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1. Introduction

Liouville’s Theorem on conformal mappings in space is usually
~ proved in textbooks under the assumption, made tacitly or explicitly,
that the mapping considered is of class C®. In 1958 however, Ph. Hart-
man gave a proof which is valid for mappings of class C! (cf. [5]).
Another such proof which does not rely on any differentiability assump-
tions at all, has since been given by Yuri G. ReSetnyak [7].

The problem of generalizing Liouville’s Theorem to spaces where
the underlying quadratic form is no longer assumed positive definite
has also been dealt with by several authors. Thus Johannes Haantjes in
1937 (cf. [3]) considered a pseudo-Euclidean space E with non-definite
form and what he called conformal representations of the space F on
itself. But in fact the mappings he arrived at are mappings of E together
with certain ideal elements which he did not bother to determine since
he could handle his mappings by means of analytic formulae. In his
monograph [2] Walter Benz considers E together with a non-degenerate
form of arbitrary signature. He defines a group of generalized spherical
transformations acting on E together with certain well-specified ideal
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elements depending on the form, and then proves in complete analogy
to Liouville’s classical Theorem that mappings conformal with respect
to the underlying form and defined in a connected region of E are the
parts of a generalized spherical transformation restricted to that region.
The assumptions in Benz’s work are the same as in the classical proofs,
namely, that the mapping is of class C*®. The assumptions required in
[3] seem weaker at first sight but we shall see in Section 4 that this is
only apparently so.

It is the purpose of this note to show that the arguments of Ph.
Hartman hold almost without change also in the more general situation
of Benz-Liouville. An exception has to be made only for signatures
such as (61 =1,69=—-1,..,eg= -1 or (61 =1,...,64-1 =l,eg = —1)
where either the value €; = 1 or the value ¢4 = —1 occurs only once.
For these exceptional signatures it remains an open question whether
the hypothesis that the considered mapping should be of class C*® can
be relaxed. We shall thus prove
Theorem 1.1. (Benz—Liouville) Let G be an open and connected region
of R, where d > 3, and let

(1) (u,u?, . u?) — (Wl . u?), . vt . ud))

be a mapping of class C* of G into R® whose Jacobian matriz satisfies
identically in G the relations

d
k, k 2
(2) Z U Vi €k = Ei€7 Oij
k=1

where v = y(u*,u?,...,u?) > 0 and e = £1. If the &; do not belong to
one of the exceptional signatures then there exists a spherical transfor-
mation of signature (€1,€3,...,€4) which in the region G coincides with
the given mapping.

The proof will follow very closely the ideas of Ph. Hartman [5].
But the arguments given in [5] are often only rough indications where
the reader has to provide much of the details by himself. Yet, quod licet
Iovi non licet bovi, and therefore it seemed appropriate to be a little
more explicit here.

The paper is organized as follows. Section 2 contains the defi-
nitions required in the Benz—Liouville Theorem. Sections 3—7 contain
auxiliary results from tensor algebra, tensor analysis, and functional
analysis. Section 8 contains the proof of the theorem.
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2. Generalized spherical geometry

We consider an affine space of dimension d > 3 over the real
numbers. In the underlying vector space V let there be given a non-
degenerate symmetric bilinear form (u,v). We shall say u and v are
orthogonal to each other and write ulwv in this case when (u,v) = 0.
We are interested in the group S of all mappings leaving invariant the
relation 1. These mappings will be called pseudo-Euclidean similarities.
Let v be one of them. As the vectors orthogonal to a fixed non-zero
vector form a hyperplane it is easy to see that v transforms hyperplanes
into hyperplanes. From this it follows that + preserves lines (cf. [2],
p. 135). As the field of real numbers does not admit any non-trivial
automorphisms such a mapping must have the form v : z — 27 + b
where ¢ is a linear transformation of the underlying vector space and
b a fixed vector. The condition that the relation L remains invariant
implies that (z,y) = 0 is equivalent with (z7,y?) = 0.

From this equivalence we may conclude that there exists a con-
stant numerical factor p # 0 such that (z7,y%) = p(z,y) for all z,y
from V. We may set p = Ae where A > 0 and €2 = 1.

According to Sylvester’s Theorem we can choose a basis v1,vs,...,V4
in V such that (v, v;) = €;8;;. Let us set vf = ajv; + vy + ... + advg.
Then A = (o) is the matrix of the linear transformation o with respect
to the basis vy, v9, ..., vq. It follows that

>\E<’U7;,’Uj> = (vigtv;'f> =

1 2 d 1 2 d
= {azv1 + a3 v + ... + a§ Vg, UL+ QG L+ afug) =

= oo (v1, v1) + e (vg, va) + .. + afaf (vg, va) =

1.1 2.2 d_ d
= oo e+ opages + ..+ Qe

The rows of the matrix of o thus satisfy the conditions
(R) ozilagl-el + oz;?oz?ag + .4+ agag-led = Aeg;d;;

where A > 0 and €2 = 1. Conversely, if the matrix A = (af) satis-
fies relations (R) then it belongs to a linear transformation such that
(z7,y%) = Ae(z,y). Let E denote the diagonal matrix having the ele-
ments €1, €3, ..., €4 along the main diagonal and zeroes everywhere else.
The relations (R) are equivalent to the matrix equation AEAT = uE

where 1 = Ae. The inverse matrix satisfles A TE(A™)T = p~1E.
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Since (AT = (AT)"! and E~! = E it follows that ATEA = puE
and therefore the matrix equations AEAT = uF and AT EA = uF are
equivalent to each other. The last equation may be expressed as a set
of relations satisfied by the columns

(C) ' O!}ijlel + O{EOA%EQ —+ ...+ ozﬁlazled, = /\seiéij

Our findings may be summed up as

Lemma 2.1. For an arbitrary d x d matriz A the following assertions
are equivalent:

i) A belongs to an affine transformation of the group S,
i) relations (R) hold, i.e. AEAT = uE for i # 0,
iii) relations (C) hold, i.e. ATEA = uE for p#0. O

The hyperplanes of the affine space can be represented by an equa-
tion of the form H(u,a) : (u,x) = a. Here naturally u # 0, for other-
wise H (u, a)) would be the entire space or empty. H (u, @) and H(u1, o)
represent the same hyperplane if and only if for a certain 4 # 0 we have
uy = fu and oy = Ba. Let v: 2z — z + b be an affine transformation
which leaves L invariant. If z € H(u, «), it follows 274+b € H(u, Aea+
+ (u?,0)). Therefore H(u?, Aea + (u?, b)) represents the image of the
hyperplane H(u, ).

A hyperplane H(u, ) is called isotropic when (u, u) = 0. It follows
that isotropic hyperplanes are mapped by « to isotropic ones and non-
isotropic hyperplanes are mapped to non-isotropic ones. Let A denote
the set of isotropic hyperplanes. The group S thus operates on the
set V U A. Moreover, the group S considered as a permutation group
on V U A admits of a unique transitive extension. That means the
following:

Theorem 2.1. Let the symbol co denote an element not belonging to
VUA. Then there is a unique permutation group I' operating transitively
on the set V.U AU {oco} such that the stabilizer I'as of the element oo
cotncides with the group S of pseudo-Euclidean similarities.

