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Abstract: This paper presents some recent results concerning functional
equations on Sturm-Liouville hypergroups. The general form of additive func-
tions, exponentials and moment functions of second order on these types of
hypergroups is given.

1. Introduction

The concept of DJS-hypergroup (according to the initials of C.F.
Dunkl, R.I. Jewett and R. Spector) can be introduced using different
axiom systems. The way of introducing the concept here is due to
R. Lasser (see e.g. [2], [6]). One begins with a locally compact Hauss-
dorff space K, the space M(K) of all finite complex regular measures
on K, the space M (K) of all finitely supported measures in M(K),

the space M (K) of all probability measures in M (K), and the space -

MZL(K) of all compactly supported probability measures in M(K). The
point mass concentrated at z is denoted by d.. Suppose that we have
the following;: '
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(H*) There is a continuous mapping (z,y) +— 0 * 6y from K x K
into ML(K), the latter being endowed with the weak™topology
with respect to the space of compactly supported complex valued
continuous functions on K. This mapping is called convolution.

(HV) There is an involutive homeomorphism z +— zV from K to K.
This mapping is called involution. ;

(He) There is a fixed element e in K. This element is called identity.
Identifying x by d, the mapping in (H*) has a unique extension

to a continuous bilinear mapping from M(K) x M(K) to M(K). The

involution on K extends to an involution on M(K). Then a DJS-
hypergroup, or simply hypergroup is a quadruple (K, *,V,e) satisfying
the following axioms: for any z,y,z in' K we have

(H1) 0z % (8y * 02) = (g * 0y) * 02 ;

(HZ) (53; * (5y)v = Oyv * 5mv ;

(H3) 6y *0e = 0 %0z = 0y ;

(H4) eis in the support of d, * dyv if and only if z = y; ;

(H5) the mapping (z,y) — supp(ds * 6,) from K x K into the space
of nonvoid compact subsets of K is continuous, the latter being
endowed with the Michael-topology (see [2]).

If 65 % 6y = &y * 05 holds for all z,y in K, then we call the hy-
pergroup commutative. If V¥ = z holds for all z in K then we call the
hypergroup Hermitian. By (H2) any Hermitian hypergroup is commu-
tative. For instance, if K = G is a locally compact Haussdorff—group,
0g * 0y = Oz for all z,y in K, zV is the inverse of z, and e is the
identity of G, then we obviously have a hypergroup (X, *,V, e), which
is commutative if and only if the group G is commutative. However,
not every hypergroup originates in this way.

In any hypergroup K we identify = by 4, and we define the right
translation operator Ty by the element y in K according to the formula:

Tyf(m)=/de(5m*5y),;

for any f integrable with respect to &5 * §,. In particular, Ty is defined
for any continuous complex valued function on K. Similarly, we can
define left translation operators but at this moment we do not need-any
extra notation for them.

Sometimes one uses the suggestive notation



Functional equations on Sturm-Liouville hypergroups 171

f(fv*y)=/de(5z*5y),

for any z,y in K. However, we call the attention to the fact that
actually f(z * y) has no meaning in itself, because z * y is"in general
not an element of K, hence f is not defined at z * y.

If K 1is a discrete topological space, then we call the hypergroup a
discrete hypergroup. An important special class of discrete hypergroups
are the polynomial hypergroups which are closely related to orthogonal
polynomials. For the definition and a detailed study of polynomial
hypergroups the reader should refer to [2].

Another important class of hypergroups is the class of Sturm-—
Liouville hypergroups. The definition and some basic properties of Sturm—
Liouville hypergroups will be given in the following section.

In our former paper [9] we presented some recent results concern-
ing functional equations on hypergroups. The aim was to give some idea
for the treatment of classical functional equation problems in the hy-
pergroup setting. We described the general form of additive functions,
exponentials and moment functions of second order on polynomial hy-
pergroups. Here we consider similar problems concerning classical func-
tional equations on Sturm-Liouville hypergroups.

2. Sturm-—Liouville hypergroups

Sturm-Liouville hypergroups represent another important class of
hypergroups, which arise from Sturm-Liouville boundary value prob-
lems on the nonnegative reals. In order to build up the Sturm-Liouville
operator basic to the construction of hypergroups one introduces the
Sturm-Liouville functions. For further details see [2]. In what follows
Ry denotes the set of nonnegative real numbers.

