ON SOME EXTENSIONS OF σ -FINITE MEASURES ## Małgorzata Filipczak Faculty of Mathematics, Łódź University, ul. Stefana Banacha 22, 90-238 Łódź, Poland ## Jacek **Hejduk** Faculty of Mathematics, Łódź University, ul. Stefana Banacha 22, 90-238 Łódź, Poland Received: September 2001 MSC 2000: 28 A 15 Keywords: Measure, extension of measure. **Abstract**: We shall present that if (X, S, μ) is a measure space with a non-negative σ -finite measure then for every set $Y \subset X$ and every $c \in [\mu_*(Y), \mu^*(Y)]$ where μ_* and μ^* denote respectively the inner and outer measure corresponding μ , there exists and extension μ_c of μ such that $Y \in \text{dom } \mu_c = \sigma(S \cup \{Y\})$ and $\mu_c(Y) = c$. The cardinality of the set of such extensions is also discussed. Our paper is motivated by the results contained in paper [3], see also [2]. Let (X, S, μ) be an arbitrary measure space. Let $Y \subset X$ be an arbitrary subset of X. Then the functions $$\mu_*(Y) = \sup \{ \mu(W) : Y \supset W \in S \},$$ $\mu^*(Y) = \inf \{ \mu(Z) : Y \subset Z \in S \}$ are called, respectively, inner and outer measure corresponding to μ . By the family $\sigma(K)$ we denote the smallest σ -field generated by family K. E-mail address: jachej@uni.lodz.pl If measure μ is defined in a field we understand that μ is additive and in the case when μ is defined in a σ -field we assume that μ is σ -additive. The following results were established in [3]. **Theorem A** (cf. Th.1, 4 in [3]). Let (X, S, μ) be an arbitrary measure space where S is a σ -field. Then for every set $Y \subset X$ and $c = \mu_*(Y)$ or $c = \mu^*(Y)$ there exists an extension μ_c of μ such that $\mu_c(Y) = c$ and dom $\mu_c = \sigma(S \cup \{Y\})$. **Theorem B** (cf. Th.2, 4 in [3]). Under the hypotheses of Th. A and $\mu^*(Y) < \infty$, for every $c \in [\mu_*(Y), \mu^*(Y)]$ there exists an extension μ_c of μ such that $\mu_c(Y) = c$ and dom $\mu_c = \sigma(S \cup \{Y\})$. And also **Theorem C** (cf. Th. 3 in [3]). Let (X, S, μ) be a measurable space where S is a field, then for every $c \in [\mu_*(Y), \mu^*(Y)]$ there exists an extension μ_c of μ such that $\mu_c(Y) = c$ and dom μ_c is the field generated by $S \cup \{Y\}$. It was observed in [3], that Th. C does not work for the σ -fields and σ -additive measures. We shall show that this fact is true for σ -finite measures in the σ -fields. In fact Ths. A and B are proved in [3] via canonical extensions. In the sequel we shall deal only with measures on the σ -fields. Let us recall Marczewski theorem. **Theorem M** (cf. [4]). Let (X, S, μ) be measurable space and J be σ -ideal of subsets of X such that $\mu_*(Y) = 0$ for every $Y \in J$. Then there exists extension μ' of measure μ with domain $S \triangle J = \{A \triangle Y; A \in S, Y \in