This is proved in [2]. The group I is called the group of spherical
transformations of signature s = (1, €2, ..., £4). The set VUAU{oco} may
be called the pseudo-conformal space M, (s) of the given signature in
analogy with the ordinary conformal space (or Mébius space) obtained
from V by adjoining only one point at infinity.
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3. Tensor algebra

Let V be a vector space of dimension d over a field K of char-
acteristic # 2. Let V* = Hom(V, K) denote the dual vector space of
all linear forms on V. A p times contravariant and q times covariant
tensor over V is an element ¢ of the tensor product

P q
(®v)®(®v)
The pair of numbers (p, q) is called the type of the tensor t.

In what follows we shall frequently use Einstein’s summation con-
vention: when in a term of a formula a letter occurs as an upper as well
as a lower index, then summation is implied over this index from 1 to
d=dimV.

Let C'™ be a non-singular matrix. The denotation is meant to
indicate that we refer to the components of a tensor of type (2,0). Such
a tensor corresponds to a nonsingular linear transformation o : V: — V
according to the rule o(v™) = C™v; where v™ and v; are base vectors
from a pair of dual bases of V* and V respectively.

Theorem 3.1. When det C¥ £ 0, then the tensor equations

v, 1 ml 1 1 mil lm
C™M i, = ug”, Vi = Vpgy UL = —U

for i,k l,m =1,2,...,d can only be solved in the trivial way such that
vﬁk =0 for alli,k,I.
Proof. We consider the tensor w™* = C™¢l C*. We have w™s =

= MOk = C'™myst = w and moreover W™ = —w!™s because
of u;c”l = ——u}‘cm‘ Now it follows that w™® = w*™ = —w™ and on
the other hand w™* = —w'™ = —ws™ = ™t = ™  Thus we
get w™* = —w™ which is only possible if all the components w™*

vanish. Because of det C*7 # 0 this implies that all the components u};’“l
and vt vanish too. ¢

Corollary 3.1. When det C** #£ 0, the homogeneous equations
CHy 4- 'yl = 0, vk, = vl

admit only the trivial solution vfk =0 foralli,j,k=1,2,...,d.
Proof. We set C“vﬁ; = u}'cm. The given equations imply that u/[{” =

__ ml

= —u;" and hence the assertion follows from Th. 3.1. ¢
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4. Metric tensors

We consider pseudo metrics given by a tensor g;; according to the
formula
ds* = Gij (u)duiduj )
With respect to the tensor g;; we make the assumptions that it is sym-
metric and has nowhere vanishing determinant det(g;;) 7 0. We do not
require the assumption that the quadratic form gijdu’du’ is positive
definite.

By a transformation v = v(u) of the coordinates we get du’ =
= (8u’/BvF)dv® and thus
i Oud
ds® = gijg%%n—;dvkdvm = hpmdvEdv™.
This means that the g;; are transformed into the hpm, according to the
rule
i Oud
him (V) = gij (u)%gvim-

The following is an adaptation of Th. IT of P. Hartman [5] to our

purposes. The only change we made, is that while the original theorem
deals with Riemannian metrics here we also consider the more general
pseudo metrics as explained above.
Theorem 4.1. Let u = (ul,...,u?) and v = (v',...,v%). Let (gix(u)),
(hix(v)) be non-singular symmetric matrices of class C defined in the
neighbourhood of u = 0 and v = 0 respectively. Let v =v(u) be a map-
ping of class C defined in the neighbourhood of u = 0 which satisfies
v(0) = 0 and transforms the pseudo metric

ds* = gikduiduk‘ into ds® = hikdvidvk.

Then v = v(u) is necessarily of class C1+7.
Proof. From the transformation rule for pseudo metric tensors we have

out Ou?
P (U) = Gijg (U)W ——6’Um .

By passing to the inverse matrices A*™ and g*/ we obtain
(P) g (u)vf (u)v]*(u) — ¥ (v) = 0

where v® vF(u)/0ut and vt = Ov™(u) /Ou?. The functions of

= 0
(u,v,v%,...,v3) on the left-hand side in the above system of Ld(d +
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+ 1) partial differential equations are by hypothesis of class C? in their
d+ d+ d? arguments.

By formal differentiation with respect to w” for v = 1,...,d we
obtain a linear system of equations for the partial derivatives of second
order of v. It has the form

(g7 (W)o)vi, + (97 (Wvf)of, = ...
where the right-hand side is irrelevant for our purposes, since we are
only interested in the determinant of the system. Setting C*™ = g% vy
because of g¥ = g7* we obtain further C7* = ¢g"»¥ and thus the equa-
tions can also be written in the form:

C™f, + CTF, =

=
for k < m, and

2Ci"’vf’“y =
for Kk = m. Now from Cor. it follows immediately that the determinant
of this system of equations does not vanish. Thus the assumptions
of Th. I of [5] are satisfied for the system (P) and this implies the
assertion. ¢

Note that in applications of Th. 4.1 the hypothesis v(0) = 0 is
not essential. For if v(0) = ¢ # 0 and the remaining hypotheses are
satisfled mutatis mutandis we may set v(u) = v(u) — ¢ and hi(7) =
= hix(v). Then du®/0T* = du?/Ov* and all the hypotheses are satisfied
for v(u).

With the aid of Th. 4.1 we are also in a better position to analyze
the requirements in [3]. The mapping considered there has to be in
class C! so that it is possible to define conformality. But in addition it
is assumed in [3] that the mapping transforms a metric tensor g;r with
vanishing curvature into another such tensor h;,. These tensors must
be twice differentiable to express curvature. Therefore by Th. 4.1 the
mapping itself also must be differentiable of a higher order.

5. Strong L?-derivatives

The proof of Ph. Hartman is based on a certain generalization
of the ordinary notion of a partial derivative, the so-called strong L?*-
derivatives. For convenience of the reader we quote the basic definitions
required to introduce this notion from the book [1] of Shmuel Agmon.




78 A. Schleiermacher

We also quote from this book a few facts on mollifiers. These are used
to derive some auxiliary results to be used in later sections.

Let 2 be an open set in the n-dimensional Fuclidean space E,.
The functions that are quadratically integrable on €2, i.e. the functions
f, for which [, f*dz exists form the Hilbert space L*(£2) with the scalar
product

o) = [ fato =3 [ (F+9rio- [ fa— [ gas).

1
The L2-norm of a function f € L?(Q) is (fQ fgda:) 2 and is denoted by
| fll2(q). The scalar product (f, g) is continuous in the following sense:
if fro — fin L*(Q) (Le. if ||fo — fllz2() — 0) and if g € L*(Q) then
(frn,g9) — {f,g9) asn — oo. In particular, if 2 is bounded, it follows that
Jo fn — Jq f, because we may take for g the characteristic function xq
of Q.

As usual let C™(£2) denote the set of functions on ) that are at
least m-times continuously differentiable. Further let C*°(Q) denote the
intersection (,._, C™(Q) and C§°(Q) the subset of C*°(Q) consisting
of all functions of compact support contained in £2. The functions from
C§°(9) are called test functions. For z € E,, and composed exponents
a = (o, 09, ...,a,) we use as shorthand z® = z$'...z% and similarly
for differential operators

gt 9> o
0x1%t Oz ™? 0z, .
We shall also use (i), (1,7) etc. as shorthand for the vectors o having
a; =1 or a; = 1,5 = 1 respectively, and all the other components
equal to zero.
Definition 5.1. For u € C™(Q) set [[ullm,0 = [fo Xjai<m | D>u|2dz)=
where |a| = a1 + ... + an.

