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Abstract: For a finite state reversible and ergodic Markov chain we prove
an intimate relationship between its fundamental matrix and its hitting time
matrix. From this we derive hitting time identities. Relating the eigensystem
of the fundamental matrix to the eigensystem of the transition matrix yields
a new chiaracterization of equivalence: classes of states indicated by piecewise
constant eigenvectors. Since the latter are ‘used for spectral clustering the
paper gives a hitting time interpretation for the resulting clusters.

Let (Xn),en, b€ aMarkov Chain with finite state space {1,..., N}
and transition matrix P = (p;;), where p;; = Pr{Xny1 = j|Xn =1].
Assume P to be aperiodic, irreducible and reversible, i.e:, there is a

normalized row vector w with
TiPij = ijjz
Because of

(WP) Zﬂ'zpzj =Ty ijz =Ty,

7 is the density of a stat1ona1y d1str1but10n of the Markov chain. By
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the convergence theorem for finite Markov chains 7 corresponds to the
unique distribution of lim, .., X, and for all i we have m; > 0. Thus
the matrix D = diag () is welldefined and invertible.

We denote by 1 the columnvector with all entries equal to 1 and
note that then 11* is a matrix with all entries equal to 1. Further we
denote by II = 11D the matrix whose rows are all equal to 7. Note
that the convergence theorem cited above is equivalent to

lim P™ =1I.
n—oo

1. Fundamental matrix and expected hitting times

Following [1] we introduce the fundamental matrix Z of P by
Z=(I-(P-)" .
From Th. 6.1 of Ch. 6 in [1] we learn that

Z=I+i(P—H)“=I+§:(P”—H).

Thus the fundamental matrix in a certain sense describes how the pro-
cess started in some initial state differs from the stationary process.

Let o; = min{n > 0: X,, = j} be the first hitting time of j and
* denote by s;; = E;0; the expected hitting time of j from i, further let
r; = min{n > 1: X,, = j} be the first return time to j and denote by
t;; = Eq7; the expected return time to j from i. Denote by S = (si;)
the matrix of the expected hitting times. Note that s;; =0, t;; =1 /7
and s;; = t;; for 1 # j. The expected hitting time of j resp. return time
to 7 from stationary start is denoted by Ero; resp. Ex7;.

In [1] a hitting time interpretation is given for the diagonal of Z.
The following theorem extends this interpretation to all of Z.
Theorem 1.1. The fundamental matriz satisfies

Z=(11*+115 - S) D,
for its entries we have
zij = ; (1 + Ex0j — Ei0j) = ; (BxTj — Ei0j) -
Note that for the diagonal elements of Z we have (compare Ex. 6.1
of [1])
245 = 7TjE—,r’Tj .
Proof. From first-step analysis we have
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tzg =1+ szktkj = 1 + szkskj
k#j
and thus o
; dij
Sij = tij — diztsy = 1+ %pikskj - ﬂ_—j
Thus we successively calculate
§=11"+PS—-D™,
(I-P)S=11"-D™1,
Z(I-P)S=27(11*-D71).
Using IIP = II and the definition of Z we simplify the left side

Z(I—P):Z—(I—Fi(P"—H));P:

n=1

=I+§:(P"—H)— <P+i(P”~H)> =

n=2
=TI —1L '
Together with Z1 = 1 this reduces the above matrix equation to
(I-M)8=11*~ZD™*
and we arrive at
Z=(11"+1S-5)D
proving our first claim.
For the entries of Z we have

o ; ,

Zij = Mj (1 -+ Zﬂ'kskj — Sij> =Ty (1 + B0 —EiO’j) .
k=1

The second claim is a consequence of

N N
ErTj = Zﬂ'ktkj = Zﬁktkj + miti; = Zﬂ'kskj +1.0
o= k#j k=1
The above theorem tells us how to calculate Z from S. Turning
the equation around gives S from Z (compare Thms. 6.3 and 6.4 of [1]).
Theorem 1.2. The expected hitting time matriz S has the representa-
tion _
S = (11*diag (Z) — Z) D71,

for its entries we have
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Zij — %ij
5
Proof. From the preceding theorem we have
zij = 5 (1 + Exoj — 8ij)
zjj =m; (1 + Ex0j) .

