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Abstract: We characterize the solvable groups with the property that
A, B],C] = [A,[B,C]] holds for all normal subgroups A, B, C. We give
an example that this property is not inherited by normal subgroups in gen-
eral. We also construct an infinite group G such that [A, B] = AN B holds

for all normal subgroups A, B of G but this is no longer true in a normal
subgroup of G.

Large part of this paper was written in 1990 just before the un-
timely death of Otté Steinfeld (1924-1990). Then the project was aban-
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doned and it has been resuscitated only recently. With the addition of
some new results it is now hopefully ripe enough for publication.

We are going to study some properties of the operation taking
the mutual commutator of two subgroups. For two subgroups A, B of
a group G let [A, B] be the subgroup generated by the commutators
[a,b] = a='b"'ab (a € A, b € B). This binary operation defined on the
subgroup lattice of G turns it into a so-called groupoid-lattice (see [11],
[12], [15]). There is an analogous operation for subrings A, B of a ring,
namely, let AB be the subring generated by the products ab (a € A,
b € B). This way the lattice of subrings becomes a groupoid-lattice as
well. Since the commutator of two normal subgroups is again a normal
subgroup, the lattice of normal subgroups is also a groupoid-lattice.
Similarly, the ideals of a ring form a groupoid-lattice, too. There is a
number of interesting analogies between the operations [A4, B] in groups
and AB in rings. An early study in this direction was written by Eugene
Schenkman [10]. (We note that the example given in Remark 12 of [10]
contains an error.) The analogy with primary decomposition of ideals
in Noetherian rings was also investigated by Kurata [5]. Left, right,
and two-sided ideals of a ring R are defined by the properties RX C X,
XR C X, and both of them. In groups [X,Y] = [Y, X], hence we can
single out only those subgroups X for which [X,G] C X, i.e., normal
subgroups. (In a groupoid-lattice such elements are called absorbents.)

1. Associativity

For ideals (even for quasi-ideals, see [14]) we always have (AB)C =
= A(BC). (We have to warn the reader that this is not true for subrings
in general.) The analogous result does not hold for normal subgroups,
for example, we can take G = A = B = S3 and C = Az. This will
motivate our first question.

Definition. We say that the groupoid-lattice of normal subgroups of
G is assoctative if

(A) [[Av B]’ O] = [Aa [Bv C]]

holds for arbitrary normal subgroups A, B, C of G. We say that the
groupoid-lattice of all subgroups of G is associative if (A) holds for all
subgroups A, B, C.

The problem of characterizing groups with associative groupoid-
lattice of normal subgroups was formulated, e.g., in [15, Problem 2].
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If we require (A) for all subgroups, the answer is known. An
unpublished result of ITan Macdonald and Bernhard Neumann states
the following (see [15], Prop. 2).

Proposition 1 (Macdonald and Neumann). Equation (A) holds for
all subgroups A, B, C of a group G, if and only if G is a 2-Engel group,
that 1s, [[z,y],y] = 1 holds for all z,y € G.

Hence the groups with associative groupoid-lattice of subgroups
form a variety. The same is not true for the groups with associative
groupoid-lattice of normal subgroups. Namely, every simple group triv-
ially satisfies (A) for all normal subgroups, and every group (with a
nonassociative groupoid-lattice of subgroups) can be embedded into a
simple group. We will even show that this property is not inherited by
normal subgroups in general, see Ex. 1 below.

Now we describe the finite solvable groups satisfying (A) for all
normal subgroups, thus giving a partial solution of Problem 2 in [15].
Theorem 1. Let G be a finite solvable group. The following are equi-
valent:

(1) [[4, B],C] =[A,[B,C]] for all normal subgroups A, B,C <G,

(2) [[A, B],C] = [A,[B, C]] for all subgroups A,B,C < G;

(3) [[= ,y],y] =1 for all elements x,y € G.

Proof. (2) = (1) is trivial; (3) <= (2) is the already mentioned
unpublished result of I. D. Macdonald and B. H. Neumann. We are
going to prove that (1) implies (3).