Note that since D% = w it follows that ||ul|oq coincides with the
L?-norm.

Definition 5.2. Let C™*(2) denote the subset of C"™ () consisting of
all functions u such that ||ullm,0 < oo.

Let H,,(§2) denote the completion of C™* () with respect to the
norm || # ||, 0.

Definition 5.3. A function u € L?(2) has strong L?-derivatives of order
up to m, if in C™*(Q) there exists a sequence {uy} such that {D%ug}
is a Cauchy-sequence in L?(Q) for all |o| < m and uj — u with respect

D* = D¢ D2, D =
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to the norm in L2(Q).

Suppose u has strong L2-derivatives of order up to m and for
|| < m let u® denote the function such that D%uy, — u®. If ¢ € C(Q)
is an arbitrary test function then integrating by parts and using the fact
that ¢ = 0 in a neighbourhood of 9Q we get the relation

/¢Daukdaz=(—1)|°‘|/ukD°‘q§d:c.
Q Q

Here it is possible to pass to the limit as K — oo under the intgral
sign so that

/ pude = (—1)lel / uD®¢dz, la] < m.
Q Q

This motivates the following definition:

Definition 5.4. A locally integrable function u on  is said to have
the weak derivative u® if u®* is locally integrable on ) and if for all test
functions ¢ we have

/qbuo‘d:l:— )lO"/uDa(bdx.

As an immediate consequence from these definitions we get: If
u has strong L2-derivatives of order up to m then u also has weak
derivatives of order up to m. Weak derivatives are unique in the sense
of L?-functions, i.e. if u® and v® are weak derivatives of the function
u then we have almost everywhere u® = v*. For from the definition
it follows that [, ¢(u® — v*) = 0 for all test functions ¢. As the set
C§° () of test functions for each compact subset C of  is dense in
LY(C) it follows that u® — v® = 0 almost everywhere.

From the uniqueness of weak derivatives we get as an immediate
consequence the uniqueness of strong derivatives in the same sense, i.e.
up to equivalence in L?(£2). This justifies the following denotation: if u
has strong L?-derivatives, and if up € C™ (), up — u in L*(Q), and
D*yy, — u® in L%(Q) we set D% = u®.

The operators D for strong L?-derivatives of first order commute
in a similar way as for ordinary derivatives of C%-functions. Consider
e.g. the vectors (i), (5), and (4,7) so that D@ = §/dz*, DY) = §/0z7,
and D7) = 92 /8x'0z7 if these operators are used in the ordinary
sense. Then if 4 has strong L?-derivatives D®u, D) etc. and these in
turn have strong L2-derivatives D@ (D@ w), DO (D®y) ete. it follows
that these latter are weak derivatives, for
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/ DDy pdz = —/ DDyuDW pdy =
Q 19}

= / uDY(DW )dz = / uD®D pde.
Q Q

Since weak derivatives are unique we are justified writing D) (D)) =
= DIy = DU (DEy).

We shall need some simple facts about strong L?-derivatives that
can be proved using mollifiers. We therefore quote some definitions and
basic results about mollifiers from Agmon [1].

By j(z) we mean a function from C*(FE,) with the properties
j(z) > 0,75(x) =0if |z| > 1, and

/Enj(:v)daz: 3

We may for instance take the function

j(sc):cexp(— ! ) (el < 1), j(z)=0,(lz > 1)

1— |z
where c is chosen so that the integral takes the value 1. Let j.(z) =
= (1/€™)j(z/€). Note that j.(x) vanishes for |z| > € and that

/ ju(z)dz = 1.
E,
Definition 5.5. The mollifier J. is defined by

Jeu(z) = /Q Je(z — y)uy)dy

for arbitrary functions which are locally integrable in €.

It is easy to see that J.u(x) is defined for all x having distance
at least € from the boundary 9. If u is also integrable on bounded
open subsets of 2 we make the assumption u(z) = 0 outside 2. Then
Jeu(z) is defined everywhere in 2. The properties of mollifiers needed
here are summed up in the following theorems the proofs of which may
be found in Agmon [1], pp. 5-6.

Theorem 5.1. If u is integrable on bounded open subsets of Q) then
Jeu(z) € C*(Q).

Theorem 5.2. If u € L?>(Q) it follows that Jou — u in L%(8)) as
e — 0. If u is continuous at x then Jou(z) — u(z). The convergence is
uniform for any compact subset of continuity points.

Theorem 5.3. Ifu € L*(2), then || Jeullon < |lulloa-
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Theorem 5.4. Denote by W, (Q) the set of all functions in L2()
having weak derivatives in L*(Q) of order up to m. If u € W (Q) and
la| < m then for z € Q we have (D*Jou)(z) = (J.D%u)(z) provided
that x has distance at least € from OX).
Let us assume g € L?(2) has strong L2-derivatives of first order.
If the i-th coordinate z* is varied while the remaining coordinates are
fixed we get a one-dimensional cross-section of §) Whlch we denote by g
where ¢ is the point with the fixed coordinates z!,..., 21 21 :1:”.
As a consequence of the previous theorems we obtain:
Lemma 5.1. If g € L*() is continuous and has strong L2-derivatives
of first order then for almost all points q the function g is absolutely
continuous with respect to x* on each closed mterval contained in ).
Moreover, the strong L?-derivative with respect to z* coincides a.e. in
) with the ordinary derivative dg/0z".
Proof. (Compare the proof of Lemma 4.4.5, p. 170 in Nikolskij, [6]).
Let us first consider the one-dimensional case. It will suffice to assume
= (a,b). Let ¢; — 0 and g; = J.,g. Then

9;(z) = g;(z0) / 49 —=dt.

We have g;(z) — g(z) for all z € (a,b) by Th. 5.2. If DM g denotes
the L2-derivative of g then by Th. 5.4 we also have dg;/dx — DWg in
L*(I) for any closed interval I C (a,b) since dg;/dz = J.,(DMg) on I
for almost all j. Hence it follows that

g(w)=9(wo)+/ DWgat.
zo

It follows from the fundamental theorem of differential and integral
calculus (cf. [9], p. 342) that g is absolutely continuous on each closed
interval contained in (a,b) and D¢ coincides a.e. with the ordinary
derivative dg/dx.

In the general case let I be an arbitrary n-dimensional open in-
terval contained in . Factorize it with respect to the first variable so
that I = (a,b) x I1. Ifup, — g, DMuy, — DWgin L2(Q) then a fortiori
up — g, DMy — DWg in L2(I). By Fubini’s Theorem it follows
that there exists a subsequence g, = h,, such that for almost all points
(z?,...,2™) € I, we have

hy, — g in L*(a, b)
and at the same time
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DWh, - DMg  in L%(a,b).