By substraction we arrive at

Sij =

_ Rjj T Zij O
T !

Both theorems establish the very close relationship between the
fundamental matrix and the matrix of hitting times.

2. The fundamental matrix is reversible and admits
hitting time identities

First we prove detailled balance equations for Z. These, as a
corollary, produce identities for certain hitting times.
Theorem 2.1. For aperiodic, irreducible and reversible Markov chains
with finite state space we have
TiZij = Tj zJz

Proof. Since Z =1+ oo, (P*—1I), ie,

e 9]
zij = 045 + Z (PE;L) - Wj)
n=1

the assertion is a consequence of m;0;; = m;0;; and

s (p,E]) — 7rj) =T (sz) — m) forneN
which is proved by a standard induction argument. ¢

Corollary 2.2. For aperiodic, irreducible and reverszble Markov chains
with finite state space we have

Eroj + Ejo; = Ex0i + Ei0j,
ErTj + EjTi = ExTi + EiT;-
Proof. Prompting z;; = 7; (1 + Er0; — Ei0;) into
3245 — 7Tj25j7;
we have
Er0j — Ei0j = Eqr0i — E;j0;
proving our first claim.
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Because of Er0; = E,7; —1 and E;0; = E;7; — 0;;E;7; our second
claim is equivalent to the first. {

According to the corollary the stationary Markov chain expectedly
needs the same time to visit state i after 7, as it would take to pass ¢
(regardless of having hit j) and to visit J afterwards. This feature is
not obvious from time reversal.

3. The eigensystem of the fundamental matrix

The following section continues to explore the relationship be-
tween Z and P.

Since D = diag (r) is invertible, the matrix D*/2PD~1/2 is wellde-
fined and because of reversibility it is a symmetric matrix. Thus it is
diagonalizable and P is diagonalizable, too. If D'/2y is a right eigenvec-
tor of DY/2PD~1/2 corresponding to the eigenvalue X, the vector v is a
right eigenvector of P corresponding to the same eigenvalue. The corre-
sponding left eigenvector of DY/2PD~1/2 ig vtDl/ 2, the left eigenvector
of P corresponding to v is vt D.

Thus we have the representation

P=VAV'D,
where V is the collection of right eigenvectors of P such that VDV =

= I, and A is the diagonal matrix of the eigenvalues corresponding to
the columns of V. ;

Proposition 3.1. Let P be an aperzodzc zrreduczble and reversible
transition matriz with stationary. distribution m and D = diag (r), let
V' be the collection of right ezgem)ectors of P, such that VIDV =1 and
A the diagonal matriz of the eigenvalues corresponding to the columns
of V. Then we have the representation

Z=VAV'D,

where \; = (1- )\i)_l for \; #1 and N=1 for \;=1.
Proof. Without loss of generality let V = (v1,...,un) with vy =
— 1. Then we have V!D = (viD,...,v4 D)’ with le =, and A =
=diag (A1,...,An) with Ay =1 and \; # 1 for i # 1.

With Z7! = I — (P —II) we have |

ViDZ"W = VDV -~ V!D(P-T)V =1 — VfDPV +Vvtpmy,

where VEDPV = A = diag (1,...,;An) and
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VEIDIIV = (ﬂ',...,vaD)t (m,., ) (L, oN) =
= (W,...?U}tvD)t(l,O,...,0> = diag (1,0,...,0).
We arrive at L ) L
ViDZ~'V =1 — diag (1,...,\n) + diag (1,0,...,0) =
= diag (1,1 — Ag,...,1— An). :

Solving for Z leads to the representation

z = ((v*D) ™" diag (1,1 gy .., 1 - )\N‘)V‘l)_l e

— Vdiag (1, (1-x)7h,., (- ,\N)—l) VD,

which proves our claim. ¢
Note that according to the above proposition the fundamental -
matrix Z is diagonalizable, where the eigenvectors of Z coincide with
those of P and for each eigenvalue )\ of Z corresponding to an eigen-
vector with eigenvalue A of P we have
1 for A=1

