1. Let K1, Ky, K3 be compact convez sets in R? such that:

(l) KlﬂK')#q) K?ﬂKg,#@ KsNK; 750

(9) KiNKyNKs= .

The family F = {K1N Ky, KaN K3, K3N K1} is then an mdepen-
dent family of three compact convez sets.

Proof. Indeed if we consider three arbitrary points a,b,c such that
a€ KyNKs,be KsnNK; and ¢ € Ky N Ky we have to show that the
three points can not be collinear. Let us assume the contrary, then we
can suppose without loss of generality that b € conv{a,c}. Because
a € Ka,c € Ky and K is a convex set it follows that b € Ky. This
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with b € K3 N K7 means that b€ K1 NK;N K3 in contradiction to the
property (2) of the sets K1, Ks, K3. ¢
Lemma 2. Let d,e be two arbitrary distinct pomts interior to the
triangle T = Aabe. There is then verified one of the conditions:

(3) There is a point m € {a,b,c} such that d,e and m are collinear.

(4) There are two distinct points p, q in the set {a,b,c} and a point
n in the interior of the triangle T such that:

d € int{conv{n,p}} and e € int{conv{n, q}}.
Proof. Let us denote with aq, b1, ¢; the following points:
ar=L(b,c) N L(a,d), bi=L(c, a) N L(b,d), c1=L(a,b) N L(c,d).

Because the point e € int T-we have to distinguish the two cases:

(i) e € conv{a,a;1} U conv{b, b } U conv{c,c1}, or

(ii) e € int{conv{a, b, c}}\{conv{a, a1 }Uconv{b, b1 }Uconv{c, c1 } }.

In the case (i) let us first suppose that e € conv{a,a:}. As we
have also d € conv{a,a;} by the definition of the point a;, we have
to distinguish then the two subcases: (@) e € conv{a,d} or (8) e€
€ conv{d,a;}. In both subcases (o) and (§) we can put m =a. lf e €
€ conv{b,b; } we can put m = band if e € conv{c,c1} we can put m =¢
and it follows that the points m, d, e are collinear, i.e. the condition (3)
of Lemma, 2 is verified. ,

In the case (ii) we have to distinguish 6 subcases:

(7) e€int{conv{a,d,c1}}, (6) ee€ int{conv{a,d; b1t}
(¢) e € int{conv{c,d,bi}}, (¢) e€ int{conv{c,d, a1}},
(¢) ee€int{conv{b,d,a1}}, (n) e € int{conv{d,d, cl}}.

In the cases: (v) let be n = L(a,e) N L(c,d) and we can put p = ¢
and ¢ = a, (6) let be n = L(a,e) N L(b,d), p = b and ¢ = a, (¢) let be
n = L(c,e) N L(b,d), p = b and ¢ = ¢, (¢) let be n = L(c,e) N L(a,d),
p=gand g=c, (¢) let be n = L(b,e) N L(a,d), p=a and ¢ = b, (n)
let be n = L(b,e) N L(c,d), p=c and g = b. With that we have shown
that in these 6 cases condition (4) is verified.

Theorem 3.  Let Ki, Ky, K3 be three compact conver sets in R?
which are verifying the condztzons (1) and (2) of Lemma 1. The set
R?\ {K; U K3 U K3} consists then of two connected components: an
open bounded set Sy and an open unbounded set S., i.e. we have

R? \ {Kl UKsU Kg} = Sy U Sy.
Proof. The family F = {K; N K3, Ky N K3, K3 N K1} is by Lemma 1
an independent family of three compact convex sets. Let us consider
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three arbitrary points a,b,c such that a € K1 N Ky, b € K2 N K3
and ¢ € K3 N K;. The points a, b, ¢ determine then a non-degenerated
triangle Aabc. Let us now consider the set T = conv{a,b,c} and the
three compact convex sets: C; = TNK1, Cy = TNK3 and C3 = TNK3.
We have of course: a € C1NCy;, beCyNCs,and ¢ € C3NCy. The
sets Cy, Cy, C3 verify thereby the conditions:

(1) CinCa #0,C2NC3 #0, CsNCi#0

(2YC1NCyNCs=0.