Thus for a certain (n — 1)-dimensional set M of measure zero the fol-
lowing is true: if ¢ = (2?,...,2™) ¢ M then g is absolutely continuous
with respect to z' in each closed interval contained in I; and by what
has been said above dg/0z! exists a.e.” in I, and coincides a.e. with
D) g. This proves the assertions with respect to the first variable. For
the remaining variables they follow by analogy. ¢

Lemma 5.2. Ifg € L*(Q) is continuous and has strong L?-derivatives
of first order which are also continuous then g belongs to CY(Q) and
the L?-derivatives are partial derivatives in the usual sense.

Proof. Write g(z) = g(z',y) where y=(z?,...,z"). Let I = (zf,z')x
x I; denote an n-dimensional interval contained in Q. Then the integral

CEl
F(z',y) =9(ifré,y)+/1 DWg(t, y)dt

exists for all y € I;. We know from the previous lemma that it is equal
to g(z!,y) = g(z) for almost all y. But since DM g(t,y) is continuous it
is easy to see that F(x' y) is continuous in y. Since for each y we can
find yo arbitrarily close to y such that F(z!,yo) = g(z',yo) it follows
that F(zl,y) = g(z',y) for all y € I;. Thus we have proved that

IEl
oa9) = gabn) + [ Dot u)de
Zo
for all y € I;. This implies that DMg = dg/dx'. For the remaining
variables the assertion follows by analogy. ¢
Consider a bounded open set T' and the set S of all points that
have distance at most p from T'. Here p is an arbitrarily chosen positive
constant. For a function g(z?,...,2™) denote by APg the difference
g(zt, ..., ot~ 2t + hy 2t L 3) — g(zt L 2™).
Lemma 5.3. Let g be a function defined on S having the proper-
ties: 1) g € L*(S), i) the partial derivatives 8g/0z* = g, emist almost
everywhere in T and are quadratically integrable, i.e. gm: € L2*(T),
iif) +Alg — ge in L*(T). Under these hypotheses the functions gq: =
= 0g/0z" are strong L*-derivatives of g|T, where Tp is any open set
contained in T and having positive distance from 07T
Proof. Let h denote the vector having h for its i-th component and all

other components zero. We then have J. (APvu)(z) = Al (Jou)(z) if and
only if,
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/ je(x + b — y)u(y)dy = / Je(r — y)uly + h)dy.
Q Q

Using the substitution y — h = z we see that
/Qje(x + h —y)u(y)dy = /Q Jelz — 2)ulz + h)dz
1

where 1 = {z — h | z € Q}. Since j.(z — 2) vanishes for |z — z| > € it
follows that

/ ie(@ — 2)u(z + B)dz /je(a:—z) (2 + B)dz,
Q1 Q

provided that € and 3 both contain the open sphere with radius e
around z; this is certainly the case if z has distance at least e + h from
0. Thus if € and h are small enough we have J (Akg)(z) = AP(J.g9)(z)

and hence obviously also

(1) e ) (2) = T A (Jeg) )

for all x € Tp. From this relation we may pass to the limit on both
sides as h — 0 and we obtain

(€2 (752 ) @) = =)o),

For if S(z,€) denotes the open sphere with center  and radius € then
Je(£Alg)(z) is the scalar product of je(z—y) and £ APg(y) as functions
of y in the Hilbert space L?*(S(z,€)). As +Alg tends to dg/dz’ in
L*(S(z,€)), the left-hand side in (cl1) actually tends to the left-hand
side in (c2).

As before let | - [lo x denote the L?norm on X. Let 7 be an
arbitrary positive number. We choose a sequence ¢, — 0 and set g, =
= Je,g. We choose h small enough so that [|[£Alg — g.:for < 41 and
further N = N(h) such that [|[$Alg, — +ALgllor < infor v > N(h).
It follows that

0z 0.Ts
8g, 1 1 1 1
2 — —Alg, |l +||FAkg, — Al =Alg = gy
1 dz* h 0,Ts h h 0,Ts h 0,To

The rightmost and middle terms in the right-hand side of this inequality
are easily seen to be < n/3 if v > N(h). For the leftmost term we get
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% Larg| = |a (22 -Lar)| <
ozt h 0.T oz* h 0.T
< Jeu 89 - '];Afg = 89 - l
ox* h 0T ozt h 0T
by Th. 5.3 and the commuting relations (c1) and (c2). It follows that
99,
x 0,7Tq

if v > N(h). Thus the functions dg, /0z* converge in L*(Tp) to g« as
v — 00. Moreover we have g, € C°(T") C CH(T). As the closure of Ty
is contained in T it follows that g, |7, € C1*(Tp) and thus the lemma is
proven.

In the next two lemmas we shall consider composition of C!-
functions with functions having strong L?-derivatives and show that
the composed functions still have strong L?-derivatives.

Lemma 5.4. Let A and B be regions of R™. Let f € L?(A) and assume
that f has strong L?-derivatives of first order. Let y* = y*(z!,...,z™)
be the components of an invertible C*-mapping of A onto B such that
all the components Oy*/0x? of the Jacobian matriz are bounded on A

and that there exists d > 0 such that |8(y',...,y™)/0(z! e ™| > d
on A. Then the transformed function f deﬁned by flyt(zt, ..., z™),
oyt(zh, ., z™) = flzt, ..., z™) belongs to L?(B) and has strong L*-

derivatives with respect to yl, ..., y™ which may be computed by the chain
rule

DWF = ZD(J (y))0z /oy,

7j=1

Proof. We have to show first that f € L?(B). According to the sub-
stitution rule

/f dy—/ Flo@)lds = | f@P1de

where J = d(y!,...,y™)/0(z z™). Since all the components of the
Jacobian matrix are bounded 1‘5 follows that the Jacobian J is bounded
too. Since J is also continuous it follows that the integral [, f(z)?|J|dz
exists. Thus f € L?(B).

Let now f, € C'*(4) be a sequence of functions such that f, — f
and DY f, — DU in L*(A) for j = 1,..,n as v — oco. Let f,
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denote the transformed functions f,(y(z)) = f,(z). They belong to
C' and their derivatives can be computed by the chain rule D® f, =
= 2?21 DU f,(z(y))dz? /0y*. Since f, € C1*(A) it follows that f, €
€ L?(A) and in the same way as for f we see that f, € L?(B). Using
again the substitution rule it also follows from [, (f, — f)*dz — 0 that
[5(fu = F)?dy — 0, ie. f, — fin L*(B) as v — co.

In order to show that f, € C1*(B) we have to consider the inte-

grals
. / (D(i)fz/)Qd
B

Using again the substitution rule we see that

(4) = (9 7 .
/B<D 7y = /(213 f.(@) /ayu))) 17|d

The integrand on the right-hand side is a sum of terms of the form

DY) f,04 [0y (y(z)) D™ £, 02" /0y (y ()| |.
From the hypotheses of the lemma we can conclude that dz7/dy* and
0z" /0y* are bounded and hence all the integrals over these terms exist.
This implies that f, € C™(B).
In a similar way we see that [ B(D(j) f)?dz exists so that DU f
€ L*(B). We still have to show that

DWFf, — DO F = ZD(j)faa:j/ay’;
j=1
in L?(B) as v — co. We obtain

/(ZD(”J‘ (y))0x? /0y* ~ ZD(j)f(m(y))awj/ayi) dy =

/ (ZD(J)f x)agjj/ay ZD(y)f<$ 8:67/5@/ (y(z ))) || dz.

