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Abstract: For a primeé ring R with: involution, we characterize additiVe maps
[+ B — Qumi(R) such that [f(u), u*] + [u,f(u*)] = 0 whenever [u,u*] = 0,
that is, for all normal'u € R. It is shown that on K, the skew elements of
R, such & map fiis a sum-of a derivation, & scalar map, and & map into the
extended centroid of R.

One of the problems in algebra that continues to receive attention
is that of characterizing maps that preserve certain algebraic proper-
ties. Some examples might be maps for which f(z") = f(z)™ for a fixed
n (preserve powers), or maps for which ab = ba implies f(a)f(b) =
= f(b)f(a) (preserves commutativity). Another example is maps for
which u normal implies f(u) is normal (preserves normality), where u is

normal if uu* = u*u where * is an involution. In [1], Beidar et al. were

able to characterize normal preserving bijective linear maps f : 4 — B,
where A, B are centrally closed prime algebras (with a few technical
conditions). We refer the interested reader to that article for an ex-
cellent brief history of the normal preserver problem and a generous
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list of references. The problem we address in this article is not a “pre-
server” problem, but was motivated by the normal preserver problem
in the following way. Normality can be expressed as [u,u*] = 0, then
f preserving normality means that [f(u), f(u)*] = 0. In the case that
J commutes with the involution, this is equivalent to [f(u), f(u*)] = 0.
Thus, f behaves like a Lie homomorph;sm on such [u,u*] = 0. We are
interested in maps that behave like a Lie derivation in the same situation.

Let R be a prime ring with invelution, with center F', extended
centroid C, and Q = Qm(R) its maximal left ring of quotients (see
[5, Chapter 2] for definitions and discussion of these terms). For any
subset A C R, let (A) be the subring of R generated by A. Define the
normal elements of R as v € R with [u,u*] =0. Let f: R — Q be an
additive map such that [f(u), u*] + [u, f(u*)] = 0 for-all normal u € R.
There are obvious candidates for f; that is, additive maps that would
behave this way. Namely, derivations ( f(ab) = f(a)b+ af(b)), scalar
maps (f(a) = Aa for any fixed A € C), central maps (f(a) € C), and
sums of these. We are able to show, essentially, that these standard
forms are the only possibilities. However, the example given in the last
section shows that we should not expect in general to get a standard
form for f on the whole ring. (This was also the case with normal
preserving maps.) Th. 6 is the main result in which we are able to fully
characterize such maps on K, the skew elements of R. Cors. 10, 11,
and 12 provide stronger results (characterization on (K) or on all of R)
in special cases.

1. Background

Functional identities (FI) play a key role in the proof, so we will
give a brief introduction to that theory before quoting several results.
Necessarily our comments will be less than thorough and we refer the
interested reader to surveys [8] and [6] for a broader perspective and
to technical articles [3], [4] for more precisely stated definitions and
results.

Consider a subset A C Q and write Z,, = (21,... ,Zm) for ele-
ments of A™, the cartesian product. Let X3, Xs,... , X, be noncom-
muting indeterminates and consider monomials X; X, --- X;_  where
{i1,42,... ,in} € {1,2,...,m}, which are linear in each of the indeter-
minates that appear. Note that each indeterminate or monomial can be
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considered a function on A™ in a natural way by X;, X, -+ X;_(Tm) =
= T4, Ti, -+ - Ti,. Also, any function f : A™® — Q can be viewed as
a function on A™ as long as it is clear which k entries of a typical Z,,
are excluded. This is done, with some abuse of notation, as a super-

script on the map: for example f*(Zm) = f(1,... , Ti-1, Bit1,--- , Tm)
(k =1), or fM(Zn) = flzj,,...,7;,_,) where M is a monomial in-
volving k indeterminates and the Zj; ,t =1,...,m — k correspond to

the indeterminates not appearing in M. The names of maps often in-
clude subscripts correspondmg to the mdetermmates or monomials they
appear with (thus it is common to see matching subscripts and super-
scripts). A multilinear quasi-polynomial of degree m is a sum of the form
> M(Zm) L(Zy) where each I is a monomial and each Az, : A% — C
where L involves m — k indeterminates (if L involves all the z; then
Az is just an element of C; we also allow the trivial monomial 1 with