By the Cor. to Th. 2 it follows then that the union C; UC;UC3 is
not a convex set. As C; UCyUC5 C T results hereby the existence of a
point z € T such that z ¢ C;UC,UC3, i.e. we have proved the existence
of at least one bounded connected component of R? \ {C1 U Cy U C3}.

Let us suppose there are at least two bounded connected compo-
nents B; and Bj of the set RZ\ {C; U Cy U C3}. Consider now two
arbitrary points'd and e such that d € By and e € By. The points d
and e are of course in the interior of the triangle Aabc. By Lemma 2
there is verified one of the conditions (3) or (4).

Let us suppose there is verified condition (3), i.e. there is a point
m € {a,b,c} such that d,e and m are collinear. Without loss of gen-
erality we can suppose that we have m = a and d € int{conv{a,e}}.
Because B; and B, are two distinct connected components of the set
R?\ {C; U Cy U Cs5} there must exist on the segment de a point f such
that f € {C1 UCy U Cs}. We have of course also a € C1 N Cy. If we
have f € C; follows immediately from the convexity of the set C; that
we must have d € C; in contradiction to the definition of the set B;.
If we have f € Cj follows immediately from the convexity of the set
C5 that we must have d € Cy in contradiction to the definition of the
set B;. If we have f € C; it follows from b € Cj, ¢ € C3 and from
e € conv{b,c, f} that e € Cs in contradiction to the definition of the
connected component B;. In conclusion the condition (3) can not be
verified. Let us now suppose that condition (4) is verified. We can then
select the points p and ¢ from the set {a,b,c} and a point n € intT
such that: _

de mt{conv{n,p}} and e € int{conv{n, q}}

Without loss of generality we can suppose p = a and ¢ = b and that:
d € int{conv{n,a}} and e € int{conv{n,b}}.

On the broken line conv{d,n} U conv{n,e} there must be at least one

point pg such that py € Cy; U Cy U C3, because B; and B, are two
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distinct connected components of the set T\ {C1 U Cy U C3}. Let
us first suppose that we have py € conv{d,n}. If py € C; it follows
immediately from a € C; and the convexity of the set C; that d € Cy
contrary to the definition of the component By. If py € Cy it follows
immediately from a € Cy and the convexity of the set Cy that d € Cs,
again in contradiction to the definition of the component B;. If py €
€ Cs it is easy to see that the point e is interior to the triangle Abep.
But because b € C; and ¢ € C5 that means e € conv{b,c,po} C Cs,
in contradiction to the definition of the component B. In a similar
way we get a contradiction if we suppose that py € conv{n,e}. In
conclusion there is exactly one bounded connected component of the
set T \ {Cl U Cz U 03}

The existence and the unicity of the open unbounded connected
component S, is obvious. ¢
Definition 3. Let Ki, K>, K3 be smooth compact convex sets in
R?, which are verifying the conditions (1) and (2) of Lemma 1. The
boundary T, (i.e. T, = ¥Sp) of the bounded component Sy of the set
R?\ {K; U K> U K3} will be called a curved triangle with the vertices
a, b and ¢, where a is the unique point of T, N K7 N K3, b is the unique
point of T, N K5 N K3 and c is the unique point of T, N K3 N K. The
sides of the curved triangle T, are the arcs «, §3,, where:

a=19K3NYS, B =19K1NJS; and v = K2 N1JSp.

If the unique supporting line Ll for the smooth convex set K;
going through the point o and the unique supporting line L2 for the
smooth convex set K» going through the point a are verifying the con-
dition L1 N L2 = {a} we shall say that a is a crossing point.