The last integrand consists of a sum of terms of the four possible types
D@ hy DW hyda? |0y (y(z)) 0" By’ (y ()| |

where (l) hl = f,,, hg = f,/, (11) hl = f,,, ’hg = f, (111) hl = f, hg =
= f,, and (iv) hy = f, ha = f. The integrals over each such term exist
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and for the terms of type (1)—(iii) they tend to the integrals over the
corresponding term of type (iv) as v — oo. Moreover, the integrals
over the mixed terms (ii) and (iii) occur with a minus sign and there
are always two mixed terms (ii) or (iii) corresponding to one of type
(iv) while there is only one of type (i). Therefore the entire integral
tends to zero.

Here we have used the argument that if a, — a, b, — b in L?(4)
and ¢ is continuous and bounded then it follows that [, |a,b, —abldz—0
and hence fA la,b,c — abeldz — 0 as v — oo, §

Lemma 5.5. Let f be defined on a region B C R™ and in class C*. Let
v (zt,...2™), 7 = 1,...,m denote the components of a continuous map-
ping of a region A of R™ into B, and let I denote a bounded open subset
of A whose closure is also contained in A. Assume that the functions
yl,...,y™ have strong L?-derivatives of first order. Then the function

( ) = fly(z))|r belongs to L?*(T') and has strong L2-derivatives in
L?(T) which may be computed by the chain rule

DYg = "(8f /0y’ (y(z)) DMy’
j=1
Proof. Let us first show that g € L?(I"). Since g is continuous it follows
that it is bounded on the closure of ' which is compact. Therefore
Jp g?dz < M?X(T) where |g(z)] < M on T.

Let now g} € C**(A) and yj, — ¢/, D@yl — D@yd in L2(A).
Then a fortiori yJ — ¢/ and D@yl — DO)yd in LQ(I‘) and yl|r €
€ ¢ (I).

Denote by ¢, the function g,(z) = f(y.(z)). Note that g, € C*
and that D®g, = Z?:l DY fDWyd - Also g, and D®g, are continu-
ous and hence bounded on I and therefore g, € C*(T). Let us verify
that D@ g(z) = Doy DY f(y(z))DMyI e L*(T"). Thus consider

2

/(ZD(J fly(z)) (i)yj> dx.

The integrand consists of a sum of terms of the form

DY f(y(x)) Dy D® f(y(2)) DWy",
Now DU f(y(z)) and D® f(y(z)) are continuous in A, hence bounded
in I' and therefore the integrals over all these terms exist since
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DGqyi D@k e L2(A).
Finally, we have to show that D(* g, — D(®g and g, — ¢ in L?(")

as ¥ — 00. Thus consider
2

/ ZD(J)f 2)) DDyl ZD(J)f NDEyI(2) | dz.

Again the integrand consists of a sum of terms of four types
D f(h(z)) DYR () D® f (ha(x)) DR ()

where (i) hai(z) = yu(2), hao(z) = yu(z), (i) hi(z) = yo(2), ha(z) =
= y(z), (i) hi(z) = y(z), hao(z) = w(z), and (iv) hi(z) = y(=z),
ho(x) = y(x). But here the situation is not as simple as in Lemma 5.4.

Let ¢, — 0 as v — oo and set 4% = J. (7). By Ths. 5.1, 5.2, and
5.4 these functions have all the properties required of the functions y7
namely, 3 — ¢, DYyl — DUyl in LX(T), g € C**(I'), and finally
f(7,) € C*(I'). Therefore we may assume that y) = 4. But then
y? (x) converges to y?(z) and this convergence is uniform on I. The
integral over a term of type (iv) is

/F D(j)f(y(fﬁ))D(i)yj (x)D(k)f(y(x))D(i)yk(x)dx'

This integral exists because of the continuity of functions D@ f(y()),
D) £(y(x)) in A and since DWy? (z), DMy*(z) e L*(T). The integrals
over the corresponding terms of the other types exist for similar rea-
sons, and because of the uniform pointwise convergence of the functions
y) towards 17 it follows that they tend towards the integral over the
corresponding term of type (iv). Hence the entire integral exists and it
tends to zero as v — oo.

That g, = f(y,) — g in L*(T") is also an easy consequence of the
uniform pointwise convergence of v, to y and thus we are finished. ¢

6. A.e. constant functions

We shall need the following criterion for a function of two variables
to be almost everywhere (briefly a.e.) constant.
Theorem 6.1. Let y* =yt (z!, 22),9y? = y*(zt, 2%) scalar functions of
class C' in a connected and open domain B of the (z',z2)-plane with
nowhere vanishing Jacobian dy'/0z10y?/0x? — Oyt /0x?dy? [0z # 0.
Let further oz, z?) denote a function from L?(B) and assume that
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/ a(z',2?)dy (@', o) = / ala", 2%)dy (2}, 22) = 0
K K

for all piecewise smooth Jordan curves K, for which the above integrals
exist. Then a/(:ﬁl,:cg) 18 constant up to a set of measure zero.

Proof. (This is an adaptation of the proof of Th. 2 in Ph. Hartman
- [4], p. 328- 3‘79) Let (x3,23) denote an arbitrary point of the domain
B and let v =y (:co,:co) yo = y* (:EO,:UO) There exists a local in-
verse zt = zl(yl,9?), 22 = 2%(y',9?) of class C' which transforms a

neighbourhood
D:Iyl'ﬁyél <d:|y2_y(:;l <d7(d>0)
of (y3,y3) into a neighbourhood of (2§, z3). The function
Al y*) = alz' (v %), 2% (v, y?))

belongs to L?(D) and it is enough to show that A(y',y?) is constant.

If J: y' = y*(t),y® = y*(t) is a smooth or piecewise smooth curve
in D, we consider its image K : ' =z (y'(¢), %)), 22 =22 (y* (), y%(¢))
and for an arbitrary total differential dg=(9g/0y')dy" + (8g/0y?*)dy>

we have
/ Bt y?)dg = / a(z", 2%)dh
K

where h(z!,z?) = g(y'(z', 2%),y%(z,2%)). In this formula the line
integral along J exists if and only if the line integral along K exists.
Let now J be a rectangle contained in D of the form qy < y' < a,
bo < y? < b and let us choose for g the function g(y*,7?) = 4!, so that
h =yl (z!,2?) and dh = dy* (z',2?). The integral

/ﬂ(yl,ﬁf)dyl
J

exists for all rectangles J considered, except perhaps, if the numbers
ao, a,bo,b lie in a certain one dimensional set of measure zero. With
these exceptions it follows from one of the two conditions of the theorem
that

/ﬁ(yl)yz)dyl =/ a(z!,z?)dy (z!,2%) = 0.
J K
Now evaluation of the left-hand side gives
[ Bt — [ bt =0
ag ap

We set
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/ﬂtbodmp /ﬂtb

Thus if ao, a,bo,b are not in the exceptional set N of measure zero
mentioned above then we have ¢(a) = 1(a). If only ag, by, b are not in
N then we can define o(a) and 9(a) also for a € N, for the integrals
f B(t,bo)dt and f B(t,b) exist, when bg & N or b Q! N respectively.
If we imagine the deﬁnltlon of ¢ and ¢ extended in this manner we
obtain absolutely continuous functions ¢(a) = 1(a) and we have almost
everywhere 3(t,bo) = dp/da,3(t,b) = dip/da. Thus B(t,by) = B(t,b)
for almost all ¢ when by,b & N. Using the second condition we obtain
in a similar way that G(ag, s) = O(a, s) for almost all 5, when ag,a & N.