Assume that (1) holds. First we show that G is nilpotent. Let G
be a minimal counterexample. Then Z(G) = 1, since the condition is
inherited by quotient groups. Let A <G be a minimal normal subgroup
in G. By solvability, A is abelian. We have Cg(A) < G. Let B/Cg(A)<
4G/Cg(A) be a minimal normal subgroup. This is also abelian, hence
[B,B] < Cg(A). So [[B,B],A] = 1. On the other hand, [B,A4] is
a nontrivial normal subgroup contained in A, so — by minimality —
[B, A] = A. Thus [B,[B, A]] = A, a contradiction.

Now let the nilpotence class of G be k. Then any commutator of
length k + 1 is trivial, and any fixed bracketing of [z1,...,zx] gives a
homomorphism of G* into an abelian group (the last nontrivial term of
the lower central series). Hence only the cosets by G' = [G, G| have to
be considered. For g1, ..., gx € G we have

[(gla GI)) ey <9k7 Gl)] — <{gl7 cee ,gk]>)
where the same- bracketing has to be taken on both sides. However,
each (g;, G') <G, so we can apply associativity on the left hand side (by
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induction (1) implies it for an arbitrary number of normal subgroups),
so it does not matter which bracketing is used on the left hand side.
Therefore, it has no effect on the right hand side either. In particular,
if g; = giy1, we can use a bracketing containing the subterm [g;, g;11],
hence in this case the commutator is trivial under arbitrary bracketing.
Now assume for contradiction that the nilpotence class k¥ > 4. Con-
dition (1) is inherited by quotient groups, so it holds for the largest
quotient of G' of nilpotence class 4 as well. So this quotient group sat-
isfies [[[z,y],y], 2] = 1 and [[[z,v],2],2] = 1. By a result of Hermann
Heineken (see [4], p. 293) these two laws imply that the nilpotence class
of the group is at most 3, a contradiction. So the nilpotence class of G
is at most 3, and the previous argument yields that the Engel condition
[[z,9],y] =1 holds in G. ¢

Next we show that that the associativity of the groupoid-lattice

of normal subgroups of G is not inherited by normal subgroups of G.
Example 1.There exists a group G and a normal subgroup P <G such
that the groupoid-lattice of normal subgroups of G is associative, but
that of P is not.
Proof. Let p > 5 be a prime and let F' be the free group on the
generators gi, ..., gs in the variety V of nilpotent groups of class 3 and
of exponent p (i.e., defined by the laws [[[zo, z1],z2], 23] = 1, 2P =
= 1). Let the alternating group As act on F' by permuting the given
generators. The kernel K of the homomorphism F — C, mapping each
a; to the same generator of the cyclic group of order p is obviously As-
invariant. It is routine to calculate that the centralizer C' = Cg (As) has
order p and it is contained in Z(K). Let P be a minimal As-invariant
subgroup of F' such that F'P = K. If P > C, then let P = P/C,
otherwise put P = P. Since A5 acts on P, we can form the semidirect
product G = PAs.

Now we have Cp(As) =1, 50 [N,G] = N for every N<G, N < P.
Since As acts irreducibly on K/F’, the minimal choice of P and the
complete reducibility of the action of A5 on P/P’ yield that P’ = PNF’
and P/P' = P/P' = K/F' even as As-modules. So As acts irreducibly
on P/P'. Hence if P’ < N a @G, then N is one of P/, P, or G. Since P
has exponent p, its Frattini subgroup is just P’. If N <G is such that
NP’ > P then N > P. Otherwise, we have N < P'.

Now we can show that the commutator is an associative operation
on the set of normal subgroups of G. Let X, Y, and Z <« G. If one of
them is G, then (A) obviously holds, since [V, G] = N for every N <G.
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So we may assume that X,Y, Z < P. If one of them is contained in P’,
then [[X,Y], Z] = [X,[Y, Z]] = 1, since the nilpotence class of P is at
most 3. So the only case remaining is when all of them are equal to P,
but then the statement is trivial.

If we take four elements of P that are linearly independent in the
quotient group P/P N F', then we see that P contains a free group
on four generators from the variety V, therefore P has nilpotence class
3. Hence P does not satisfy [[z,y],y] = 1, so in virtue of Th. 1 the
groupoid-lattice of normal subgroups of P is not associative. ¢

2. Regularity

An important class of rings is the class of von Neumann regular

rings. By definition this means (see [8]) that for every r € R there
exists an x € R such that r = rzr. The following nice characterization
is due to L. G. Kovécs.
Proposition 2 (L. G. Kovécs [6]). A ring is von Neumann regular, if
and only if RL = RN L for every right ideal R and left ideal L of the
Ting.

