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Abstract: Let h,n be positive integers, where 1 < h < n, k = (n,h) and
n = kn'. We call h-generalized circulant a matrix A of order n which can
be partitioned into h-circulant submatrices of type n’ x n. We determine
a characterization of h-generalized circulant matrices and, using this result,

n

b )
we prove that A = 3 ajP,?Lh is permutation similar to the direct sum of
=0
L&) )
k matrices coinciding with ) a;P?,, where P, denote the (0,1)-circulant
i=0

matrix of order n whose first row is null but the element in position (1,2).
This implies new results on the values of the permanent and also on the

~ determination of the eigenvalues of (0, 1)-circulant matrices. A partial proof
of a conjecture on the maximum value of permanents is achieved.
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1. Introduction

Recall that a matrix A of type m x n (m < n) is said h-circulant
when each row other than the first one is obtained from the preceding
row by shifting the elements cyclically h columns to the right. In the
case of h = 1 A is said circulant.

Let P, denote the (0, 1)-circulant matrix of type n X n with first
row (010...0). If there is not possibility of ambiguity we often drop
the subscript n and simply write P, as P.

If (a0, a1, ..., an—1) is the first row of a circulant matrix A of order
n—1 .
n, then A = " a;P".
i=0

It is easy to see that a matrix A of type m X n is h-circulant if
and only if it satisfies the relation AP? = P, A.

For i = 1,2,...,k, let A; be a square matrix of order n;. The
block diagonal square matrix
At 0 ... 0
A 0 A4 ... O
00 ... A
of order ni+na+. .. ny is called the direct sum of the matrices Ay, . .., Az.

It is denoted as A = diag { A1, A, ..., Ak}
Recall that the permanent of a n x n matrix A = [a; ;], denoted
by perA, is defined as

per A = Z Hai,g(i)

o€S, i=1

where the sum extends over all permutations ¢ of the symmetric group
of all permutations of the first n integers.
For every 1 < r < n, we denote by (r) and [r] the r-row and the
r-column respectively of a matrix of order n.
Definition 1. Let h,n be positive integers, where 1 < h < n, k = (n, h)
and n = kn’. A matrix A of order n is said h-generalized circulant when
it is partitioned into k submatrices of type n’/ x n, which are h-circulant.
In other words a matrix A of order n is h-generalized circulant
when it can be partitioned in the form v
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Ay
(1) A= |
Ak
where A;, 1 < i < k are h-circulant n’ X n-submatrices, i.e. they satisfy
A;jPh =P, A,
‘The main result of this paper is proving a characterization of the
h-generalized circulant matrices (Th. 1). By using this result we are
L]
able to prove that the matrix 4 = Z a; PI* is permutation similar
j=

L% %

to the matrix B = dlag{ > a; . Z } the direct sum of k
7=0 :
L% ,

matrices coinciding with ) a;P2. As these matrices have the same
=0

permanent we obtain new values for the permanent of (0,1) circulant
Lzl L7l \\k
matrices. In particular we obtain per ( > P,,{h> = (per ( > be,)) ;

in the particular case of three ones for row

4 / k
per (I + P+ P2ty = <1+\/5> <1_9\/5> +2

2

A partial proof of a conjecture by Codenotti, Crespi and Resta [1] on the
maximum value for permanents of very sparse matrices is achieved; the
computation of the permanent of this class of matrices was extensively
studied also in [2], [3] and [4]. Results are also obtained in relation to
the characteristic polynomials of A and B.

2. Characterization

Let us consider a matrix A of order n; we denote by A;, 1 < j <k,
“the submatrix of A of type n’ x n formed by the rows of A

14+ @G-1n"), 2+ G —-1Dn),..,3GHn").

Theorem 1. A matriz A of order n is h-generalized circulant, where
(n,h) =k and n = kn/, if and only if it satisfies the relation
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(2) AP"=P'A

where P! is direct sum of k matrices coinciding with P, i.e. P’ =
= dia,g{Pn/, e ,_Pn/}.

Proof. Let us assume that a matrix A = [a; ;] of order n, where 1 <
< i,§ < n satisfies (2). The matrix AP" is obtained by shifting cycli-
cally the columns of A of h positions to the right. Taking into account
the partitioned form of A we have

A A PP
aph = | 22| pr A"
Ag A, Pl

Hence (AP")]- = AjPh for 1 <j<k.
Now consider the product P’A. From the definition of P’ and the
partitioned form of A we have

Pn/ Al Pn’Al
Pn/ A2 Pn’ A2
P, Ay P, Ay

which shows that (P'A); = Py A, for 1 <j < k.

The equality (2) implies the equality of the submatrices (AP");
and (P'A);, where 1 < j < k. But we have seen that (AP"); = A; P".
Hence from the assumption (2) it follows A,;P" = Py A; (1 < j < k),
i.e. the submatrices A; (1 < j < k) are h-circulant n’ x n matrices and
therefore A is h-generalized circulant.