J\}$, giving by formula $\mu'(A \triangle Y) = \mu(A)$. By this theorem it is easy to obtain Ths. A and B for the σ -finite measures. Let W and Z be μ -measurable kernel and μ -measurable hull of Y, respectively. Putting $J = \mathbb{P}(Y - W)$ we have that for every set $A \in J$, $\mu_*(A) = 0$. Thus by Th. M, there exists extension μ' of measure μ such that $\mu'(Y) = \mu(W) = \mu_*(Y)$. Measure $\mu_c = \mu'/\sigma(S \cup \{Y\})$ has the desired property for the case $c = \mu_*(Y)$. In the similar way, considering σ -ideal $J = \mathbb{P}(Z - Y)$ we get the case for $c = \mu^*(Y)$. Th. B is the consequence of Th. A by considering the convex combinations of two measures (cf. Th. 2 in [3]) **Lemma 1.** Let (X, S, μ) be an arbitrary measurable space and $Y \subset X$ be such that $\mu_*(Y) = 0$ and $\mu^*(Y) = \infty$. Then for every set $Y_1 \subset Y$ such that $\mu^*(Y_1) < \infty$ and for every extension μ_1 of measure μ such that dom $\mu_1 = \sigma(S \cup \{Y_1\})$ with property $\mu_1(Y_1) < \infty$ the following conditions are satisfied: $$1^0 \ (\mu_1)_*(Y - Y_1) = 0,$$ $2^0 \ (\mu_1)^*(Y - Y_1) = \infty.$ **Proof.** Since $\sigma(S \cup \{Y_1\}) = \{(A \cap Y_1) \cup (B - Y_1); A, B \in S\}$ then every set $W \in \sigma(S \cup \{Y_1\})$ and $W \subset Y - Y_1$ has the form $W = B - Y_1$, where $B \in S$. This implies that $B \subset B - Y_1 \cup Y_1 = W \cup Y_1 \subset Y$ and thus $\mu(B) = 0$. It follows that $(\mu_1)_*(Y - Y_1) = 0$. Let $Z \in \sigma(S \cup \{Y_1\})$ be such that $Z \supset Y - Y_1$. It suffices to consider set Z of the form $Z = B - Y_1$, where $B \in S$. Since $\mu^*(Y_1) < \infty$ then there exists a set $C \in S$ such that $Y_1 \subset C$ and $\mu(C) < \infty$. Then $B \supset B - Y_1 \supset Y - Y_1 \supset Y - C$ and thus $Y \subset B \cup C$. It follows that $(\mu_1)^*(Y - Y_1) = \infty$. \Diamond Now, we fix that (X, S, μ) is measurable space with σ -finite measure μ . **Theorem 2.** For every $Y \subset X$ and every $c \in [\mu_*(Y), \mu^*(Y)]$ there exists extension μ_c of measure μ such that $\mu_c(Y) = c$ and dom $\mu_c = \sigma(S \cup \{Y\})$. **Proof.** In view of Th. B the case $\mu^*(Y) = \infty$ is left. Let $c \in [\mu_*(Y), \mu^*(Y)]$, where $\mu^*(Y) = \infty$. The case $c = \mu_*(Y)$ or $c = \mu^*(Y)$ holds by Th. A. Let $c \in (\mu_*(Y), \mu^*(Y))$ and suppose that $\mu_*(Y) = 0$. By the σ -finite property of measure μ there exists a μ -measurable set C of finite measure such that $\mu^*(Y \cap C) > c$. By Th. B there exists extension μ_1 of measure μ such that $\mu_1(Y \cap C) = c$ and dom $\mu_1 = \sigma(S \cup \{Y \cap C\}) = S_1$. Let $Y_1 = Y \cap C$. By Lemma 1 $(\mu_1)_*(Y - Y_1) = 0$. Then again by Th. B there exists extension μ_2 of measure μ_1 such that dom $\mu_2 = \sigma(S_1 \cup \{Y - Y_1\})$ and $\mu_2(Y - Y_1) = 0$. Since $\sigma(S_1 \cup \{Y\}) = \sigma(S_1 \cup \{Y - Y_1\})$ we can put $\mu_c = \mu_2$ and μ_c is the extension of the original measure μ and $\mu_c(Y) = \mu_2(Y) = \mu_2(Y_1) + \mu_2(Y - Y_1) = \mu_1(Y_1) + \mu_2(Y - Y_1) = c$. In the case, when $\mu_*(Y) > 0$ and $c \in (\mu_*(Y), \mu^*(Y))$ it is sufficient to take set $Y^* = Y - W$, where W is μ -kernel of Y and apply the previous result to finish the proof. \Diamond Let μ_1 and μ_2 be two extensions of measure μ such that dom $\mu_1 = \text{dom } \mu_2 = \sigma(S \cup \{Y\})$ for some subset $Y \subset X$. It is obvious that any extension of a σ -finite measure is again σ -finite measure. Let us pay attention on the following Lemma 3. The following conditions are equivalent $$1^0 \quad \forall_{A \in S} \quad \mu_1(A \cap Y) = \mu_2(A \cap Y)$$ $$2^0 \quad \forall_{A \in S} \quad \mu_1(A - Y) = \mu_2(A - Y)$$ **Property 4.** The measures μ_1 and μ_2 are identical if and only if $$\forall_{\substack{A \in S \\ \mu(A) < \infty}} \quad \mu_1(A \cap Y) = \mu_2(A \cap Y)$$ **Proof.** Necessity is obvious. Sufficiency: Let $B \in \sigma(S \cup \{Y\})$. Then $B = (C \cap Y) \cup (D - Y)$, where $C, D \in S$. Hence in view of Lemma 3 and the fact of σ -finite property μ_1, μ_2 $$\mu_1(B) = \mu_1(C \cap Y) + \mu_1(D - Y) = \mu_2(C \cap Y) + \mu_2(D - Y) = \mu_2(B).$$ It follows our assertion. \Diamond Now we try to investigate how many different extensions of the original measure μ we may get to attach the value c equal to the measure of the set Y. Some unicity problems are also contained in [1]. For every $Y \subset X$ and $c \in [\mu_*(Y), \mu^*(Y)]$ we denote $$\mathfrak{M}_c(Y) = \{ \mu' : \mu' \text{ is extension of } \mu \text{ with domain}$$ $$\sigma(S \cup \{Y\}) \& \mu'(Y) = c \}.$$ $\mathfrak{M}(Y) = \{ \mu' : \mu' \text{ is extension of } \mu \text{ with domain} \sigma(S \cup \{Y\}).$ We have that $\mathfrak{M}(Y) = \bigcup \{\mathfrak{M}_c(Y); c \in [\mu_*(Y), \mu^*(Y)]\}.$ **Property 5.** If $c = \mu_*(Y) < \infty$ or $c = \mu^*(Y) < \infty$ then card $\mathfrak{M}_c(Y) = 1$. **Proof.** Let us assume that $c = \mu_*(Y) < \infty$. By Th. 2 card $\mathfrak{M}_c(Y) \ge 1$. Let $\mu_1, \mu_2 \in \mathfrak{M}_c(Y)$. Let W be μ -kernel of Y. Then for every set $A \in S$ we have that $\mu_1(A \cap Y) = \mu(A \cap W)$. Similarly $\mu_2(A \cap Y) = \mu(A \cap W)$. By Prop. 4 we have that $\mu_1 \equiv \mu_2$ and card $\mathfrak{M}_c(Y) = 1$. The case $c = \mu^*(Y) < \infty$ can be proved similarly. \Diamond **Property 6.** For every $c_1, c_2 \in (\mu_*(Y), \mu^*(Y))$ card $\mathfrak{M}_{c_1}(Y) = \operatorname{card} \mathfrak{M}_{c_2}(Y)$. **Proof.