A1 = X(z1,... ,Tm)). For a fixed n < m we are also interested in sums

of the form 3,/ y M (Zm)B3f (:nm)N (Zm) where M, N are monomials
involving (dlsJomtly) a total of m —n indeterminates and each By :
A™ — @ is an unknown function. One possible functional identity on
A would be an equation of the form ),/ M (%) BYER (21 )N (Zrn) =
= 31 X(Zm)L(Z.m) that holds for all Z,, € A™ (we will encounter one
such identity where all the By;y are the same). Under certain condi-
tions on the subset A we can conclude that the unknown maps Byn
must be multilinear quasi-polynomials. One of the earliest applications
(and motivations) of this theory was in characterizing commuting maps
(see [7]), which are the starting point for the proof of our main result.
In order to be able to apply the very powerful FI theory, we must
consider a special condition, the d-freeness, of the sets of interest. For
the sake of completeness, we include this fundamental definition here.
Let Z,J € {1,2,... ,m} and let E;,F; : A™ 1 > Q,foricI,j€J
be arbitrary maps. Considér the basic functional identities on A:

(1) E:Ez (Zrm, IEH’Z% =0,

i€l jeET

(2) ZE" Tm )T + Z z; F; I (Zm) € C,

i€T JET

for all Z,, € A™. Suppose that there exist maps Mz : A™ ! — C for

each k € ZNJ, and maps p;; : A™ 2 > Qfori€Z,j € J,i # j, such
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that
Ei@m)= Y, 2p(Em)+M(En), i€
JET ist] : ,
(8) j(m i T
F (Zm) = Z Pi;(Zm)zi + Xj(ZTm), €T,
€T, i]

for all Z,, € A™ (assume Ay = 0 for k ¢ TN 7). It is clear that (3)
is a solution to both (1) and (2), which we will call a standard solution.
Then, for a positive integer d, A is a d-free subset of @ if, whenever
max{lI |71} < d, the only solutions to any identity of form (1) are
standard, and whenever max{|Z|,|7|} < d — 1, the only solutions to
any identity of form (2) are standard.

The following result tells us about the d- freeness of certain subsets
of R. Recall that the degree of a subset A of @ is the maximum degree
of algebramlty over C of the elements of A.

Theorem 1 ([3, Th. 2.4]). Let R be a prime ring with znvolutzon Q=
= Qumi(R) its mazimal left ring of quotients. Let S and K be the subsets
of R of the symmetric and skew elements, respectively. Then

1. if deg(R) > d, R is a d-free subset of Q;

2. if deg(R) > 2d+ 2, both S and K are d-free subsets of Q.

With that in hand we now present the key results on functional
identities we will need.
Theorem 2 ([4, Th. 1.1]). Suppose P(Z.,) is a multilinear quasi-poly-
nomial of degree m, which is zero on an m + l-free subset A of Q
(m-free if Ay = 0). Then each coefficient map Az, of P is zero on A.
Theorem 3 ([4, Th. 1.2]). Suppose B : A™ — Q is an n-additive
map with Y apg, N M (Zm) BMY (2, )N (Zn) = P(Zm) for all T, € A™,
where P is a multilinear quasi-polynomial, and the apr,n € C. Suppose
that either Ay = 0 and A is an m-free subset of @, or that A is an
m + 1-free subset of Q). Then B is a multilinear quasi-polynomial of
degree n.
Corollary 4. Suppose T A — @Q 1is the trace of an n-additive map
such that [T(x),z™ "] = 0 for allz € A. If A is an m-free subset of
@ and char (R) = 0 or > n, then there exist symmetric k-additive maps
A AF — C, k=0,...,n, such that T(z) = Y pg Me(T,. .. ,2)z"F
for all x € A.

The corollary follows from Th. 3 by fully linearizing [T'(z), z™~"].

