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Abstract: A class of mappings has the component restriction property if for
each mapping f : X — Y belonging to the class, each B C Y and each A cX
being the union of some components of the preimage of B the restriction f|A
also is in the class. The property is studied for classes of open, monotone,
confluent and some related mappings.

1. Introduction

Introducing the class of confluent mappings in [2] it was observed
that for an arbitrary subset B of the range space the restriction of a
confluent mapping to any union of components of the preimage of B
is again confluent, see [2], Th. I, p. 213. Later it was shown that the
class of semi-confluent mappings has the same property, [5], Th. 3.7, p.
255. In further investigations the property was shown to be important
and useful especially in continuum theory. The aim of this paper is to
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study the property from the standpoint of general theory of mappings
between topological spaces, for arbitrary classes of mappings.

Let us accept the following definition.

Definition 1.1. A class 91 of mappings between topological spaces
is said to have the component restriction property (abbreviated CRP)
provided that for each mapping f : X —Y belonging to 90t and for each
subset B of Y, if A C X is the union of some components of f~(B),
then the restriction f|A: A— f(A) belongs to 9.

The subject of finding some conditions under which the property
of belonging to a given class 90 of mappings is kept by taking restrictions
of mappings to some subspaces of the domain spaces of the mappings
is not new. For example, G. T. Whyburn considered restrictions of
some mappings to so called inverse sets in [7]; A. V. Arhangel’skii in
[1] introduced and studied a concept of an inductively open mapping,
ie., a mapping f : X — Y for which there exists a subspace X* of X
such that f(X*) = f(X) and that the restriction f|X* : X* — f(X) is
open. For other related concepts and results see e.g. [3].

The paper consists of five sections. After Introduction and Pre-
liminaries some general results are presented in Section 3. In Section 4
we study classes that have CRP: homeomorphisms, monotone, (feebly)
confluent, (feebly) semi-confluent, joining and atriodic, as well as their
local variants. The last section is devoted to classes of mappings that
do not have CRP: open, weakly confluent and pseudo-confluent ones.

2. Preliminaries

All spaces considered in this paper are assumed to be topological
Hausdorff. A continuum means a compact connected space. A mapping
means a continuous function. We denote by N the set of all positive
integers, and by R the space of real numbers.

Given a subset A of a space X, we denote by clx(4), intx(A)
and bdx(A) the closure, the interior and the boundary of A in X,
respectively.

Let 9 be an arbitrary class of mappings. A mapping f: X — Y
between spaces X and Y is said to be:

— locally 9 (abbreviated Loc(901)) provided that for each point z€ X
there is a closed neighborhood V of z such that f(V) is a closed neigh-
borhood of f(z) and the partial mapping f|V : V' — f(V) belongs to
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/5
— hereditarily 90 if for each subcontinuum K C X the partial mapping
fIK : K — f(K) belongs to 9.

The reader is referred to [6, Table II, p. 28] to see interrelations
between the above mentioned and some others related classes of map-
pings.

A mapping f: X — Y between spaces X and Y is said to be:

— a homeomorphism if f is one-to-one and the inverse mapping £~
continuous;

— simple, 1f each point-inverse consists of one or two points;

— light, if each point-inverse has one-point components (note that if
the point-inverses are compact, then this condition is equivalent to the
property that they are zero-dimensional, [7, p. 130]);

— open, if f maps each open set in X onto an open set in Y

— a local homeomorphism if for each point z € X there exists an open
neighborhood U of z such that f(U) is an open neighborhood of f(z)
and that the restriction f|U : U — f(U) is a homeomorphism, [7, p.
199]);

— monotone if each point-inverse is connected;

— an OM-mapping (an MO-mapping) if there exist mappings f; and f»
such that f = fy o fi, where f) is monotone and f; is open (where f;
is open and f, is monotone);

— confluent, if for each subcontinuum @ of ¥ each component of f~1 (@)
is mapped under f onto @Q; equivalently, if for each subcontinuum Q
of Y and for every two components C; and Cs of f71(Q) the equality
f(C1) = f(C>) holds (note that each open mapping on a compact space
is confluent, [7, Chapter 8, (7.5), p. 148]);

— feebly confluent, if for each subcontinuum @ of ¥ and for every two
components C; and Cy of f~1Q) either f(C1) = f(Cs) or £(C1) N
Nf(Cz) =1