4. Characterizations of equivalence classes

An interesting question for Markov chains is, whether states may
be agglomerated to classes of states such that the stochastic process
induced on the classes is again a Markov chain. It is well known that
agglomeration is possible if for all states in an arbitrary class the tran-
sition probabilities to the other classes are the same. To be precise, if
(C4,...,Cxk) is a partition of the states and if forallrms=1,..., K
we have ,

(4.1) > pie =) pjo foralli,j€Cr,
o€l L FeC, s
then the stochastic process with state space (C1,...,C k), which arises

from the original Markov chain by observing the classes of the states,
is again a Markov chain and has transition probabilities
Frs = P (Xnt1 €Cs | Xn €Cr) = Y Pio With i € Ch.
: : i ceC,s . ’
In this situation we say that the Markoc chain (resp. P) admits agglom-
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eration with respect to the partition (Cy, ... ,Ck) and call the Markov
chain with transition matrix P = (Drs) the agglomerated Markov chain.
Proposﬂslon 4.1. For an aperiodic, irreducible and reversible P the
agglomerated Markov chain is aperzodzc irreducible and reversible, too.
Proof. Smce the period of a state o is the greatest common divisor of
the set {n p ) > O} which for o € Cj is a subset of {n p ) > O} the
period of P cannot be longer than the period of P. So P is aperiodic.

Since the original chain is irreducible and p,(w) < p( ™ where p € C,
and o € C4, the agglomerated Markov chain is irreducible, too.

Since P is reversible we have

DD Tebee =D D TaPop
PECT gelCly ceCy PECT‘
Now the left side evaluates to

Z Z TpPpo = Z Tp Z Ppo — (Z ﬁp)’ﬁ'rs
pECr o€l peCy o€l peCr
and the right side to (3 g, 7o) Por - With Ty = 3 7o We have
proved ‘ ‘
TpPrs = TsDsrs
and thus rever81b111ty of the agglomerated MB.I‘kOV chain. ¢
Note that 75 = > scc, To 18 the stationary distribution of the ag-
glomerated chain. As a consequence of the above proposition P is diag-
onalizable and has a representation analogous to P, i.e., P =VAV'D.
For reversible Chams the agglomeration cond1t1on (4.1) can be
rewritten as '

— Z TgDos = — Z wapgj for all 4,5 € C,
¢7€C’s G'EC
i.e., for the stationary chain starting in one class, the probability of a
step to a state in some (other) class is proportional to the stationary
probability of the state, where the factor of proportionality only de-
pends on the classes. Thus the stationary transition probability from a
class to a state in some (other) class has a product form, where the first
factor describes the transition probability between the classes and the
second factor the stationary probability'of the state within the class,

PXpp1=1i|XneCs) = Z ToPoi = psr— for i € C,.
ﬂ_ oc Cs
In our setting the agglomeratlon condition (4.1) can also be rewrit-
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ten in terms of the eigenvectors of P. To do so, we need Th. 4.4 of [5],
which dates back to [3]. We cite the theorem here for convenience.
Proposition 4.2. Let M € R” be a matriz and (C1,...,Ck) a parti-
tion of its index set {1,... ,N}. Then we have:

M has the eigenvalues Ai,...,Ax and the corresponding right
eigenvectors are linearly independent and piecewise constant on
(Cy,...,Ck) iff forallr,s=1,... K

O'Ecs GECS
and .
(mrs)r,szl,_‘_’K where Myg = E mie fori € Cy
oeCly
can be diagonalized with the same eigenvalues A1, ... , Ak.

Theorem 4.3. An aperiodic, irreducible and reversible transition ma-
triz P admits agglomeration with respect to the partition (C1,... ,Ck)
iff it has K linearly independent right eigenvectors, which are piecewise
constant on (Cy, ... ,Ck). The corresponding eigenvalues coincide with
the eigenvalues of the transition matriz of the agglomerated chain.
Proof. Since the agglomeration condition (4.1) implies P to be diago-
nalizable the assertion is immediate from the above proposition. ¢
Since the eigenvectors of Z coincide with the eigenvectors of P,

we can use the above proposition to derive an agglomeration condition
in terms of Z.
Theorem 4.4. Given an aperiodic, irreducible and reversible transition
matriz P and a partition (C1,...,Cxk), then P admits agglomeration
with respect to the partition iff one of the following is true:

e 7 has K linearly independent right eigenvectors, which are piece-

wise constant on (Ci,...,Ck)-
e For the fundamental matriz Z we have for allr,s=1,... K
(4.2) Z Zig = Z zjo for alli,j € Cr.
UECSV ogelCs

