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Abstract: We investigate the algebraic properties of the necklace ring — in-
particular to describe the radical of such rings for various radical properties.

1. Introduction

A necklace is obtained by placing a colored beads, chosen from
a set of n colors, around a circle. If a necklace is asymmetric under
rotation, it is said to be primitive. It is known that the number of
primitive necklaces M (a,n) is given by the necklace polynomial

M(a,n) = %Zu (%) .
d/n

Here p denotes the classical Mobius function, ie ifnisa positive
integer, then
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1 ifn=1
pn) =< 0 if n = p?m for a prime p
(—=1)* if n = p1p2...pg for distinct primes p;.

It has been observed by Metropolis and Rota in 1983 [4] that the identi-
ties connecting M (afB,n) with M(a, i) and M (B, j) and M (8", n) with
M(B,7) can be expressed in ring-theoretic terms by means of the so-
called necklace ring. In addition, they showed that the cyclotomic iden-
tity provides an isomorphism between the necklace ring and a ring
structure on certain rational functions, the latter being isomorphic to
the ring of Witt vectors.

Subsequently these relationships have been studied by various au-
thors, but mainly as combinatorial entities. Only recently, these rings
became the object of purely algebraic investigations. Necklace rings can
be defined over arbitrary commutative rings with identity. Parmenter
and Spiegel [5] determined the Jacobson radical of such a necklace ring
and also showed that the necklace ring over a field F algebraically de-
termines F. '

Here we continue these algebraic investigations, concentrating
mainly on the radical theoretic aspects of necklace rings over arbitrary
rings. Apart from their intrinsic algebraic value, the radical theory of
necklace rings is interesting from another view point as well. A neck-
lace ring has as underlying group a complete direct sum of countable
copies of a ring A, and as a ring it has a homomorphic image which is a
subdirect sum of countable copies of the ring A. In general, not much is
known about the relationship between the radical of a ring and that of
an arbitrary direct product of the ring with itself. So, even though not
directly related, knowledge about the relationship between the radical
of a ring and the radical of the associated necklace ring, may provide
more insight into the radicals of direct products.

The analogy of these investigations to that of incidence algebras,
as pointed out by Parmenter and Spiegel [5] continues: Incidence alge-
bras over partially ordered sets were first introduced because of their
combinatorial applications (cf. Gian-Carlo Rota [6]) and later studied
because of their infrinsic interest as algebraic structures. In particu-
lar, Spiegel [7] determined the Jacobson radical of an incidence algebra
over a commutative ring with identity and subsequently an investiga-
tion into the general radical theory of incidence algebras over arbitrary
rings followed [10].
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For positive integers i and j, we use [¢,5] and (4,7) to denote
the least common multiple and the greatest common divisor of i and
j respectively. Useful to remember is that ij = [i,5](4,5) and that
(4,5) = ri + sj for some integers s and r. By N, we denote the set
Ny, = {1,2,3,---} U {w} where w denotes the first limit ordinal. A
ring usually means an associative ring, not necessarily commutative
and not necessarily with an identity. For k € N,,, let P (A) be the
direct sum of k-copies of the ring A (if & = w, Px(A) is the complete
direct sum of infinitely countable copies of A). For a € Py(A), we use
an to denote the n-th component of a, i.e. a = (a1, as,as, . ..) where
it is understood that a = (a1, as, a3, ... ,ax) whenever k is finite. We
often use the phrase “for suitable n” meaning n € {1,2,... Lk} if & is
finite and n € {1,2,3,...} if k = w.

On (Pg(A),+), the underlying group of the ring Py(A), define
a multiplication of a,b € Pgx(A) by (ab), = > lij1=n (% J)aib; for all
suitable n.

For a commutative ring A with identity, Metropolis and Rota, [4]
have shown that for k = w, P;(A) = (N, (A),+,.) is a ring, called the
necklace ring over A. This can be extended to arbitrary rings A and
indices k: '

Proposition 1. For each k€N, N,(A) is a ring where (Ny,(4), +)=
=(Px(A),+) and the multiplication is as defined above.
Proof. The verification of the distributivity is routine — we only re-
mark on the associativity. For a,b,c, € Ni(A) and any suitable n, the
n-th components of (ab)c and a(bc) are given by

(@))n= > > (i,5)(s,8)(ashs)e; and

[inﬂ:n [Slt]=i

(a(be)), = Z Z (p,9)(u,v)ap(bycy), tespectively.