Let us keep by fixed and vary b. For distinct by,by outside N
there exist one-dimensional nullsets N(b1), N(by) such that A(t, by) =
= B(t,b1) = pa, if t ¢ N(b1) and B(t,b0) = B(t,ba) = pa, if t & N(by).
Since t € N(b1) UN (by) can easily be satisfied it follows that p; = py =
= p. We form the union of the sets {(¢,b)|b &€ N,t & N(b)}, add the set
{(t,b)|b € N} to it, and obtain in this way a two-dimensional nullset N;
with the property that p = (¢, bo) = 8(t,4?), if (t,9?) & Ny. Similarly
we obtain a two-dimensional nullset N with the property that ¢ =
= Plao, s) = Blyl,s), if (y',s) & N2 If now (y',7%) € Ny U N, it
follows that ¢ = 5(007 %) = ﬁ(y ,y*) = By, bo) = p, whence p =
= q. Thus f as an element of L?(D) is equal to the constant p and the
theorem is proven. ¢
Corollary 6.1. In Th. 6.1 it suffices to assume that for each point
ys,yé of the image domain there exists a certain netghbourhood D with
the following property: for a certain one-dimensional nullset N which
may depend on D, the integrals occurring in the hypothesis vanish for all
closed curves K which correspond to the boundary of arbitrary rectangles
ao < y* < a, bo < y? < b contained in D, with the possible exception of
those for which one of the numbers ag, a,bo,b belongs to N.

We shall apply Th. 6.1 to functions « in n > 3 variables u!, u?, ...
...,u™ defined on a connected open domain U in the space of these n
variables. Let ¢ # j be fixed. If u?, uj are varied and the remaining
coordinates have fixed values u® = uf k # 1,7, we get a 2-dimensional

cross-section of the domain U which we denote by U, where ¢ is the
point with n—2 coordinates uf, k # 1, j. We are interested in a situation
where « satisfies the criterion of Th. 6.1 for almost all these cross-
sections, and consequently, is a.e. constant in U, for almost all g.
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Theorem 6.2. Let a € L?(U) and suppose that for each pair i # j
of indices there exists an (n — 2)-dimensional set N;; of measure zero
such that a restricted to Uy is constant a.e. in Uy if ¢ € Ni;. Then o
1s constant a.e. wn U.

Proof. Since every open set is the union of countably many intervals
it suffices to prove this theorem for n-dimensional intervals contained
in U. Let I be such an interval. Let i # j be a fixed pair of indices.
Consider the cross-sections I; = Uy N I belonging to ¢,j. The union of
those I, where o is not a.e. constant is a nullset. We can change a to
an arbitrary value on this set.

We will now show that the union of all the exceptional subsets of
measure zero of those I, where « is a.e. constant is also a nullset. We
change « in such a way that the changed function & is actually constant
on I, for all g¢. We have to show that the set where o # & is a nullset.
By Fubini’s Theorem

/Iozdu=/ (/Iq aduiduj> dq=/f(q)dq.

Now f(¢) = aA(l,) and from this it follows that & is integrable (i.e.
& € L(I)). Hence |a — @| € L(I) and

/l,a_@,du=/</l

and therefore the set where a(u) # a(u) is a nullset.

Note that the changed function still satisfies the hypothesis of
the theorem. We may thus assume that « is strictly constant on all
2-dimensional cross-sections of I in which only the coordinates u', u>
are varied. If n = 3 it follows from our assumptions that « is strictly
constant on the cross-sections in which only z! is varied while it is
a.e. constant on almost all complementary cross-sections. From this it
follows that « is a.e. constant. If n = 4 it follows from the hypothesis of
the theorem that « is a.e. constant on almost all of the complementary
cross-sections in which 43, u* are varied while u',u? are fixed. Since «
is strictly constant on the cross-sections in which only u*, u? are varied
this implies again that « is a.e. constant on I. We may now assume by
induction that the theorem is true for smaller dimensions and that n >
> 4. It follows that the complementary cross-sections in which u3, ..., u™
are varied while u',u? are fixed satisfy the hypotheses of the theorem

la — &lduiduj> dg=0

q
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so that « is a.e. constant on all of them. As before this implies that o
is a.e. constant on I. O

7. The Dirichlet integral

If g = g(u) is defined in a u-domain R and is of class C! then we
denote by Ir(g) the Dirichlet integral of g over the domain R, thus

d
Ir(9) =) /R 19:(w)Pdul...du.
=1

If g(u) is continuous in a domain containing the closure of R then for
small |h| > 0 we shall denote by Igp(g) the modified Dirichlet integral

d
Irn(g) = h”Z/ |ArgPdul...du?,
i=1 v R

where AP is the difference

Alg) =g, .., u ™t + bt u®) — g(ul Lud).
Lemma 7.1. Let g = g(u) be a continuous function on a domain
containing the closure of an open sphere T. Suppose there exists a
constant K such that

Irn(g) < K

for small || > 0. Then g(u) has strong L*-derivatives of first order
on open subsets Ty with compact closure contained in T. More pre-
cisely, the ordinary partial derivatives of first order of g exist almost
everywhere in To, belong to L*(Ty), and are in fact equal to the corre-
sponding strong L?-derivatives.
Proof. The existence a.e. of the partial derivatives and their quadratic
integrability follow from a theorem of Sélyi (cf. [8]) which also ensures
that the third hypothesis of Lemma 5.3 is satisfied. That these partial
derivatives are strong L*-derivatives is implied by Lemma 5.3. ¢
Lemma 7.2. Let z = z(u) = (z1(u), ..., 2%(u)) denote a vector function

of class C1 on a bounded u-domain R. Suppose there exist constants
C1,Ca, Cijkm, such that |z*(u)] < Cy and

d d
(%) YD Iz < Cugpmd(=, 27) [0(u,u™) + Ca.

i=1 j=1

Then for each compact subset T of R there exists a constant K depend-
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ing only on R,T,C1,Ca, Cijim such that the Dirichlet-integrals of 27
satisfy the inequality

d
Y In(z) < K.
=1

Note that in the right-hand side of (%) a summation over all indices
i, 7, k,m is implied. For the proof see [5]. ¢

In the proof of the theorem we shall use these two lemmas in the
following way. In a region around the origin let us be given a C*-
mapping v = v(u). For the set T we choose a small closed sphere
contained in the region. Let us set

z=h"1Aly.

Then z = z(u,h) is a vector function of class C! defined for small
|u| and |h| > 0. This function is continuous even at h = 0 if we set
z(u, 0) = Ov/dut.

Lemma 7.3. In the situation considered above the sum of the Dirichlet
integrals of 27 from the previous lemma can be computed explicitly:

d d d
dIp(Zy =023 / INZARE
j=1 k=1m=1YT
for each1=1,...,d.
Proof. This is an immediate consequence of the definition of z, namely
that 2 = h=1AMF.