** Let $c_1 < c_2$. Let $c_3 > c_2$ and $c_3 \in (\mu_*(Y), \mu^*(Y))$. Let us fix $\mu_{c_1} \in \mathfrak{M}_{c_1}(Y)$ and $\mu_{c_3} \in \mathfrak{M}_{c_3}(Y)$. There exists $\alpha \in (0,1)$ such that $c_2 = \alpha c_1 + (1-\alpha)c_3$. Putting $\mu_{c_2} = \alpha \mu_{c_1} + (1-\alpha)\mu_{c_3}$ we get that $\mu_{c_2} \in \mathfrak{M}_{c_2}(Y)$. Moreover, if $\mu'_{c_1}, \mu''_{c_1} \in \mathfrak{M}_{c_1}(Y)$ and $\mu'_{c_1} \neq \mu''_{c_1}$ then $\mu'_{c_2} \neq \mu''_{c_2}$. Hence card $\mathfrak{M}_{c_1}(Y) \leq \operatorname{card} \mathfrak{M}_{c_2}(Y)$. Analogously card $\mathfrak{M}_{c_2}(Y) \leq \operatorname{card} \mathfrak{M}_{c_1}(Y)$. \Diamond **Remark.** Example in [3] shows that Prop. 6 does not hold for the segment $[\mu_*(Y), \mu^*(Y))]$. **Property 7.** For every $c \in [\mu_*(Y), \mu^*(Y))$ card $\mathfrak{M}_c(Y) = 1$ or card $\mathfrak{M}_c(Y) \geq \mathfrak{c}$. **Proof.** Let $c \in (\mu_*(Y), \mu^*(Y))$. By Th. 2 card $\mathfrak{M}_c(Y) \geq 1$. Suppose that card $\mathfrak{M}_c(Y) > 1$. Let $\mu_1, \mu_2 \in \mathfrak{M}_c(Y)$ and $\mu_1 \neq \mu_2$. Then for every $\alpha \in [0,1]$ $\mu_{\alpha} = \alpha \mu_1 + (1-\alpha)\mu_2 \in \mathfrak{M}_c(Y)$ and by Prop. 4 we have that $\mu_{\alpha} \neq \mu_{\beta}$ for every $\alpha \neq \beta$ such that $\alpha, \beta \in [0,1]$. It means that card $\mathfrak{M}_c(Y) \geq \mathfrak{c}$. \Diamond Corollary 8. For every $Y \subset X$, card $\mathfrak{M}(Y) = 1$ or card $\mathfrak{M}(Y) \geq \mathfrak{c}$. Property 9. If $\mu^*(Y) = \infty$, then for every $c \in [\mu_*(Y), \mu^*(Y)]$ card $\mathfrak{M}_c(Y) \geq \mathfrak{c}$. **Proof.** Case 1. Let $c = \mu^*(Y)$. By Th. 2 there exists measure $\mu_c \in \mathfrak{M}_c(Y)$. Let $d \in (\mu_*(Y), \mu^*(Y))$ and $\mu_d \in \mathfrak{M}_d(Y)$. Putting for every $\alpha \in (0,1]$ $\mu_{\alpha} = \alpha \mu_c + (1-\alpha)\mu_d$ we get that $\mu_{\alpha} \in \mathfrak{M}_c(Y)$ and for every $\alpha, \beta \in (0,1]$ $\mu_{\alpha} \neq \mu_{\beta}$. Hence card $\mathfrak{M}_c(Y) \geq \mathfrak{c}$. Case 2. Let $c \in (\mu_*(Y), \mu^*(Y))$. We suppose, by the same technique as in proof of Th. 2 that $\mu_*(Y) = 0$. Let c_1, c_2, c_3, c_4 be positive numbers such that $c_1 + c_2 = c_3 + c_4 = c$ and $c_1 \neq c_3$. Since $\mu^*(Y) = \infty$ there exists S-measurable set C such that $c < \mu^*(Y_1) < \infty$, where $Y_1 = Y \cap C$. By Th. 1, there exist extensions μ_{c_1}, μ_{c_3} of measure μ such that dom $\mu_{c_1} = \text{dom } \mu_{c_3} = \sigma(S \cup \{Y_1\})$ and $\mu_{c_1}(Y_1) = c_1$ and $\mu_{c_3}(Y_1) = c_3$. According to Lemma 3 $(\mu_{c_1})_*(Y - Y_1) = 0$, $\mu^*_{c_1}(Y - Y_1) = \infty$, $(\mu_{c_3})_*(Y - Y_1) = 0$, $\mu^*_{c_3}(Y - Y_1) = \infty$. There exists a set $D \in S$ such that for the set $Y_2 = D \cap (Y - Y_1)$ we have $$c < \mu_{c_1}(Y_2) < \infty \text{ and } c < \mu_{c_3}(Y_2) < \infty.