~ In any case ,
7 = (er)r’s__.l,m,K where Zps = Z 2ig for i € Cr
’ ‘ ' o€l
can be diagonalized, where the eigenvectors coincide with the eigen-
vectors of the transition matriz P of the agglomerated chain, and the
eigenvalues are obtained by
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5= {1—ix for A#1
1 forx=1"
where X is an eigenvalue of P. :
Proof. The equivalence of the first asseltlon is a consequence of Z and
P having the same eigenvectors. By Prop. 4.2 the first assertion implies
the second. Now suppose the second assertion is true. From m;z;; =
= 7,24 and condition (4.2) we conclude T.Z.s = 7TsZsr analogously to
Prop. 4.1. Thus DY2ZD~12 g a, symmetric matrix and consequently
Z is diagonalizable. This together with condition (4 2) is enough to
conclude the first assertion by Prop. 4.2. Thus both assertions are
equivalent. Our claim concerning the eigenvectors and eigenvalues fol-
lows from the representations of Z and Z.
It is interesting to interpret the agglomeration condition for Z
(4.2) in terms of hitting times. By Er(.|c,) We denote the expectation
with respect to a stationary initial distribution conditioned to start in
class C;.
Corollary 4.5. The agglomemtzon condztzon for Z (—L 2) is equivalent
to each of the following conditions, where r,s =1,...,K and i,j € C.
> moBioe = Y 7rano"a, |

O'ECs UEC
Evr( Ica) (05 — UJ) = Er (03 — 0j) -
Proof. Using the definition of Z glves the first CO]ldlthIl via

g Zig = E zjaa a

’ oecCl, “oels : .
Z Ta. (1 + EWO-U" - Eiaa) : Z 770"(1 + Eros — Ejad) 3 k
UECS,,' . O‘ECa
S mmios = Y woBse
ceCs =~ o€l

By rever81b1hty of Z this is eqmvalent to

— E To2gi :,——— E TgZajy

UEC’S I geCy ,
el > momi (14 Exoi — Booy) = Z mem; (1 + EwcrJ Egaj)
g
O'ECS G'ECS

Z To (Ewai _fEa'O—i) = Z To (ET"O-J"_EUU]')7

U'ECS O'ECS
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Z T (En0i — BEroj) = Z To (Be0i — Eo0j)

geCs c€Cy
1
Ex (Ui - O-j) - T (Cs) a-;s Te (Eﬂ'gi — Eaaj) )

Er (05 — 05) = En(|c,) (00 —05) O
Note that the first characterization may be written as
S Efe S BT gorij e

o€Cy EoTo oeC, EoTo ‘ ’

The second characterization means that the expected difference of the

hitting times of states in one class is the same for the stationary Markov

chain and for the stationary Markov chain conditioned to start in some
class.

5. Application to clustei'ing

Since the eigenvectors of Z are the same as those of P, there is an
interesting interpretation in the context of spectral segmentation, where
one wants to identify clusters of points, i.e., group together points which
are near or similar. In the literature there are several algorithms (see
[2], [4], [6] for a survey) finding an optimal partition. Spectral methods
have in common that they use piecewise almost constant eigenvectors
as indicators for the underlying partition. Frequently the eigenvectors
of a transition matrix P (which arises from some similarity matrix by
normalization of the rows) are used. By perturbation arguments the
clustering properties can be interpreted in terms of agglomeration of
states of a Markov chain, where the agglomeration conditions (4.1) and
(4.2) explain which kind of similarity is used for the classification of
states. While a classification with respect to P is based on one step
transition probabilities, a classification with respect to Z is based on
hitting time similarities. The key observation is that both classifications
coincide. Maybe this is another reason why spectral methods based on
P (resp. Z) are especially powerful.
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