The following special result will also be used.
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Theorem 5 ([4, Th. 2.9]). Let A be a subset of Q, f(z1,...,Tm) @
multilinear polynomial such that f(ay,... ,am) € A for all a; € A, and
let map B : A x A — @ be such that B(a,b) = —B(b,a) for alla,be A
and

B(f(a1,... ,am Zf (a1,...,B(ai,b),. .. am)
: i=1

for all a;,b € A. If A is 2m-free, then there exists p € C and map
€: Ax A— C such that B(a,b) = pla, b] + €(a, b) for all a,b € A.

Finally, we mention that the proof below will be directed towards
showing the existence of a particular Lie derivation, whence we can
apply the results in [2] on extensions of Lie maps to get related deriva-
tions.

2. Main Theorem

We now state the main result. The proof we give follows the basic
outline of the proof of Th. 5.1 in [1] on normal preservers, though we
are able to consider a more general situation.

Theorem 6. Let R be a prime ring with involution, such that char (R) #
#2 or 3, and deg (R) > 14. Let C be the extended centroid of R and
Q = Qumu(R) its mazimal left ring of quotients. Suppose f : R — Q
is an additive map such that [f(u),u*] + [u, f(u*)] = 0 for all normal
elements u € R. Then f(k) = §(k) + vk + ¢(k) for all k € K, for a
derivation § : (K) — @,y € C, and additive map ¢: K — C.

Proof. We proceed by a sequence of lemmas. Since deg(R) > 14,
Th. 1 tells us that R is d-free for all d < 14 and K is d-free for all
d < 6. These facts will allow us to apply Ths. 3 and 5, and Cor. 4. In
fact, it is only in the application of Th. 5 in the proof of Lemma 9 that
we need K to be 6-free.

For all k € K, we know that k, k2, and k+k2 are normal elements,
so evaluating [f(t ), T+ [u, fu®)] = 0 with u = k + k2, we get

@) [fR), K]+ [k, F(R*)] = [k, F(R%) — f(R)E — K f (k)] =0

for all £k € K. If we define a symmetric biadditive map B : K X
x K — Aby B(k,1) = {f(kol)— f(k)ol—Fko f(I)}, we see that
T(k) = f(k%) — f(k)k — kf(k) = B(k, k) is the trace of B. From Cor. 4
we have that T'(k) = A\k? + u(k)k + v(k, k) for all k € K where A € C, -
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p: K — C is additive, and v : K x K — C is a symmetric biadditive
map. Hence

(5) F(E?) = Flk)k + kf(k) + Mk* + u(k)k + v(k, k)

forall k € K.

Define a map g : R — Q by g(z) = f(z) + Az and note that g is
additive, [g(u),u*] + [u, g(u*)] = 0 for all normal v € R, and using (5)
(6) g(k?*) = g(k)k + kg(k) + p(k)k + v(k, k)
for all k£ € K. Linearizing (6), we see that |
(7) g(kl+1k) = g(k)l + kg(l) + gDk + lg(k) + p(k)l + p(D)k + 2v(k, )
forall k,l € K.

Lemma 7. There exist \g € C and a symmetric biadditive map Ag :
: K x K — C such that, for all k,l € K, g(klk) = g(k)lk + kg(D)k +
+ klg(k) + Aoklk + %u(k’)(kl + k) + %[,La(l)k2 + Aok, Dk — Su(klk).

For k € K, k2, k3, and k2 + k3 are norma,l so, as previously,
® 0 [gE), k] + K, g(k*)] =0
for all k € K. Using (6) gives

[9(&%), k%] + [, (k) + kg (k) + u(k)k + v(k, k)] =
= [9(&®), k%] + [, g(k)&® + kg(k)k + k?g(k)] =
= [9(k*) — g(k)& — kg(k)k — K*g(k), k] = 0.
Since g(k®) — g(k)k? — kg(k)k — k?g(k) can be viewed as the trace of a
Eri)additive map, Cor. 4 gives
9
g(k%) = g(k)k>+kg(k)k+k>g(k)+Mok>+ X1 (k) + Ao (k, k) k+As (K, k, k)
for all k € K, where A\g € C, A1 : K — C is additive, A\g : K x K —
— C is symmetric biadditive, and A3 : K x K x K — C is symmetric
triadditive. Linearizing (9) we have
g(k21 + klk + 1k?) =
= g(k)kl+kg(k)l+k>g(1)+g(k)Ik+kg(Dk-+klg(k)+g(1)k*+1g(k)k+
(10) +lkg(k)+ Mo (k21 +Eklk-+1k2)+ A1 (k) (kl+1k)+ X 1 (1) k> +
—FAg(k), k‘)l + 2)\2(]%, l)k —+ 3)\3(1%, k, l)
for all k,l € K.