, Conversely, assume that every A;, 1 < j <k, is h-circulant, ie.
PnlAj = AjPh (1 S j S k) Then (P/A)] = Pn/Aj and (A_Ph>j =
=A;P"for 1 <j<k.

Denote @ = [g;;] the permutation matrix of order n, that rear-
ranges the columns of an arbitrary m x n matrix M by postmultiplica-
tion M@ according to the permutation «. Using Kronecker symbols §
the entries ¢;; can be written in the form

1 if j = i)
ij = Oa(s),j =

0 otherwise.
By the assumption that A; is h-circulant it follows that the rows of
(P'A); and (AP?); coincide. Then (P'A); = (AP™); and A satis-
fles (2). O
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When k = 1 a matrix A which satisfies (2) turns out to be a h-
circulant matrix; thus this definition turns out to be a generalization of
the notion of A-circulant matrix.

Now we will consider the particular case of h-generalized circulant
permutation matrices.

Proposition 1. Let n and h be positive integers, where 1 < h < n,
k= (n,h) and n = kn'. The function o : i+~ 1+ (i — 1)h + ¢, where
L+tn/ <i<(t+1)n/, 0 <t < k—1 and the integers are taken modn
is a permutation, whose representing matriz satisfies (2).
Proof. In order to prove that a is a permutation it is sufficient to prove
it is injective. Let 4,5 € [1,n], i < j and h = kh/, where (h/,n') = 1.
Assume that a(i) = a(j), that is

1+G—-1Dh+t=14+G~-Dh+1t
where 0 < ¢, < k — 1. Let us distinguish the cases of ¢ = t/ or ¢ £
# t". The condition of ¢ = ¢’ implies the relation (j — )k = 0 (modn),
which is impossible because j — ¢ < n/. In the case of t and ¢’ distinct,
without loss of generality we may assume ¢’ > ¢ and represent ¢ =
= ¢+, where 0 < r < k. Thus we obtain (1 — j)h = r(modn). It
implies that for a suitable integer m we obtain k((i — j)h' — mn/) =r,
which is impossible by the assumption on 7. Then « is a permutation.
Denote by @ the matrix which represents such a permutation. Then by
the construction we have that the submatrices Q; formed by the rows
L+ (@ —=1)n'),...,(@tn'), where 1 <t < k are h-circulant. Then Q is
h-generalized circulant. ¢

Also the permutation « is said h-generalized circulant.
Corollary 1. Let o an h-generalized circulant permutation; o is unique-
ly determined when

a(l),a(l+n),...,a(l+ (k- 1)n")
are assigned.
Proof. When we assign a(1) then the first row and therefore the con-
secutive k — 1 rows of the matrix which represents « are assigned. This
means that in the decomposition (1) the submatrix A; is given. Similar
considerations hold for the remaining submatrices. {
Proposition 2. The number of h-generalized circulant matrices of or-
der n, where k = (n,h) and n=kn/, is

n(n—n")(n-2n)...0/
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Proof. From the above considerations, « is uniquely determined when
we assign a(l + jn'), for all 0 < j < k — 1. We see that a(l) may
assume 7 values. When «(1) is assigned, also the following n’ — 1 rows
are assigned; then a(n’ + 1) may assume n — n’ values. By continuing
in this way the result follows. ¢

We call regular an h-generalized circulant permutation matrix @ =
= [g; ;] of order n = k.n/, when

91,1 = Q14n/2 = " T Q14 (k-0 k. = L.

In other words a h-generalized matrix A, representing the permutation
a, is regular when « satisfies the conditions

a(l)=1lan +1)=2,...,a((k—1)n'+1) = k.

When we need to remember the parameter h in relation to an h-
generalized circulant permutation matrix @, we write Q(h).

Theorem 2. Let A = agl + a1 P"+ ... + as P** be a matriz of order n,
where 1 < h <mn, (n,h) =k, n=kn'/, t = |}] and a;,1 <i<n' —1,
real numbers; moreover let Q) be the h-generalized regular permutation
matriz of order n. Then the matric B = QAQT is direct sum of k
matrices coinciding with 21 _oaiPL.