In the followmg we need also the notion of the e-neighbourhood of
a convex body B ([3] p. 2), which is also known in the German literature
as the “Parallelkérper” ([1] p. 48, [4] p. 30, [12] p. 160) i.e. the parallel
body of a convex body: N, ( ) ={z € R, : d(z, B) < €}, which is also
a convex set. '

The following simple lemma, is perhaps known; we supply its proof
here for the sake of completeness. ‘
Lemma 3. The e-neighbourhood N, (C) of a compact convez set C in
the Fuclidean space R™ is smooth.
Proof. Let us suppose the contrary, i.e. there is a point a € YNe(C)
such that through the point a there are going two supporting hyper-
planes H, and H; for the convex body N.(C). Let us the denote with
HY and H} the closed half-spaces determined by the hyperplanes H;
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and respectively Hy which contain the set N¢(C). As a € 9N(C), there
must exist a point b in the convex set C such that d(b,a) < e. The point
b belongs of course to the intersection HiNHj. Consider now the closed
ball of radius € with the center b, B = {z : z € R",d(z,b) < ¢}. The
set B is a subset of N.(C) and we must have B C N(C) C Hi N
N Hj. This is impossible because the point a belongs to the boundary
ofH’ N HS and d(b,a) <€ ¢

In the papers [6], [7] we have used Brouwer’s fixed point theorem
for the proof of some geometric properties of families of compact convex
sets such as the existence of an equally spaced point (respectively the
existence of a supporting sphere) for a family of compact convex sets
in RY.

In [6] we have proved the following theorem (see also [5}):
Theorem 4. Let Ki,...,K,1 be a family of independent conver and
compact sets in R™. Then this family of convez sets admits ezactly one
‘supporting sphere.

The independence of the sets was an essential condition in the
proof of Th. 4. We prove now for the case n = 2 a theorem similar to
the Th. 4 for a family of compact smooth convex sets which are not
independent: ;

Theorem 5. Let T, be a curved trzangle determined by the three com-
pact smooth conver sets K, K», K3 in R?, which are verifying the con-
ditions (1) and (2) of Lemma 1 and such that the vertices a,b and c are
crossing points for the curved triangle T.. There exists then a support-
ing circle for the three sets Ki, Kq, K3.

Proof. Let us consider the triangle T = conv{a, b, c} and the 3 convex
sets: Cy = conv{conv{a,c},f} =T NK;, Cy = conv{conv{a b}, v} =
= T N K», and C3 = conv{conv{b, c},a} = T'N K3. Consider also the
closed set S = T, U Sy, C T, where Sy is the bounded component of
R2\ {K; UKy UK3}, and f: T — S defined by:

(a) for z € Cy f(z) = B Nconv{z,b},

(b) for z € Cy f(z) = v N conv{z, c},

(c) for z € C3 f(z) = aNconv{z,a},

(d) for z € T\ {C1 UCyUC3} f(z) =1z
The map f : T — S so defined is a continuous map.

We define then a map g : S — S in the following way: Let z € S
be an arbitrary point. We consider again the nearest point maps:

n; : R? — K; the nearest point map on the set Kj, for i =12 ,3.
From the smoothness of the convex sets K, Ks; K3 follows the existence
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of an unique supporting line L; for the set K such that ni(z) € Ly, an
unique supporting line Ly for the set K such that ny(z) € Ly and an
unique supporting line L3 for the set K3 such that nz(z) € L3. Because
the points a, b, ¢ are crossing points for the curved triangle T, it follows
that the three lines are pairwise distinet lines even in the special case,
when the point z coincides with one of the vertices of the curved triangle
T. ie. z € {a,b,c}. Let us consider the points a’ = Ly N La, b’ = Ly N
N Ly and ¢ = Lz N L;. The triangle Aa'b'c’ determined by the tree
lines L1, Lo, L is contained in the set S and the three lines Ly, L3, L3
depend continuously on z. Let us now consider the center g(z) of the
circle inscribed to the triangle Aa'?’ ¢’. The map g : S — S defined in
this way is also a continuous map. We get by the composition of the
two continuous maps f: T — Sandg: S — S a continuous gf map
gf : T — T of the convex set T on itself defined by gf(z) = g(f(z)).
By Brouwer’s fixed point theorem follows then the existence of a point
zo € T such that gf(zg) = zo. It follows then immediately that the
point g is equally spaced from the three convex smooth sets K1, K
and K3 ie. d(zo, K1) = d(zo, K2) = d(zo, K2). With this we have
proved the existence of an supporting circle for the sets K, K> and
Lemma 4. Let C be a compact conver set in R? and {zx : k=1,2,...}
a sequence of points from R? such that imy ..o Tx = p, where p ¢ C.
Consider Ny/x(C) the 1/k-neighbourhood of the set C, nyy : R? —
— Ny(C) the mearest point map of Ny/,(C) and n : R? — C the
_ nearest point map of C. We have then: ’