The continuous function A : Ry — R is called a Sturm-Liouville
function, if it is positive and continuously differentiable on the positive
reals. Different assumptions on A can be found in [2] which lead to the
‘desired Sturm—-Liouville problem. For a given Sturm-Liouville function
A one defines the Sturm—Liouville operator L 4 by

A/
Laf=—f"==f,
where f is a twice continuously differentiable real function on the pos-
itive reals. Using L 4 one introduces the differential operator | by
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l[u] (;c,y) = (LA)w'U'(m)y) - (LA)yu(ma y) =

= _8u(z,y) - j(( ))alu@a ) + 82u(z,y) + A'((y)’aou@s,y),

where u is twice continuously differentiable for all positive reals z,y.
Here (L), and (L 4), indicates that L4 operates on functions depend-
ing on z or y, respectively.

A hypergroup on Ry is called a Sturm—Liouville hypergroup if there
exists a Sturm-Liouville function A such that given any real-valued
C°°-function f on Ry the function uy defined by

up(z,y) = flexy) = | fd(0s%dy)

Ry :
for all positive z,y is twice continuously differentiable and satisfies the
partial differential equation

Hugl =0
with douys(z,0) = 0 for all positive z. Hence us is a solution of the
Cauchy—problem

OFu(z, 1) + G2 Oruloyy) = Oule.) + B Suule.u).

ag’LLf(:II, 0) =0

for all positive z,y. From general properties of one-dimensional hy-
pergroups given in [2] it follows that uf(y,0) = us(0,y) = f(y) and
01us(0,y) = 0 holds, whenever y is a positive real number. In other
words, uy is the unique solution of the boundary value problem

A'(z) A'(y)
A(z) A(y)
(1) , a1“]’ (O’y) =0, a‘-"u’f(x’ 0) =0,

ug(z,0) = f(z),  us(0,9) = f(y)

for all positive z,y. As this boundary value problem uniquely defines
uys for any f, we may consider it the boundary value problem defining
the Sturm—Liouville hypergroup.

If the Strum-Liouville function A satisfies

2 =2t

for all z # 0 in a neighborhood of 0 with ag > 0 such that o, is an odd

O2u(z,y) + du(z, y) d2u(z, y) + Oou(z,y),
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C*°-function on R and the function %’ is nonnegative and decreasing,

further A is increasing with lim; ,, ., A(z) = +o0, then A is called a

Chébli-Trimeche function and the corresponding Sturm-Liouville hyper-

group is called a Chébli-Trimé&che hypergroup. Special cases are repre-

sented by the Bessel-Kingman hyper-grou_ps with A(0) =0 and

for all positive z and some a > 0 and the hyperbohc hypergroups where
A(0) =0 and

Alz) = sinha z

for all positive  and some a > 0.

If the Sturm-Liouville function A is tw1ce contmuously differen-
tiable on the positive reals and satisfies (2), where ag = 0 and oy
is continuously differentiable on the positive reals, then A is called a
Levitan function and the corresponding Sturm—Liouville hypergroup is
called a Levitan hypergroup. Special cases are represented by the cosh
hypergroup, where

A(z) = cosh®z
for all nonnegative z, and the square hypergroup, where

Alz) = (1+2)?
for all nonnegative = (see [8]). For more about these hypergroups and
their applications see [2].

3. Exponentials, additive functions and moment
functions on hypergroups

“Let ‘K be a commutative hypergroup and for any y in K let Tj
denote translation operator on the space of all complex valued functions
on K which are integrable with respect to 65 * ¢y for any z,y in K.
In particular, any continuous complex valued function belongs to this
class. S
"~ The continuous complex valued function-m on K is called an
exponential, if it is not identically zero, and

Tym(z) = m(z)m(y)
holds for all z,y in K. In other words m satisfies the functional equation

m(z *y) / m(t) d(8, * 8,)(t) = m(z)m(y) -

The continuous complex valued function @ on K is ca]led additive,
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if it satisfies ,
Tya(z) = a(z) + aly)
for all z,y in K. In more details this means that

a(z +y) = /K a(t) d(5, * 8,)() = a(z) + a(y)

holds for any z,y in K. It is obvious that any linear combination of
additive functions is additive again. However, in contrast to the case of
groups, the product of exponentials.is not necessarily an exponential.
The third important class of functions we want to study in this
work is the class of moment functions. Moments of probability measures
on a hypergroup can be introduced in terms of moment functions. The
notion of moment functions has been formalized in [8] (see also [2]). For
any nonnegative integer N the complex valued function f on K is called
a -moment function of order NV, if there are complex valued continuous
functions fr on K for £ =0,1,..., N such that fo =1, fy = f, and