— weakly confluent, if for each subcontinuum @ of Y there is a compo-
nent of f~1(Q) which is mapped under f onto Q;

— pseudo-confluent, if for each irreducible subcontinuum Q of Y there
is a component of f~1(Q) which is mapped under f onto Q;

— semi-confluent, if for each subcontinuum @ of Y and for every two
components C; and Cy of f~1(Q) either f(C1) C F(Cs) or f(Cy) C
C f(Cr);

— feebly semi-confluent, if for each subcontinuum Q of Y and for every
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two components Cy and Cy of f71(Q) either f(C1) C f(Cy) or f(C2) C
C f(Cy) or f(C1) N f(Ca) =0;

— joining, if for each subcontinuum ) of Y and for every two compo-
nents C; and Cy of f~1(Q) the inequality f(C1) N f(Cy) # 0 holds;
— atriodic if for each subcontinuum @ of Y there are two components
C; and C; of F~HQ) such that f(C1)U f(C2) = Q and for each compo-
nent C of f~1(Q) either f(C) = Q or f(C) C f(C1) or f(C) C f(Cy).

3. The component restriction property — general
results

Let a mapping f : X — Y be given. Recall that a subset A C X
is said to be an inverse set under f provided that A = f~1(f(A)), see
[7, p. 137]. The following proposition can easily be verified.
Proposition 3.1. If a class MM of mappings has CRP, then for each
mapping f : X — Y belonging to 9 and for each inverse set A C X
under f the restriction f|A: A — f(A) belongs to 9.

Let 9t and 91 be two classes of mappings each of which contains
the class of homeomorphisms. We define (see [6, p. 15])

MN={gof:geM and fe N}

The reader is referred to [6, Chapter 4, Section A, p. 15] for prop-
erties of the above concept. The following is obvious.

Proposition 3.2. If classes T and N have CRP, then the class MN
has CRP.

The next statement is evident just by using definitions.
Proposition 3.3. The following classes of mappings have CRP: home-
omorphisms, simple mappings, light mappings and monotone ones.

A class 90t of mappings is said to have the composition factor prop-
erty provided that for every two mappings f : X—=Y and g : Y—Z if
their composition gof belongs to 9, then the mapping g is in 9.

As a direct consequence of the Whyburn factorization theorem
(see [7, Th. 4.1, p. 141]) and of Prop. 3.3 we obtain the following result.
Theorem 3.4. Let a class M of mappings between compact spaces has
CRP. Then for each mapping f € 9 there exists a unique factorization
f = faof1 into two mappings having CRP such that f1 is monotone and
fo is light. Moreover, if 9 contains the class of monotone mappings,
then fi € M, and if M has the composition factor property, then fa €
€ M.
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Theorem 3.5. If a class M of mappings has CRP, then the class
Loc(90t) also has CRP.

Proof. Let a mapping f : X — Y belong to Loc(90). This means that
for each point x € X there exists a subset V C X such that

(3.5.1) z eintx(V) CV = clx(V);
(3.5.2) f(z) € inty (f(V)) C f(V) = cly (f(V));
(3.5.3) the restriction f|V : V — f(V) is in M.
To see that the class Loc(9t) has CRP take a subset B C Y, and
let A be the union of some components of f~}(B). Put g = fl[A: A —

— f(A). We have to show that g € Loc(90), i.e., that for each point
z € A there exists a subset V' of A such that

(3.5.4) z €int (V') C V' = cla(V');
(3.5.5) g(z) € intya)(g(V")) C g(V") = clpay(9(V"));
(3.5.6) the restriction g|V’: V/ — g(V’) is in 9.
To this aim for each point z € A define V' = AN V. Then, by
(3.5.1),

T e iIltA(V/) =ANintx(V)C ANV = Vi=AnN cx(V) = ClA(V/).
Thus V' is a closed neighborhood of z in 4, i.e., (3.5.4) holds. Further,
by (3.5.2) we infer that g(z) = f(z) is an interior point of the set
g(V') = g(ANV) = f(AnV) = clpa)(F(ANV)) = clpay(g(V)),
whence (3.5.5) follows. Finally, since 9t has CRP, we conclude by