@ Jim nyi(p) =n(p),
and o :
(7) Jim n1/%(Tk) = n(p)-

Proof. There is a ko such that we have ny/(p) € 9N1k(C) C
C Nijko(C) for k > ko. We show first that: limg oo n1/k(p) = n(p).
If we suppose the contrary, there exists a number € > 0 such that
the points of a subsequence sy = {n1/k,, (p) : km = 1,2,...} of the
sequence {ny/x(p) : k& = 1,2,...} are all in the compact set 'S =
— Nyio (O\B(n(p), ), where B(n(p), &) ={z:2 € R, d(z, n(p)) <€} By
the compactness of the set S there is a subsequence {ny, k., () * Bmy, =
—1,2,...} of the sequence s, and a point ¢ € S such that:
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® | lim ny/x,,, (P) = ¢

N-—+0Q0

From Cc N, (C’) C Ne, (C’) for € < €y and (8) follows mmedlately

g€ ﬂNl/km (0) =C.
n=1
By the definition of the set S we have of course q ;é n(p). :
Because n; Jkm,. (D) € 9Ny Jkm.. (C) there is a point g, € C such

that: d(ni/x,, (D), Gk, ) =1/km, and d(p, gk, )~k s "1/k,,, (p)) S
d(p, na/s,,, (p)) ie. we have d(p, gk, ) ~ 1/km, < d(p,n1/s.., (p)). A
d(p,n(p)) < d(p, gk, ) We have also: d(p, n(p)}-1/km.,, <d(p,n1/k,,, (P ))-
Because n(p) € C C Ny, _(C) we have also the mequahty
d(p, ni/kn, (P)) < d(p, n(p)) ie. we have

d(p,n(p)) — 1/km,, < d(p,n1/k,0, (p)) < d(p,n(p))

and therefore we have: limy,_.oo d(p, 11/k,,,, (p)) = d(p, n(p)) Usmg the
continuity of the distance function and (8) we get:

A(p,n(p)) = Jim d(p, 1k, () =d(p, lim nay,, (#))=d(p,q)

The convex set C is by Th. 1 a Chebyshev set. As g € C, n(p) € C,
g # n(p) and d(p, ¢) = d(p,n(p)) we have got a contradiction. It follows
that: ‘ R ‘
kﬁm'ﬂl/k(l?) = n(p).
—oo ~

Consider now the sequence {zj : k'=1,2,...} such that limy_,cc T =
= p. Because n /(%) and n1/5(p) can be considered as the projections
of the point z, and respectively of the point p on the convex set Ny /4 (C)
we have: 0 < d(ny/x(zx), n1/k(p)) < d(zx,p). From this inequality and
from limg_.00 n1/5(p) = n(p) we can deduce that we have also:

kl_lfgo na/k(zk) =n(p). O

- We shall prove a generalization of Th. 5 by renouncing to the
smoothness hypotheses of the convex sets K, K3, K3 and the “crossing
point property” of the vertices of the curved triangle determined by the
3 convex sets:

Theorem 6. Let K1, K>, K3 be three compact convez sets in R? which
are verifying the conditions (1) and (2) of Lemma 1. There exists then
a supporting circle for the three sets K1, K3, K3.