(14)
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In order to characterize the \;, we proceed to compute g(kzlk +
+ klk?) in two ways, using k%lk + klk? = ko klk = L{k o (K%l + kik +
+1k?) — k2 o [}. From (7)

(a1 glk o klk) = g(k)klk + kg(klk) + g(klk)k + klkg(k) + p(k)klk+
+ ulklk)k + 2v(k, klk),
while

1
g(§{k o (K2 + klk + 1k?) — k3 o l}) =

= %{g(k)(kgl + ik + 162 + kg(k% + klk + 1K%)+
(12) + g(K®1 + klk + 1k®)k + (K%L + Klk + 1k*)g(k)+
+ (k) (K21 + klk 4 16%) + (k21 + klk + 16*)k+
-+ 2v(k, KL+ klk + 1K%)} — %{g(lﬁ)l + k3g(l)+
+ gk +1g(k3) + p(E3) + u()E® + 2v(K%, 1) }
for all k,1 € K. Expanding (12) using (10) and (9), and equating with
(11) yields
k{ g(klk) — g(k)lk — kg(1)k — klg(k) }+
+ {g(kik) — g(k)lk — kg(l)k — klg(k) }k =

1 1
= Aok2lk-+Aoklk?+ (Al(z)—iﬂ(z)«)k% (Al(k) —= (k) ) lle+

(13 1 1 | 1

) +§lu'(k)k’2l+ §M(k)lk2+2>\2(kv l)kg - ()\B(ka ka k>+5:u’(k3)) l+
+ (3/\3(k, kD) + %u(m — Kl + lk2)> k+
+ vk, K21 — klk + 1K) — v(k®,1)

for all k,l € K.

Linearizing (13), we see it is of the form

k1 E(ka, ks, 1) + E(ka, ks, k1 + k2 E(k1, ks, 1) + E(k1, k3, Dka+

+ksE(k1, ka, 1) + E(k1, ko, 1)ks = P(k1, ko, k3, 1)

for all kl, kg, kg, [ e K, where E(k)i, k:j, l) = g(k.,;lk?j -+ kjlk'z) - g(ki)lkj -

— kig(IYk; — kilg(ky) — g(k; )i — kjg(D)ki — kjlg(k:) and P(k1, ks, k3, 1)
is a multilinear quasi-polynomial.’ By Th. 3, F must be a multilinear
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quasi-polynomial; when this is substituted into (14) it leads to another
multilinear quasi-polynomial Q(k1, ke, k3,!) = 0. Using Th. 2, we have

Malln) = Suky),

1
A3(ki, ka2, k3) = “1—9M(k1k2k‘3 + k1k3ka+
+ kokiks + koksky + kski1ks + kgkgk‘l),
and

1 1 1
E(ky,k2,1) = )\okllkz-l-)\okzlkl+§M(k1)kzl+§ﬂ(k1)lk2+§M(k2)kll+
” 1 1 1
+ gplka)ler + Sull)kiks + §M(l)k2k1+
+ )\2(]{21, l)ka -+ }\o(k l)kl bt —,Lb(kllkz + kolkl)

for all k1, ko, k3,] € K. From the definition of F, we now have
g(kllkz —+ kglkl) = g(k‘l)lkg + klg('l)kg + kllg(k‘z) ~+ g(kz)lkl-i-

+ kag(l)k1 + kalg(k1) + do(kilks + kalkq)+
1 1
(15) + 5 u(ler) (ol + Tho) + 5 plkz) (kal + Ler )+