This motivates our definition.

Definition. We call a group G regular, if

(R) [IN,M]=NnM

for every pair of normal subgroups N, M <« G.

A similar notion in universal algebra has been introduced by Joa-
chim Hagemann and Christian Herrmann [3], p. 243. They called an
algebra neutral if the commutator of arbitrary congruences o and [
coincides with their intersection.

Note that in a regular group the groupoid-lattice of normal sub-
groups is obviously associative.

It is easy to see that a group is regular iff [N, N] = N for every
N <« G. For finite groups it is equivalent to the property that every
chief factor of G is nonabelian. Since chief factors are direct products
of isomorphic simple groups, it is further equivalent to the property
that every composition factor of G is nonabelian. So it follows that
every normal subgroup of a finite regular group is also regular. For
regular rings it is very easy to see that the analogous statement is true
without any finiteness requirement (see [2], Lemma 1.3). In contrast,
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we are going to give an example of an infinite regular group containing
a non-regular normal subgroup, hereby solving Problem 4 from [15].

- Example 2. There exists an infinite regular group G containing a nor-
mal subgroup M that is not regular.

Proof. We will use McLain’s group, see [9], pp. 347-349. McLain’s
group is constructed in the following way. We take an arbitrary field
F and a countably infinite dimensional vector space over F' with basis
vectors b, indexed by rational numbers. Then M is the group of linear
transformations generated by all transformations of the form 1 + aegy,
where a € F, ¢ < r are rational numbers, eg b, = by and ey by =
= 0 for all ¢ # r. This group has abelian normal subgroups and it is
characteristically simple. Let R be the group consisting of those order
preserving permutations of the rational numbers which have bounded
support (that is, they are identical outside a finite interval). One can
check that R is a simple group. Moreover, the proof showing that M
is characteristically simple may be carried out using only outer auto-
morphisms of M induced by elements of R. This yields that the only
normal subgroups of the semidirect product G = MR are 1, M, and
G, so G is regular. However, M has abelian normal subgroups, so it is
not regular. ¢

3. Subnormal subgroups

Recall that a subring M of an associative ring R is called accessible
if there exists a chain of subrings M = My < M; <--- < M,_1 < M, =
= R such that M; <M, foralli=0,1,...,7—1. An important result
of Reinhold Baer [1] gives that for any accessible subring (he used the
term meta ideal of finite index) there exists an ideal I <R and a natural
number n such that I™ < M < I holds. An analogous statement does
not hold for arbitrary subnormal subgroups in groups, we can take,
for example, the wreath product of any nonabelian simple group with
the cyclic group of order 2. In groupoid-lattices one can introduce the
notion of metaabsorbents (see [13]) as a common generalization of the
concepts of accessible subrings and subnormal subgroups.

For a subgroup H < G let H® denote the normal closure of H in
G and Hg the normal core (that is, the intersection of all conjugates)
of H in G. Let X denote the class of all finite groups G such that for
every H < G the quotient H®/Hg is nilpotent. There is the following
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unpublished description of these groups.
Theorem 2 (L. G. Kovécs [7]). A finite group G belongs to X, if
and only if all nonabelian chief factors of G are simple and, for each
complemented abelian chief factor H/K of G and for each prime p,
0,(G/Ca(H/K)) is cyclic or (possibly generalized) quaternion.

Here, as usual, Cg(H/K) denotes the centralizer of H/K in G,
and O,(G) the largest normal p-subgroup of G.

From his characterization L. Kovacs has derived several conse-
quences.

Let A, B be finite groups, C<B. If A,B € X, then Ax B X
and B/C € X. f B/C € X and C < §(B),then Be X. If A e X
is a solvable group, then the nilpotent length (also called the Fitting
height) of A is at most 4, more precisely, the nilpotent length of A”
is at most 2. The class X is not closed under taking subgroups, nor
for subdirect products, nor for products of normal subgroups. Hence
the solvable groups in X form a normal subgroup closed Schunk class
which is neither a formation nor a Fitting class.

We finish with a problem motivated by Ex. 1. Recall that H < G
is a subnormal subgroup of defect at most 2 iff H <« H® « G.
Problem. Assume that (A) holds for all subnormal subgroups of defect
at most 2. Does it follow that (A) holds for all subnormal subgroups?
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