.
(3) felzry) =Y (f) £(8) fos (4)

=0

holds for £k =0,1,..., N and for all z,y in K. In this case we say that
the functions fx (k= 0,1,...,N) form a moment sequence of order N.
Hence moment functions of order 1 are exactly the additive functions.
In [3] the general form of moment functions of order N =1 and N = 2
have been determined in the case of polynomial hypergroups. We can
generalize this concept by omitting the hypothesis fy = 1, but suppos-
ing that fp is not identically zero. In this case fy is an exponential
function and we say that f; generates the generalized moment sequence
of order N further fi is a generalized moment function of order k with
respect to fo (k=0,1,...,N). For instance, generalized moment func-
tions of order 1 with respect to the exponential fp are solutions of the
sine functional equation

filzxy) = fo(m)fl(y) + fo(y)fi‘(l’)

for any z,y in K.

The study of moment functions and moment sequences on hyper—
groups leads to the study of the above system of functional equations.
We remark that a similar system of functional equation on groupoids
has been investigated and solved in [1].
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4. Exponentials on Sturm—Liouville hypergroups

Let K be a Sturm-—Liouville hypergroup. Now we describe all
exponentials defined on K (see also [2]).
Theorem 4.1. Let K be the Sturm—Liouville hypergroup corresponding
to the Sturm—Liouville function A. Then the continuous function m :
: Ry — C is an exponential on K if and only if it is C> and there ezists
a complex number \ such that | |

A . .
@) m @)+ A ) Z ), m0) =1, m(0)=0
A(x)
holds for any positive z.
Proof. First suppose that the function m : Ry — C is C*° on Ry and
it satisfies the given boundary value problem. Then the function

m(@ +y) = /O " () (8, % 5,)(8)

and also the function (z,y) — m(z)m(y) is a solution of the boundary
value problem defining the hypergroup, hence they are equal and m is
an exponential. :
Conversely, suppose that m : Ry — C is an exponential on the
hypergroup K. Then the function u.,(z,y) = m(z)m(y) is a solution of
the boundary value problem defining the hypergroup, hence we obtain

A'(z) A'(y)
m' (z) + m'(z) m(y) = | m"(y) + m'(y) | m(z)
( Az) ™) Aly)
holds for each positive z, 7y, and there exists a complex A with
A'(z)
1 7 — )\ T
m(z) + G () = dm(z)
for all positive x, consequently m is C* on Ry. The relations m(0) = 1
and m/(0) = 0 are immediate consequences of the fact that m is an
exponential and the neutral element of the hypergroup is zero. ¢
Hence any exponential function on a Sturm—-Liouville hypergroup
is an eigenfunction of the Sturm-Liouville operator corresponding to the
given hypergroup. Each complex number is an eigenvalue and there is a
‘one-to-one correspondence between complex numbers and exponentials.
For any fixed complex A we shall denote by z — ©(z, ) the unique

solution of the boundary value problem (4). Then the function ¢ :
: Ry x C — C represents a one-parameter family of exponentials of the
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Sturm-Liouville hypergroup K, which is called the exponential family
of K. We obviously have

®  elaN + 5 (e ) = el )
(10(0: /\) =1, O LP(O, A) =0

holds for each positive z.
For instance, the complex number A = 0 corresponds to the eigen-
value problem

e A@ e
()+A($)m(w)—0, m(0)=1, m'(0)=0,

which obviously has the unique solutlon m = 1, hence (z,0) =1 for
each z in Rg. ~

5. Additive functions on Sturm—Liouville hyper-
groups

Let K be a Sturm-Liouville hypergroup. Now we describe all
additive functions defined on K (see also [2]).
Theorem 5.1. Let K be the Sturm—Liouville hypergroup corresponding
to the Sturm-Liouville function A. Then the continuous function a :
: Rg — C is an additive function on K if and only if it is C*° and there
exists a complex number \ such that

(5) o (z) + AI/((—%)—LL'(:B) =2, a(0)=0, d&/(0)=0

holds for any positive x.