1
+ 5#(1)(761792 + kak1) 4+ Aa(ky, Dka+

1 i
+ Ao (kg, l)kl — iﬂ(klle —+ kglkl)
for all kq,ko,l € K, and

: 1
g(klk) = g(k)lk + kg(Dk + klg(k) + Aoklk + E,u(k)(kl +1k)+
1
T3 ;
for all k,1 € K. This completes the proof of Lemma 7.
Lemma 8. A\y(k,l) =0 for all k,l € K.
NOtlIlg that kllklok+k}lgkl1k = (kl1k>lok+klo(kl1]\,) (Alak)lllx"*‘
+ kly(klak), we will compute g(kliklak + klzkl k) in two ways and
compare. Using (15)

9((kl1k)lak + kla(kl1k)) =

(16)
= p(D)k>Ag (K, D — —u(klk)
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1 N
+ klzg(kllk) + Ao (kllklzk + klgkllk) —+ é—y(kllk) (klg —+ lgk)—i—
1 1 '
= () (klakl + Loklyk) + = pu(la) (Ink? + B21k) + a(klnk, o)k
1 o
+ Xo(k, I2)kl k — é‘u(kllklgk + klgkl k)

which, using (16), expands to
= g(k?)llklzk‘ +o0+ kllklgg(k) + g(k)lzkllk + ..+ klgkllg(k)+

2o (Kl klgkElo kLK) + —;—_u(k)(kllklz + loklyk + klylok+
+ l1klok + klakly + +klal k) + %u(llj(klgkz + k2lk)+
+ %u(lz)(kllkz + k%11 k) + Ao (klik, 1)k + 222 (k, 11 ) klok+
+ Ao (K, In) k1 e — -;—M(kllklgk + klgkly k) |

for all k,1y,ls € K. Computing g(kly (klsk) + (klak)l1k) similarly, and
subtracting, we find that

(17)  Aa(k, 11)klok + Aa(klvk, Ia)k — Aok, la)kl K + Ao (Klak, 1)k = 0

for all k,l1,ls € K. Linearizing (17) yields a multilinear quasi-poly-
nomial, which upon applying Th. 2, yields Xo(k,1) =0 for all k,[ € K.
This completes the proof of Lemma 8. :

Define an additive map d : K — @ by d(k) = g(k) + Aok + 3 u(k)
for k € K. From (15), using Lemma 8§,

d(kllkg -+ k)zlkl) = d(kl)lkg + kld(l)kg + klld(kg)-f-

18
(18) + d(ko)lk1 + +kad(l)ky + kold(k1)

for all k1, k9,1l € K.
Lemma 9. d([k,1]) — [d(k),1] = [k,d(l)] € C for all k,l € K.

Define a map B : K x K — @ by B(k,l) = d([k,1]) — [d(k),l] —
— [k, d(1)] and note that B(k,l) = —B(l,k). We proceed to compute
B(klkglﬂg -I—k?;gkzkil, l) for "kl, kg, kg, le K. US]Ilg the ideﬁtity [:cyz, 'LU] =
= [z, w]yz + zly, w]z + zy[z, w], along with (18), we have
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(19) B(kikoks+kskok:,l) =
= d([kykaks + kskoky, 1) — [d(kikaks -+ kakaky), []—
— [krkaks + kskoky, d(l)] = |
d([k1, Qkaks+kakalky, 1) +d (ki [z, Qs+ kalks, D1 +d (ks kalks, [+
+ [ks, lkak1) — [d(k1koks + kskaki),l] — [k1kaks + kskak1, d(l)] =
d([ky, () kaks+ [k, lld(ke) s+ k1, llkad(ks) + ...+ kskad([k1, I]) + ..
ot d(ky )ealks, 1+ ..+ ks, [kad(ks) — [d(ky kaks +... +kakad(ky), [ -
— k1, d(1))kaks — k1[ke, d(l)]k3 — ... — kaka[k1,d(l)] =
= {d([k1, 1)) — [d(k1), 1] — [k1, d(1)] } haks + k1 {d([k2, 1]} — [d(k’)) I]-
— [k2, d(D] } ks + . .. + kaka {d([k1, 1]) — [d(k1), 1] — [k1,d(D)]} =
= B(ky, Dkoks + kskaB(k1,1) + k1 B(ko, kst
+ k3 B(ks, )k + k1kaB(ks, 1) + B(ks, Dkaky
for all k1, ko, k3,1l € K. (19) shows us that the map B, along with the
multilinear polynomial zyz + zyz, satisfy the hypotheses of Th. 5, so

there exist p € C and € : K x K — C such that B(k,1) = plk,[]+€(k, 1)
for all k,! € K. Thus, for all £,]l € K,