Proof. By (2) QP"QT = P’; then B = QAQT = a,l + ayP' 4+ --- +
-+ at(P/)t. O

An immediate consequence is that the circulant matrix A = I +
+Ph 4.4 Psh where s < | %], is permutation similar to the circulant
matrix B =1+ P+ .-+ P° Another consequence is the following

Corollary 2. Let A = . P be a square matriz of order n, where
=0
l<h<mn, (nh)=k, n=kn,t=[%] and 1 <r <t. Then we have

k
1

t
per ZPﬂ;h = | per ZRZ/
7=0

7=0

Proof. As the permanent is invariant with respect to permutation of
rows or columns, the result follows from Th. 1. ¢

As example of regular 3-generalized permutation matrix we may
consider the following matrix of order 9:
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1 00 0 0 0 0 0 07
0 001 00 O0O0O0
0 0 00O O0OO0OT1T00
01 00 0O0O0OUO0OTO
QB)=10 000100 0 0
000 O0O0OO0OODT1IO0
0 01 00 0 O0O0OTUW
0 00 0O O0D1O0O00O0
LO OO 0 0 00 0 1.
Then in relation to the matrix of order 9 A = I + P® 4 PS_ we obtain
that
11 1.0 0 0 0 0 07
11100 0000
1 11000000
0 0011 1 0 00
(3) QAAQM3) =10 0 01 1 1 0 0 0
0 001 1 1000
0 000 O0O0T1 11
0000 O0O0T1T1 1
L0 00 000 1 1 1]

3. Very sparse matrices

In this section we consider the case of (0,1) circulant matrices
with 3 ones in each row. First consider the matrix I + PP+ P?h where
(n,h) =1 and P denotes the permutation matrix P,. By using a Minc’s
formula for the permanent of I + P 4 P? [8] we have:

Corollary 3. Let P be of order n, where 1 < h < n, (n,h) = k,
n = kn'; then
, k

per (I+ P"4 P?h) = (L“%g) +(1—\/5> +2

2

Now, consider the matrix D = I + P™ 4+ P?™ of order n = 3m.
From Th. 2 we have that A is permutation similar to the direct sum of
m submatrices coinciding with J3, the matrix of all ones of order 3, then
permA = (3)™. It is known that in the class of vk x vk (0, 1)-matrices
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with row sums and column sums equal to k& the permanent function
takes its maximum on the direct sum of k x k matrices of 1’s. Thus the
matrix D satisfies partially the conJecture by Codenotti, Crespa and
Resta [1].

Now consider the case of a matrix A = I+ P"+ PJ where (n, h) =
=1 and j # 2h (modn).
Proposition 3. Let h,n be positive integers, such that 1 < h < m,
(n,h) = 1 and Q is the regular h-generalized permutation matriz of
order n. Then QPQT = P* where s is the unique solution, modulo n,
of the equation

(4) sh =1.

Proof. Denote by «a, 7 and [ the h-generalized regular circulant per-
mutations represented by @, P and QhPQg respectively. Then (1) =
= o~ Y7r(a(1))) = a~}(w(1)) = o (2). Denote by s the integer, 1 <
< s < n, such that 1 + sh = 2. Because (n,h) = 1, it easy to see that
the equation sh = 1 has a unique solution. Thus, for every 1 < i < n,
we have

A() = a7 (w(a(@)) = a7 (r(1 + (= Dh)) =
=o 124+ @G—-1Dh) =a 1+ (s+i—1)h)=s+1.

This implies that g = 7°. ¢
Proposition 4. Let A = I + P* + PJ be a square matriz of order n,
where 1 < h < j <m, j#2h (modn), (h,n) =1 and Q is the regular
h-generalized permutation matriz of ordern. Then QAQT = I+P+ P,
where v is the unique solution of the equation vh = j(modn).
Proof. From Prop. 4 we have that QxPIQL = (QnPQF) = P,
Denoted v = sj, from the equation sh = 1, we obtain vh = j (modn).
This implies QuAQL =I+ P+ P¥. {

In the case when (n,h) # 1, but (n,j) =1 or (n,j —h) =1, we
have a similar situation by multiplying A by a suitable power of P.

4. Eigenvalues

Recall that if A is a circulant matrix hose first row is [aoas - . - Gn—1],
the polynomial p(A) = }:n a;\"* is said the Hall polynomial of the
matrix A, If w = cos—n~ + zsm—-— then the eigenvalues of A are

1, pw),pw?),...,pw™ ).
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Let p(A\) and ¢(A\) the Hall polynomials of the matrices A = I +
+Pr 4 4 PPand B=I+P+...+P" respectively, where 0 < h <
<n, k= (n h), n="Fkn' and 1 <r < [%]. Moreover let 7(A) = 1+ A+

TS be the Hall polynomlal of the matrix C = I+ P, +-- -+ P/,
and a = COS T+ 1 sm . From Th. 2 it follows the following

Proposﬂzlon 5. The sets of eigenvalues of A = I+ Pk 4 ... 4 prh
and C = I 4+ Py + -+ + P, coincide, when k = 1. In the case of
k> 1, the set of ezgem)alues ofA is the union of k sets coinciding with

{l,r(a),~--, Ct)
A consequence is that, when k > 1, every eigenvalue of A has
multiplicity at least k.
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