Proof. The proof is very similar to that of the previous theorem. First
suppose that the function a : Ry — C is C* and it satisfies the given
boundary value problem. Then the function

a(z +y) = /O " a(t) d(de = 6,)(t)

and also the function (z,y) — a(z)+ a(y) is a solution of the boundary
value problem defining the hypergroup, hence they are equal and a is
an additive function.

Conversely, suppose that a : Rg — C is an additive function on
the given hypergroup K. Then the function uq(z,y) = a(z) + a(y) is a
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solution of the boundary value problem defining the hypergroup, hence
we obtain

" Allz) , . Ally)
@)+ 58 dlo) =)+ 52

holds for each positive z,y, and there exists a complex A with

o Al(z)
| YOt A CO =2
for all positive z, consequently a is C* on Rg. The relations a(0) = 0
and a/(0) = 0 are immediate consequences of the fact that a is additive
and the neutral element of the hypergroup is zero. ¢

It is obvious that the unique solution ay of the boundary value
problem (6) is Aay, where a; is the unique solution of (6) with X = 1.
This means that all additive functions of a Sturm-Liouville hypergroup
are constant multiples of a fixed nonzero additive function. We call
a; the generating additive function of the given Sturm-Liouville hyper-
group.

It turns out that the boundary value problem (6) can be solved
explicitly. Namely, we have the following thieorem (see [8]).
Theorem 5.2. Let K be the Sturm—Liouville hypergroup correspond-
ing to the Sturm—Liouville function A. Then the gemerating additive
function of the hypergroup K is given by

mn / /y A(t dt dy

for each nonnegative x. Hence any additive function of the hypergmup
K is given by

(8) / / ’ A(t) dtdy

for each nonnegative x, where A is an arbztmry complez number.
Proof. The proof is obvious using standard methods from the theory
of linear differential equations. Another way of proving the statement
is direct verification and using the uniqueness theorem. ¢

As an illustration we compute the additive functions on the Bessel-
Kingman hypergroup, which is a special Chébli-Trimeche hypergroup.
Here A(z) = z* for all nonnegative z with some positive number . In
this case we have
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Y e .'EZ
//_dtdy 2a+1)

Yy 1o /\1732
//'_dtdy 2(a+1)

for each nonnegative = and complex number .

Another example is given here for a special Levitan hypergroup,
the square hypergroup, where A(z) = (1 + a:) for all nonnegative z.
From the above formulas we have

1—|—t ‘ x3+3w2
ai(z) = //(1+ )Zdtdy_G(x-i—l)

a:) // 1-1-‘6)~ A(ﬁ:c( —:_31:1;)

for each nonnegative z and complex number A

and

and

6. Moment functions on Sturm—‘L‘iouv‘illi-e hyper-
groups |

Let K be a Sturm-Liouville hypergroup. In this section we de-

scribe all generalized moment sequences of second order defined on K.
We remark that in [4] and [5] the general form of generalized moment
functions on polynomial hypergroups is given.
Theorem 6.1. Let K be the Sturm—Liouville hypergroup corresponding
to the Sturm~Liouville function A. The continuous functions fo, f1, fa :
: Rg — C form a generalized moment sequence of second order on the
hypergroup K if and only if they are C*° and there are complex numbers
Co, €1, Co Such that ' :

| fo(iB) = QD(SC, CO) 7‘
(9) ‘ » f]_(CC) =109 (p(CE Co)
fa(®) = 202 (z, c0) + €105 (=, o).

holds for each positive .

Proof. First we prove the necessity of the given condition. By assump-
tion the functions fy, f1, fo : Rg — C satisfy the functional equations
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folz*xy) = folz)fo(y),
(10) Filz *y) = fi(z) foly) + folz) f1(y),
falz xy) = fa(z) foly) + 2f1(z) frly) + folz) f2(y)

holds for all z,y in Rgy. Substituting y = 0 in the second and third
equation of (10) we get f1(0) = f2(0) = 0. Similarly, differentiating the
second and third equations of (10) with respect to the variable z, then
using the second equation of (1) we get f](0) = f4(0) = 0. As fy is not
identically zero, it is an exponential, hence, by Th. 4.1, there exists a
complex number cp such that the first equation of (9) holds for each z
in Ry. By the definition of the hypergroup the second equation of (10)
implies

(r@+ 52 s (:c)) olw) + (# (>+A((“’)) () i) =

A) AW N
- (H0+ 52 50) a0+ (80 + 52 1w 1)
for all positive z,y. This implies '

( (a) + A'(‘”)) (o ))- fow) + cofol@) fi (v) =
| ; |

4(
~(#w)+ A( B R ) fla) + cofol) ).

or

" ' Al(m) . k.
(1<m> D @ - bl >> £oy)

- () + 458 1) - cofl(y)> fol)

for all positive z, y.