Proof. Let us con31der the curved tnangle T. with the vertices a, b,
and c in the sense of Def. 3 and a point p in the interior of the curved
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triangle T,. Consider now the distances from the point p to the 3
convex compact sets K1, Kz, K3: d; = d(p,K;),7 = 1,2,3. Let us
select a value of € such that € < min{di, ds,ds}. The e-neighbourhoods
N (K1), N.(K>), N.(K3) of the three convex sets Ky, Ka,K3 are by
Lemma 3 smooth compact convex sets and it is easy to show that they
verify the conditions: ‘

(1) Ne(K1) N Ne(K2) ?é 0, Ne(Ka) ﬂN(KB) 75 8, N(Ks)
NN (K1) # 0

(2") Ne(Kl) ﬂNe(Kz) ﬂNs(K3) =

The three smooth convex compact sets N.(K71), Ne(K2), Ne(K3)
determine then a curved triangle T, with the vertices a, be, ¢ ‘and the
curved sides ae, B¢,v.. Consider now the unique supporting line L
through the point a. for the smooth convex set N.(K1) and the unique
supporting line L? through the point a. for the smooth convex set
N.(K3). We assert now that the two lines L and L? cannot coincide,
respectively that Ll N L2 = {a.}. Let us suppose the contrary. The
supporting lines L1 and L° must then coincide. Consider now the lines
L' and L? parallel to the line L} at distance € to it in the halfplane
determined by the line L! which contains the convex set N¢(K1) and
respectively the convex set N (K3). The interior of the band bounded
by the lines L! and L' cannot contain any point of the convex set
K1, because if we would suppose the contrary, i.e. the existence of a
point p; in that band such that p; € K it would follow that the disc
D(p1,€) with the center p; and the radius ¢ has to contain points from
the halfplane determined by the line L., which contains the set Kj,
in contradiction to the definition of the supporting line L}. Analogous
we can show that he interior of the band bounded by the lines L} and
L2 cannot contain any point of the convex set K>. That means that
the band determined by the two lines L' and L? is separating the two
convex sets K1 and K. But this is contradicting condition (1) of Th. 6.
We have so proved that L} N L2 = {a.}, i.e. ae is a crossing point for
the curved triangle T¢. In the same way we can prove that b. and c.
are crossing points for the curved triangles Te. From Th. 5 follows then

the existence of a point z. such that: ‘ ;
d(ze, N(K1)) = d(ze, Ne (Kz)) d(ze, Ne(K3)).

For 0 < € < min{ds,ds,ds} we have of course T C T,.. We consider
again: ‘
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n¢:R? — N(K;) the nearest point map on the set Nc(K;), i=1,2,3.

If we select now € = 1/m, then there exists a number mg such that
for m > mg we have: 1/m < min{ds,ds,ds}. Consider now for the so
selected € = 1/m the corresponding points =, such that

A(@m, 1y ™ (@m)) = d(@m, 1y ™ (@m)) = d(@m, 15’ (@m)).
Consider the 4 sequences of points from the compact set T¢:

{zm:m=12..} {nf/™@n):m=12..}
(Y ™(@m) i m=1,2,...}, {ng/™(@m): m=1,2,...},

From the compactness of the set T, and by 4 repeated selectlons follows
the existence of the four subsequences:

(T, 1 k=1,2,...}, (/™ (g, ) : k_12...},
(/™ (@) k=1,2,...}, {ny™ (@m,) k=12, ..}

and the existence of the points k; € K;,i = 1,2,3 and zo € T¢ such
that: .

k]-}—)ngo Tmy, = Z0,
Llinolo ni/m’“ (Tm;,) = ki, lingo nl/m" (Tms) = ka2, hm n k(:cmh) = kg,
and also: - : ; , X ‘
AWy 7™ (50 ) = Ay 1 ™ (5,)) = (scmh,ng/mk (Tms)

Hence it follows that: d(zo,k1)=d(zo, k2)=d(zg,k1). By Lemma 4 we
have then: k; =n1(zo), k2 =n2(z0), ks =n3z(xo), where n; is the nearest
point map on K; for i = 1,2,3 and d(zo,n1(z0)) = d(zo, n2(20)) =
Zd(mo, TL3(CIZ0)). <>
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