(20) d([k, 1)) = [d(k), 1] + [k, dD)] + plk, 1] + e(k, 1).
We can use the identity [[z,y], 2] = zyz + 2yz — yrz — zzy to
cginpute d([[k, 1], m]) in two ways. First, using (20),
d({[k, 1], m]) = [d([k, 1]}, m] + [[&, ], d(m)] + pllk, 1], m] + &([k, 1], m) =
= [[d(k), ] + [k, d(D)] + plk, U] + ¢(k, 1), m] + [[k, 1], d(m)]+
+ pllk, 1], m] + ¢([k, 1], m) =
= [[d(k), 1], m] + [k, dW)],m] + [[&, 1], d(m)] + 2p[[k, 1], m]+
+ ¢([k, 1], m)
for all k,1,m € K. On the other hand, using (18),
d([[k, 1}, m]) = d(klm + mlk)—d(lkm + mkl) =
(22) = d(k)lm + . .. + mld(k)—d(l)km—. . .—mkd(l) =
 [[d(8), ], m] + [k, d(0), ]+ (1, 1 d(m).
Equating (21) and (22), we have 2p[[k, ], m] + ¢([k,!],m) = 0 for all

k,l,m € K. Recognizing this as a multilinear quasi-polynomial, Th. 2
tells us that p = 0. This completes the proof of Lemma 9.
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By [2, Th. 1.8], there exist a derivation § : (K) — @ and an
additive map 7 : K — C such that d(k) = &(k) + 7(k) for all k €
€ K. Thus f(k) = 6(k) + (—A — 1)k + ((k) — 2u(k)) for all k € K,
completing the proof of Th. 6. {

3. Special cases

We can strengthen the conclusion of Th. 6 in several special situ-
ations.

Corollary 10. In Th. 6, suppose additionally that * is of the first kind

and f : R — Rg (Rc = RC + C the central closure of R). Then there
erist a derivation § : (K) — @, elements v1,v2 € C, and an additive
map Y : (K) — C, such that f(z) = 6(z) + 11z + vez* + ¢ (z) for all
z € (K).

Proof. For each k € K, we have [f(k) + f(k)*,k] = 0. Then, by
Cor. 4, there exist Ax € C and additive map ux : K — C such that
f(E) + f(k)* = Axk + ux(k) for all k € K. Since * is on the first
kind, applying * we find that f(k)* = —f(k) + ux(k) for all [ € K.
In a similar way we find that f(s)* = f(s) for all s € §. Extending
pr to all of R by defining ug(s) = 0 for all s € S, we can define
f: R — Rc by f(z) = flz) — suk(z). It is now easy to see that
[f(w),u*] + [u, f(u*)] = 0 for all normal u € R and that f(z*) = f(z)*
for all z € R.

Applying Th. 6 to f, we see that the maps u, 7 : K — C in that
proof are identically zero. Thus f(k) = 8(k) — (A+3Ao)k for all k € K.
Also, for each k € K,

Fk?) = g(k*) — M =

= g(B)k + kg(k) + v(k, k) — Ak® =

1 1 «
= (5(13) — 5A0k> kE+k <5(k) — 5/\ok‘> + vk, k) — Mk* =
= 0(k)k + k6(k) — (N + Xo)k? +v(k, k) =
= (k%) — (A + Mo)E? + u(k, ),
or f(k%)—8(k?)+(A+Xo)k? € C. Since (K) = K+ KoK and KoK is
spanned additively by all k? with k € K, we can define an additive map