It follows that
A'(z)
A(z)
holds for each positive z with some cbinplex number ¢;. In particular,

f1is C°°. On the other hand, differentiating the first equation of (5)
with respect to A and then substituting A = ¢p it follows

(11) 1 (z) + fi'(z) = cofi(z) + c1fo(z)
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A/
0202 (o) + 2y 2 01D p(,05) = p(z, o) + cod (0,0

for each positive z. Further, obviously 8 (0, co) = 0102 (0, ¢cp) = 0,
as a consequence of (5). This means that the function g : Rg — C
defined by g(z) = fi(z) — ¢102 o(z, cp) for each z in Ry satisfies

o"(@)+ G5 9@) =0,

g9(0)=0, ¢'(0)=0
for each positive z, and hence, by ‘uniqueness, g = 0 and we have the
second equation of (9). ~
Now we derive the third equation of (9). Using similar argument

like before, by the definition of the hypergroup the third equation of
(10) implies

( '(2) + (()fz’(w)—Csz(w),—chfl(x)> foly) =

)
(1

2 ) - cofals) - 21110) ) oo
for all positive z,y. It follows that '
A'(z)

5 (z) + ()ﬁ() %h@ﬂﬂﬁ%w@£®+@ﬁ®)

holds for each positive z with some complex number cy. In particular,
fa2is C*°. On the other hand, differentiating two times the first equation
of (5) with respect to A and then substituting )\ = ¢p it follows

8203 ol co) + A(( )) 5162 (o) = 205 (, co) + coB2 9 (z, co)

for each positive z. Further, obviously 83 ¢(0, cg) = 8103 ¢(0,¢p) = 0,
as a consequence of (5). This means that the function g : K — C
defined by g(z) = fa(z) — 363 ©(z,cg) for each z in Ry satisfies

(@) + G o) = eage) + eafo(e),

g(0) =0, g(0)=0

for each positive . Applying the same argument we used in the case
of equation (11) we arrive at
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9(z) = 202 p(z, co)
for each z in Ry, which implies the third equation of (9) and the neces-
sity ‘of the given condition is proved. (
To prove the converse we suppose that the C°°-functions fg, f1, fo :
Ry — C satisfy (9) for each z in Ry with some complex numbers
co, ¢1,Ca. Then fy is an exponential of X, and the first equation of (10)
is satisfied. Let for all z,y in Rq

o(3) = (@) ole) + (6o (2.

Then for all positive z,y we have 81v(0,y) = Opv(z,0) = 0,
v(z,0) = fi(z), v(0,¥) = fi(y). Finally, an easy calculation shows
that - (La)zv(z,y) = (La)yv(z,y) holds for all positive z,y, that is,
v is a solution of the boundary value problem (1) defining the Sturm~
Liouville hypergroup K. This means, f1(z*y) = v(z,y) and the second
equation of (10) is satisfied. For the proof of the third equation of (10)
we apply a similar argument for the function w: Ry x Ry — C defined
by '

w(z,y) = fa(z) foly) + 2f1(z) f1(y) + fo(z) fo(y)
for all z,y € Rg to get w(z,y)= fa(z *y), and the theorem is proved. ¢

For instance, on the Bessel-Kingman hypergroup A(z) = z® holds
for all nonnegative z with some positive number o and we have the
general form of moment sequences of second order:

fo(z) =
72
fi(z) = (——IT—I_)
fal) = cizt coxz>

Hatl)(@r3)  2a+ D)

for each noxmegative z. In the other example, on the square hypergroup
A(z) = (1 + z)? holds for all nonnegative z, and we have the general
form of moment sequences of second order:

fO(m):]-)

z3 + 322
fl(m)-clm,
Falz) = 1 2:10 + bz 73 + 3z?
A _

076z +1)  26@+1)

for each nonnegative z.
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