$$ Applying Th. 2 we get extension μ_{c_2} of measure μ_{c_1} and extension μ_{c_4} of measure μ_{c_3} such that dom $\mu_{c_2} = \text{dom } \mu_{c_4} = \sigma(S_1 \cup \{Y_2\}) =$ $= S_2$ and $\mu_{c_2}(Y_2) = c_2$ and $\mu_{c_4}(Y_2) = c_4$. By Lemma 1 we have $(\mu_{c_2})_*((Y - Y_1) - Y_2) = 0$ and $(\mu_{c_4})_*((Y - Y_1) - Y_2) = 0$. Applying Th. 2 we get extension μ'_c of measure μ_{c_2} and extension μ''_c of measure μ_{c_4} such that dom $\mu'_c = \text{dom } \mu''_c = \sigma(S_2 \cup \{Y - (Y_1 \cup Y_2)\})$ and $\mu'_c(Y - (Y_1 \cup Y_2)) = \mu''_c(Y - (Y_1 \cup Y_2)) = 0$. Taking into account the form of the sets Y_1 and Y_2 we conclude that $\sigma(S_2 \cup \{Y - (Y_1 \cup Y_2)\}) =$ $= \sigma(S \cup \{Y\})$ and $\mu'_c(Y) = \mu'_c(Y_1 \cup Y_2) + \mu'_c(Y - (Y_1 \cup Y_2)) = \mu'_c(Y_1) + \mu'_c(Y_2) = \mu_{c_1}(Y_1) + \mu_{c_2}(Y_2) = c_1 + c_2 = c$. Also $\mu''_c(Y) = c$. Hence $\mu'_c, \mu''_c \in \mathfrak{M}(Y)$. Simultaneously $\mu'_c \neq \mu''_c$ because $\mu'_c(Y_1) = c_1$ and $\mu''_c(Y_1) = c_2$. The convex combination of measures μ'_c and μ''_c makes inequality card $\mathfrak{M}_c(Y) \geq \mathfrak{c}$. \diamondsuit We finish with the following property. **Property 10.** If W and Z are μ -kernel and μ -hull of set Y, respectively, then the following conditions are satisfied: 10 card $$\mathfrak{M}(Y) = 1 \iff \mu(Z - W) = 0$$ 20 card $\mathfrak{M}(Y) > \mathfrak{c} \iff \mu(Z - W) > 0$. **Proof.** It is sufficient to show that if $\mu(Z-W)=0$ then card $\mathfrak{M}(Y)=1$ and if $\mu(Z-W)>0$ then card $\mathfrak{M}(Y)\geq \mathfrak{c}$. By Th. 2 card $\mathfrak{M}(Y)\geq 1$. If $\mu_1,\mu_2\in \mathfrak{M}(Y)$ and $\mu_1(Z-W)=\mu_2(Z-W)=0$ then by Prop. 4 $\mu_1\equiv \mu_2$ and card $\mathfrak{M}(Y)=1$. Let $\mu(Z-W)>0$. Suppose firstly that $\mu(W)<\mu(Z)$. Since $\mu_*(Y)=\mu(W)<\mu(Z)=\mu^*(Y)$ we conclude by Th. 2 that card $\mathfrak{M}(Y)\geq \mathfrak{c}$. Suppose secondly that $\mu(W)=\mu(Z)=\infty$. By Th. A there exist measure $\mu_1,\mu_2\in \mathfrak{M}(Y)$ such that $\mu_1(Y)=\mu(W),$ $\mu_2(Y)=\mu(Z)$ and $\mu_1(Y-W)=0,$ $\mu_2(Z-Y)=0$. Hence we obtain that $0<\mu(Z-W)=\mu_1(Z-W)=\mu_1((Z-Y)+\mu_2(Y-W))=\mu_1(Z-Y)$. Thus $\mu_1(Z-Y)>0$. It means that $\mu_1\neq \mu_2$. By Cor. 8 we get that card $\mathfrak{M}(Y)\geq \mathfrak{c}$. \diamondsuit ## References - [1] BARONE, E., BHASKA RAO, K.P.S.: On the Łoś-Marczewski extensuion of charges and its uniqueness, *Contemporary Mathematics* **94** (1989), 35–41. - [2] LIPECKI, Z.: A generalization of an extension theorem of Bierlein to groupvalued measures, Bull. Acad. Pol. Sci. 28 (1980), 441-445. - [3] LOŚ, J., MARCZEWSKI, E.: Extensions of mesure, Fund. Math. 36 (1949), 267–276. - [4] MARCZEWSKI, E.: Sur l'extension de la measure lebesguienne, Fund. Math. **25** (1935), 551–558.