¢:(K)— Cby¢(k)=0for ke K and ¢(s) = f(s) —(s) + (A + Ag)s
for s € K o K. Thus, for all z € (K), f(z) = f(z) + sux(z) = é(z) +
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+(=A=3x0)z+ (A —3Xo)z* + (qb—i— 1 )(z). This completes the proof
of Cor. 10. ¢

Corollary 11. In Th. 6, suppose additionally that R is centrally closed
(C = F), % is of the second kind, and f is linear. If deg(R) > 6, then
there ezist a derivation 6 : R — @, v € C, and an additive map ¢ :
: R — C, such that f(z) = d(z) + vz + ¢(z) for all z € R.
Proof. Since % is of the second kind, there exist ¢ € C such that
€ =—¢cand R=5+ K =5+¢€S.

Let s € S and A € C, then [s24)s, (s2+As)*] = [s2+As, s>+ A*s] =
= 0 so 524 \s is normal. By assumption, and using the linearity of f,

0= [f(s® + As), 5% + X*s] + [s% + Xs, f(s* + A*s)] =
= [£(5%) + Af(s), 8% + A*s] + [s2 + As, F(s%) + A* F(s8)] =
= [£(%), 8% + [s%, F(sM)] + A([f(5), 8] + [, F(s")+
+/\*([f( %), ] +[s2, £(9)]) + AN ([f(s), 8] + [, F(s)]) =
= N A{lf(s), 8] + % F(s)]}-

Letting )\ = ¢ then yields
(23) [F(s), 8] + 5%, f(s)] =

forall s € S. Lmearlzmg (23) we get

(24) [F(), 8] + [%, F(s)] + [f(s o t), 8] + [sot, f(£)] =

for all s,t € S.

Let x € R; then z = s + €t for some s,t € S. Using (23) and (24)
we can calculate

[F((s+et)?),s+et] + (s +et)? f(s +et)] =

= [f(s*) + ef(s0t) + € f(t%), s + et]+
+[* +e(sot) + %, f(s) + ef ()] =

= [£(s), 5] + [8*, F ()] + {[F (), ¢] + [*, F ()] +
+[f(sot),s]+[sot, f(s }+
+ {[f(#%), 5] + [, F()] + [F(sot),t] + [s0t, f(B)] }+
+E{[fE), g+ F)]} =

Therefore, for all z € R, we have
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(25) [f(?), 2] + [z, f ()] =
Similarly, starting with s + As?, we get

(26) U ) -
for all z € R.

Comparing (25) and (26) to (4) and (8), we see that the proof of
Th. 6 carries through with R in place of K (though a direct proof would
be considerable shorter since R is closed under squares), noting that we
only need deg (R) > 6 since then, by Th. 1, R is 6-free. An applica-
tion of [2, Th. 1.3] shows the existence of the appropmate der1vat10n
completing the proof of the corollary. ¢
Corollary 12. Suppose R is a centrally closed simple algebra with
involution, and deg(R) > 14, char (R) # 2,3. Then any linear map
satisfying the conditions of Th. 6 is of the form f(z) = §(z) + Mz +
+ Aax* + ¢(x) for all z € R, where § is a derivation, A1, Az € F, and
p:R— F.

This follows from Cors. 10 and 11, noting that in the case of an
involution of the first kind, (K) = R [9, Th. 2].

The following example, adapted from an example given in [1],
shows that we should not expect to be able to characterize such maps,
in general, on the whole ring. Let A = F(z,y), the free algebra over
a field I in two indeterminates, equipped with the involution given by
z* = z,y* = y,\* = X for A € F (thus (zy)* = yz, etc). Noting that
A =F@U®V as an F-vector space, where U is spanned by the nonzero
powers of z and of y, and V is spanned by the monomials which involve
both z and y. In this context the normal elements are A + u + v where
either v = v* or u = 0 and v* = —v. Let the linear map ' : V' — A be
the derivation defined by M = 0,7’ = 1,3’ = 1. We find that the map
f:A— Agiven by f(A+u+v) = A+ u+ v satisfies the required
condition on normal elements. But it is clear that f is not of standard
form on A, though it is already a derivation on V O (K).
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