Def. 1.1 and (3.5.3) (elementary details are left to the reader) that the
mapping g|V’ = (f|A)|V’ is in 9, i.e., that (3.5.6) is true. ¢

4. Confluent and related mappings — positive re-
sults

The following assertion is known, see [2, Th. I, p. 213] and [5, Th.
3.7, p. 255].
Theorem 4.1. The classes of confluent mappings and of semi-confluent
ones have CRP.
Proposition 4.2. The classes of feebly confluent, of feebly semi-con-
fluent, of joining, and of atriodic mappings have CRP.
Proof. Denote by 9 the class of either feebly confluent or feebly semi-
confluent or of joining mappings. Let a mapping f : X — Y be in 9.
Take a set B C Y, the union A C X of some components of f~(B),



140 J. J. Charatonik

and let g = fl|[A: A — f(A). For a subcontinuum Q of f(A) CY let
C, and Cy be components of g~1(Q). Since
(4.2.1) 9@ =4AnfTHQ),

for each i € {1,2} the component C; lies in a component C; of f~1(Q).
It follows from C; C A that

(422) C;,=AnC; CAﬂCZ{,
and from Q C f(A) C B we infer that
(4.2.3) Cc!c f71(B).

According to the assumptions regarding A, conditions (4.2.2) and (4.2.3)
give C/ C A, whence C! C ¢~3(Q) by (4.2.1). Thus C] = C; and
g(C;) = f(C;) for each 1 € {1,2}. Consequently, g € 9, as needed.

If 901 is the class of atriodic mappings, the proof is quite similar
to the above one. Indeed, besides some two components C; and Cs of
g Q) satisfying g(C1) U g(Cs) = @, we have to consider an arbitrary
component C of g~1(Q) and to show that either g(C) = Q, or g(C) C
C g(C;) for some ¢ € {1,2}. The details are left to the reader. O

Recall that the class of local homeomorphisms coincides with the
class Loc($), where § stands for the class of homeomorphisms (see [6,
Th. 4.23, p. 18]) and that a similar coincidence holds for the class of
locally confluent mappings, [6, Th. 4.24, p. 19]. Thus as an immediate
consequence of Prop. 3.3 and Ths. 3.5, 4.1 and 4.2 we have the following
result.

Corollary 4.3. The classes of: local homeomorphisms, locally mono-
tone, locally confluent, locally semi-confluent, locally feebly confluent,

locally feebly semi-confluent, locally joining and locally atriodic map-
pings have CRP.

5. Open, weakly confluent and related mappings —
negative results

In the light of Cor. 4.3 and of a result of Whyburn in [7, Th. 7.2,
p. 147] (saying that the restriction of an open mapping to an inverse
set is open) a natural question arises if the class of open mappings has
CRP. The next theorem shows that the mentioned result of Whyburn
cannot be extended to CRP, i.e., that the above question has a negative
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answer. 'To show this we recall two concepts used to characterize open
mappings between arcs.
Let a positive integer k be given, and let m € {0, 1, ... ,k}. Define
a surjection g : [0,1] — [0, 1] by the following conditions:
(a) if m is even, then gi(%) = 0, and if m is odd, then ge(F) =1;
(b) for each m, the restriction gj|[2, ™EL] . [, =] — 0,1] is
defined as linear.

Note that g; is the identity, g, is the well known tent mapping, and for
each k € N the mapping g;, is open.

Two surjective mappings f1: X1 — Y] and f5 : X5 — Y5 between
topological spaces are said to be equivalent provided that there are
homeomorphisms hx : X; — X5 and Ay : Y1 — Y5 such that foohx =
= hy o f1.

The following characterizations of open mappings between arcs
(or, equivalently, between closed intervals) and of OM-mappings be-
tween topological spaces are known, see [7, (1.3), p. 184] and [4, Cor.
3.1, p. 104, and (2.2), p. 102], respectively.

Proposition 5.1. A surjective mapping f : X — Y between arcs X
and Y is open if and only if f is equivalent to g, : [0,1] — [0, 1] for
some k € N.

Proposition 5.2. 4 mapping f : X — Y between spaces X and Y
is an OM-mapping if and only if limy, = y implies that Ls F )
intersects each component of f~1(y).