Thus if the functions 27 satisfy an inequality of type (%) in which
the constants are independent of A, the last two lemmas yield the exis-
tence of a constant K; such that

d d d
ZIT(zj) =h? Z Z / |A?v§z|2d'u,1...dud < K;.
i=1 T

k=1 m=1
Now by definition of the modified Dirichlet integral we have

d
Irp(ve) =h=? Z/ [A?v,knlgdul...dud.
i=1 YT

From the last two formulae it follows that ITh(vf;,) < K where K =
= d- max(K;). From Lemma 7.1 it follows therefore that each v® has
strong L2-derivatives of first order and that inside the sphere T the sec-

ond derivatives in the ordinary sense 82v*/0u™0u? exist almost every-
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where and are in fact equal to the corresponding strong L2-derivatives.

Moreover, since the operators for strong L?-derivatives commute it fol-
lows that 62v®/Gu™ou! = 0>v* /oul du™

8. Proof of Theorem 1.1

For better readability the proof is divided into five sections.

1. We shall show first that the v® have strong L?-derivatives. As
we have seen in Lemma 2.1 for an arb1trary matrix (v j) the relations
(2) of the theorem are equivalent to

d

(3) z viviek = g6y

k=1
Transforming the u—coordinates by a pseudo-Euclidean similarity we
may assume that an arbitrarily chosen point u in the region G is re-
placed by the point u = 0 and that
(4) vl (0) = §7%.
Let 1 < i < d and h, A", and 2 be defined as in Section 7. Then the

[}

relations (3) and (4) imply that

(5) erzl + 27 J = (A Ay 207 + Z Zo(l Nz,
m=1n=1

where 0o(1) — 0 as |u| — 0 and 0 < |h] — 0. To prove the formulae
(5) we apply the operator h™TAP to the function f(vi,v?,...,v%) =
= fo:l vivPe,. By the intermediate value theorem of differential cal-
culus the result can be written as

WAL = (0F/8v})ez
The lower index ¢ here means that the partial derivatives are to be
taken at v?, + EAPYR, for a suitable value € such that 0 < £ < 1. The
expression on the rlght hand side may be further transformed into

B WIS

m=1n=1
Here df7* denotes the value of df/0vl, {for the arguments
(v1(0), ...,v4(0)). Now the formulae (3) and (4) show that df™ = 0
except for the two cases df] =¢;f and dfgl-c = €. Thus (5) is proven.
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If j =k then (5) becomes

d d
(AT ARY e+ D Y o(1)]Z7.
m=1n=1

This formula and the corresponding one for z¥ yield

(6) z =

L1
SR

d d

(7) Z—zp=> > o)yl
m=1n=1
By squaring (7) and (5) for j # k, multiplying the square of (5) by
ex€j, and adding it follows that
8

d d
|
ek =l = U5+l +emlall+eserl )+ 30 Y oDl
m: :

Note here that the expressions (375 0(1)|z™|)*> which arise in the
squared relations can be transformed into > " 0(1)]2™|? because of
the inequality

N 2 N
i=1 i=1

Forming linear combinations from (8) we get

(")
S Gl + 7 + eyl 4 sl 303 o) =

i<k m=1n=1

=2 Z Cjk(zgz,; — zizj)
i<k
Let us set Cjr = 2d when €6, = 1 and Cjj, = —2 otherwise. In the first
sum on the left-hand side of (8*) each term |zk[2 or |z’”[2 occurs exactly
once and will have coefficient s = |Cjx| > 2. For any fixed j the term
|z§|2 will get the coefficient s = Z{:_ll Cy + Zi:jJrl Cj). Since we have
excluded signatures like 1, —1,...,—1 or 1,..., 1, —1 there will be at least
one [ or k such that Cj; = 2d or Cjj = 2d so that s > 2d—2(d—1) > 2.
Now we can choose constants 7 > 0 and hp > 0 such that all factors

o(1) in (8*) become smaller than 1 in absolute value when |u| < r and
|| < ho. It follows that in the left-hand side of (8*) each term |27|?
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occurs with coefficient at least 1. Thus we get

d d
PP LD PE ML B E
m=1n=1 i<k
which is an inequality of type (x) as in Lemma 7.2 with Cy = 0 and
Cijkm = 2C;; when 1 < j,k = i,m = j and Cijkm = 0 otherwise.

It follows therefore from the results of Section 7 that in a neigh-
bourhood U of u = 0 the function v = v(u) has strong L?-derivatives
of second order; in particular §%v*/0u?Ou” exists almost everywhere
and is equal to §?v¢/Oufdu?. It follows from (3) and v > 0 that v has
strong L?-derivatives of first order. ¢

2. In a similar way as in [2], p. 142, we are now going to show
that almost everywhere in U we have

(9) vij =7 (i + Yivy),

if i 5= 4§ and

(10) Vii =7 (%0 = > €€k Vi)
ki

For arbitrary vectors a = (a',...,a%) and b = (b', ..., b%) let us use the
scalar product notation a-b or ab for short, for the expression ¥ a*bFey.
To prove the formulae (9) and (10) we start with the relations (2) from
the hypothesis of Th. 1.1 which we may rewrite as VV; = &;670s5.
From this we get v;v;5+viv; = 0 for i # j. If 4, §, k are distinct indices
it follows hence
VEViy = —VVkj = — ViV = ViUki = —UkVij,

Le. vgvi; = 0. Thus vi; is a linear combination of v; and v;, say vi; =
= aw; + fv;. By scalar multiplication with v; it follows on the one hand
that v;v;; = aw;v;. On the other hand it follows from v;v; = £:£7? by
differentiating that v;v;; = e;eyy;. This yields v; = ay. In a similar
way we get v; = v and thus yvi; = vjv; + viv;.

To prove (10) note that v;; is a linear combination of the indepen-
dent vectors v;, say v;; = a? v;. To determine the coefficients we use
the relation v;v; = g;2% which implies vyv; = €i€7Y7;, and for 1 # j the
relations vi;v; = €;e7yy; which follow from (9).

Denote by y; = yi(u) the vector

(11) Yi = )\’U'i)
where X = y7!. (Note that the subscript i in y; does not denote partial
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differentiation.) The vectors (11) have strong L?-derivatives and from
(9) and (10) we get

(12) 6yi/6uj = ——Ali/vj,
when ¢ % j and
ki

almost everywhere. ¢

3. We shall show that A; essentially depends only on the i-th coor-
dinate u?.

Let the i-th coordinate have a fixed value u* = ¢ and denote by
U, the cross-section of U with u* = c¢. More precisely, we shall show
that for all possible values of ¢, except perhaps for a one-dimensional set
of measure zero, the function \; is constant almost everywhere on U..

To see this we first observe that the subset N C U where not all
of the relations (12) are satisfied is a nullset. Now let N1 be the set of
all ¢ such that (12) is not satisfied a.e. in U.. By Fubini’s Theorem
N, is a one-dimensional nullset. Also the set Ny of all ¢ such that
v; & L?(U,) or the relations (12) do not represent the L2-derivative of
y; is a nullset. We will show that A; is constant a.e. in U, provided
that ¢ € N1 U Ns. Let us fix two indices j, k which are distinct from 3.
We consider 2-dimensional cross-sections U, 4 of U, where u', v’ may
be changed freely, u™ are fixed for m # 1,7, k, and ¢ is the point with
coordinates u™. The ¢ for which y; ¢ L?(U.4) or the relations (12)
do not represent the L?-derivatives of y; in L?(U.,,) form a (d — 3)-
dimensional nullset M and for ¢ ¢ M we will apply the criterion of Th.
6.1, i.e.

(14) / )\id'u = O,
J

where J denotes any one out of a certain class of piecewise smooth
Jordan curves in U, 4 along which this line integral exists. We imagine
A; changed provisionally in such a way that A; = oo in all places where
the relation (12) does not hold for one of the two indices j or k. Let now
J be a piecewise smooth Jordan curve along which A; has value oo only
in a nullset. Note that this is a necessary condition for the line integral
(14) to exist. We have to show that the line integral vanishes under
certain additional conditions. To this end consider the line integral
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along the curve starting from a fixed point Py and going up to a variable
point P as a vector function of the parameter ¢, thus

P t
du? du
PD)\dv /tA< dt+vkdt>dt ®)

According to our assumptions along the curve relation (12) holds almost
everywhere and thus we get

du? du®
! . _ )
F'(t) =X\ ( o + v —— 7 > = —dy;/dt

for almost all ¢. Note however, that this alone does not imply that
F(t) = —ui(t).

The matrix (0v”/0u*), p = 7,k has rank two. Therefore we can
choose indices v;,15 so that the Jacobian 9(v™ v”z) /O, u k) does
not vamsh Thus we shall show that locally for z! = w7, 2% = u*, ¢!
=", y? = 9”2 and o = )\; the hypotheses of Cor. 6.1 are satisfied.

For let V' denote the region in the (v**,v*?)-plane corresponding
to Uc,q. We may consider the vector y; locally as a function of v*1, v¥2
in Vi CV by setting 7;(v*,v*?) = y;(u?, u*) and we may assume that
7; belongs to L?(V;) and has strong L?-derivatives. By Lemma 5.1
it follows that 7; is absolutely continuous with respect to v*',v*? on
closed intervals of variation contained in V; for almost all values of v*2
and v"! respectively. This means that if J corresponds to a rectangle
K in V1 such that a < v < b, a < v§ <  we may assume that 7;
is absolutely continuous along the sides of the rectangle and that the
partial derivatives are equal a.e. to the given L2-derivatives of §; except
when a, b, a, 3 belong to a certain one-dimensional set of measure zero.

It follows that
0= / —dy; = / —dy; = / Aidv

and thus the criterion of Cor. 6.1 is satisfied. (To evaluate the first
integral use the parameter v** along the segments where v*2 is constant
and vice versa. Then apply the fundamental theorem of differential and
integral calculus (cf. [9], p. 342).) It follows that X; as a function of
u?,uF is a.e. constant. And this is not influenced by our provisional
change which we can now undo. It also follows from the discussion
above that the hypotheses of Th. 6.2 are satisfied and thus ); is constant
a.e. in U, provided that ¢ & N1 U Ny.

4. By changing A\; on a d-dimensional set of measure zero we can
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achieve that \; is constant in the strict sense for all sections U..

First the union of all those cross-sections where \; is not constant
up to a nullset is itself a nullset. We may change A; on this set to an
arbitrary constant.

Secondly let us change A; on each section U, to the constant value
assumed a.e. on U, and let us denote the new function provisionally
by X;. We shall show that )\; is measurable and that consequently X; and
\; differ only on a set of measure zero. Since U is a union of countably
many d-dimensional intervals, it suffices to prove this for d-dimensional
intervals. Let I be such an interval. Then

/ Nidu = / < / Aidvj) du' = / f(uh)dut
I cQ qu: [ady]

where I,: denotes the cross-section of I corresponding to the actual
value of the coordinate u®. Since )\; is a.e. constant on I, it follows
that f(u?) = A;i(u?)-q where q is the constant content of ;. Thus from
the existence of the integrals above it follows that ); is measurable on
I. By Fubini’s Theorem this implies that \; € L(I). Let g(u) = X;(u)—
— X;i(u). Tt follows that g € L(I), hence |g| € L(I) and

J st = [ ( / u

Thus the set N of all v € I where A;(u) # X;(u) is a nullset. ¢

Since we have thus shown that ); and X; only differ in a set of
measure zero there will be no harm if in the sequel we drop the notation
X; and use )\; as before.

5. If i,7(j # 1) are fixed (12) and (13) imply

(15) /J ()\,;vjduj — (Z)\kvk> czui> =0,

ki

D\i — j\ildﬁ> du® = 0.

if J is the boundary of a rectangle of the form a < w <b o<yl <p,
u® = const for k # i, 5, provided that a, b, a, B do not belong to a certain
1-dimensional nullset and that the point ¢ formed by the coordinates
uP k # 4,7 does not belong to a certain (n — 2)-dimensional nullset.
To see this note that by Fubini’'s Theorem the L2-derivatives of the
vector function y; are integrable in almost all planar sections U, where
uP = const, k # 4,4, and in any such section we may assume that the
relations (12) and (13) are satisfied a.e. and that they represent the L2-



Liouwville’s Theorem in a pseudo-conformal space 99

derivative of y;. Consequently, we may again apply Lemma 5.1 in order
to show that the four integrals along straight line segments occurring
in (15) exist for almost all a,b, o, § and can be evaluated using the
fundamental theorem of differential and integral calculus. ¢

Since A, depends only on u* relation (15) yields

(16)  Xi(B)s(B) — A; )= M) [te(B) — tr(e)] = 0,

k=1
where
s(u) = s(u*, o, B) = v(ut, ..., 7L B ui L ud)—
(17) —v(ut, T ey u?),
and
. . b .
(18) bo(u) = ti(ud , a, b) — / o (u)dur

We may transform (16) into

(19) s(O)Xi(B)=Ai(a)] = —As(a)[5(8) — s(@)]+ Y Mo(w®) [tx(8) —tr(a)]
k4

and consider a, o, 8, u” for k # i as fixed and b as variable. Then s(b)
is of class C'. Likewise t(u?, a,b) as functions of b are of class C'* (cf.
(18)). Because of (19) also s(b)[Ai(b) — Ai(a)] is of class CL. The vector
s(b) does not vanish as long as a # [ because of the injectivity of the
transformation v = v(u).

It follows that A;(u*) = O\/Ou® can be extended to a continuous
function, and thus A has continuous strong L?-derivatives with respect
to u,i=1,...,d. By Lemma 5.2 it follows that X and hence also « are
of class Ct. Let g;; = ;67?85 and hgm = €xOkm. The relations (2)
show that g;; is transformed by v = v(u) into hgm,. By Th. 4.1 the
mapping v = v(u) is of class C2.

We divide (19) by b— a and let b converge to a. If follows that ;
has a derivative \;; with respect to u* and that

s(@)Aii(a) = =Xi(@){vi} + ) Ae(w®){vi},
ki

where {g} denotes the difference of the values of g at u* = a,u’ = 3 and
u* = a,1’ = . Consequently X has continuous second order derivatives
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i and Aq; = 0 for ¢ # 5. Therefore v = v(u) is of class C® by Th. 4.1.
The proof can now be finished as in Benz [2], pp. 143-149. ¢
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