Theorem 5.3. For each open mapping f : X — Y (that is not a
homeomorphism) between arcs X and Y there exist closed subsets A C
C X and B C Y such that A is the union of some components of
f7H(B) and that the restriction flA : A — f(A) = B is neither an
OM-mapping nor an MO-mapping (thus in particular it is not open,).
Proof. According to Prop. 5.1 it is enough to show the result for X =
=Y =0,1] and for f = gi, where k > 2. To this aim for a fixed k > 2
put

B ={0} U| J{[z7=r, 55=] : n € N}.
Thus B is a closed subset of Y = [0, 1]. Define
A={0}u ([, 21N fFH(B)),

and note that A is a closed subset of X = [0, 1]. To see that gi|4: A —

— gr(A) = B is not an OM-mapping apply Prop. 5.2 with y,, = S
Then y = limy,, = 0 and (gx|A) ' (y,) is a singleton {z,} in [£, 2] such
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that Ls{zn} = {limz,} = {#}. On the other hand, (gx|4)™*(y) =
= {0, #} and the singleton {0} is a component of (g1]A)~1(y) that is
disjoint with Ls (gx|4) " (yn). So, gi|A is not an OM-mapping. It is also
neither an MO-mapping nor even a locally MO-mapping since all MO-
mappings are locally MO-mappings, which in turn are OM-mappings,
see [4, Cor. 3.2, p. 104]. The proof is complete. ¢

The previous theorem leads to the following corollary.
Corollary 5.4. The classes of open mappings, OM-mappings, MO-
mappings and locally MO-mappings do not have CRP.

Note that we need not to consider the class of locally OM-mappings
because this class coincide with the class of OM-mappings, [6, (4.29),
p. 20].

Consider now the class of weakly confluent mappings. We start
with the following example, where S! denotes the unit circle in the
complex plane.

Example 5.5. There exist a weakly confluent mapping f : [0,1] — S*,
an arc B C S! and the union A of some components of f~1(B) such
that the restriction f|A: A — f(A) = B is not pseudo-confluent (thus
not weakly confluent).

Proof. Define f(z) = exp(4inz) for z € [0,1]. Let B = {z € S* :
. argz € [—m/4,7/4]}. Then f~1(B) has three components: [0, 73],
[2, 11] and [13,1]. Taking A = [0, =] U [}, 1] we see that f(A) = B
and no component of (f|A)~!(B) is mapped onto the whole B under
flA. 0

Note however, that if C = [, %], then f|C: C — f(C) = B is
a homeomorphism, thus (in particular) it is weakly confluent. In the
light of the above, the following questions seem to be interesting.
Questions 5.6. Let a mapping f : X — Y between compact spaces
be weakly confluent, and let a subset B C Y be given. Does there exist
a component C of f~(B) such that f(C) = B and f|C : C — B is
weakly confluent? If not, is the implication true under an additional
assumption that the range space Y is locally connected?

As a consequence of Ex. 5.5 we get the following.

Corollary 5.7. The classes of weakly confluent and of pseudo-confluent
mappings do not have CRP.



Component restriction property 143

References

[1] ARHANGEL’SKII, A. V.: Open and near open mappings. Connections between
spaces, Trudy Moskov. Mat. Obs¢. 15 (1966), 181-223 (Russian; English trans-
lation in: Trans. Moscow Math. Soc. 15 (1966), 204-250).

[2] CHARATONIK, J. J.: Confluent mappings and unicoherence of continua, Fund.
Math. 56 (1964), 213-220.

[3] CHARATONIK, J. J., CHARATONIK, W. J., RICCERI, B.: Inductively open
mappings and spaces with open components, Glas. Mat. Ser. II] 24 (44) (1989),
103-114.

[4] LELEK, A., READ, D. R.: Compositions of confluent mappings and some other
classes of functions, Collog. Math. 29 (1974), 101-112.

[5] MACKOWIAK, T'.: Semi-confluent mappings and their invariants, Fund. Math.
79 (1973), 251-264.

[6] MACKOWIAK, T.: Continuous mappings on continua, Dissertationes Math.
(Rozprowy Mat.) 158 (1979), 1-95.

[7] WHYBURN, G. T.. Analytic topology, Amer. Math. Soc. Collog. Publ. 28,
Providence, 1942, reprinted with corrections 1971.