[p,q]:n [urv]=q

Since (Z,])(S,t) = [’L_,’_L?%.:,t_] = }"Z%t = % and [[Svt],j] = [Sat,j] (the

latter is the least common multiple of s,¢ and j), we get ((ab)c), =
= D (s .t.4]=n %iasbtcj. Likewise (a(bc))y, = D lpuo]=n Trrapbucy from
which the equality (ab)c = a(bc) follows. ¢

If A is commutative, then so is Ni(A) and if 1€4, then (1,0,0,...)
is the identity for Ni(A). In order to determine the relationships
between the radical of A and that of Ng(A), knowledge about the
relationship between the ideals of these two rings will be required.
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This is done in the next section.

2. Ideals and homomorphisms of the necklace rings

For any suitable n, {a € Ng(A)|a; = 0 for all ¢ # n} is a subring
of Ni(A) denoted by (0,0,...0,4,0,...). This subring is isomorphic
to the ring (A, +, *,) where z *, y = nzy for all z,y € A. If k is finite
and n = k, we have (0,0,...,0, A) < Ng(A).

Let I < A. Then it is routine to verify that Ng(I) < Ni(4) with

hen ()

From this it follows that if A is a subdirect sum of rings A, 7 € A for
some index set A, then Ny (A) is a subdirect sum of the rings Ny (A4-).
In particular, if A is a direct sum of rings A, then Ni(A) is a direct
sum of the rings Ni(A,).

Define a function ¢y 1 : Nx(A) — Py(A/I) by

(ka(a,l,a,g,ag,...) = (?il +I,az +I,63+I,...)
where G, = ), din dag4 for all suitable n.

We denote the image of @1 by ®x(A/I), ie. Bx(A/I) :=
= {(a1+I,a1+2a2—|—I,a1+3a3+I,a1 + 2as +4a4+I...) 1 an €
e A for all suitable n}. Let Di(I) = {(a1,a2,as3,...) € Nx(A) | nan €
€ I for all suitable n}.

Proposition 2. g 1 is a ring homomorphism with ker ¢ 1 = Dy (I)
and %—% = &y (A/I) is a subdirect sum of k-copies of A/l

Proof. Let us write ¢ for ¢, 7. It is clear that ¢ is a group homomor-
phism with kernel Dy (I). To show that ¢ is a ring homomorphism, we
need to show that

>N d(q:, 7)ab; = (Zdad Zdbd)

d\n [i,j]=d din din

for all a,b € Ni(A) and all suitable n. The required equality will follow
if we can show that the two sets {d(4, j)as:b; | [i,7] = d and d|n} and
{dd'agby | with d|nand d’|n} coincide. Let d|n and choose 7 and j such
that [i,j] = d. Then iln and jin and d(i,j)ab; = [4,5](4,5)ab; =
='ija;b;. Conversely, suppose d|n and d'|n. Let u = [d,d']. Then u|n
and dd'agby = [d,d'|(d,d")aqby = u(d,d)agbs. Hence we conclude
that ¢ is a ring homomorphism.
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For each suitable n, let 7, : P,(A/I) — A/I be the n-th projection
and let v, := m, o p. For any z € A, let a = (z,0,0,...). Then a €
€ Ni(A) and y,(a) = z + I. Thus, 7, is a surjective homomorphism
with ker v, = {a € Ng(A)| D gy, daa € I} 2 Dy(I). Since Ny kervy, =
= Dg(I), we have ®y(A/I) = %’; %}1)) and the latter is isomorphic to a

subdirect sum of the k rings (%) / (%e—’:('yf)— = A/I for all suitable n. ¢
Proposition 3. ‘

1. @g,1 18 injective if and only if the following condition is satisfied:
If z € A and nz € I for a suitable n, then z = 0.
2. o1 18 surjective if and only if the following condition is sat-
isfied: For every x € A and every suitable n, there is oy =
= y(z,n) € A such that x — ny € I.
Proof. We write ¢ for ¢y ;.
1. If ¢ is injective, then Dy(I) = kerp = 0. Let z € A
with nx € I. For each suitable 7, let a; = { v 1fz —-n . Then a =
Oifi#n
= (a1,a3,03,...) € Di(I) =0, i.e. £ =0. The converse is clear.

2. Suppose ¢ is surjective. Let z € A and choose any suitable
n. Let a; = { 3: 1fz - for all suitable i. Then (a; + I,aq + I,
0ifi#n
a3+ 1,...) € Py(A/I) and by the assumption there is a b € Ny (A)
with
o) =(a1+T,aa+T,a3+1,...).

This means by € I, by +2by € 1,. Zd|n 1@bg € I and ) g4, dbg+

d#n
+nb, +1 = de dbg+ I =z + I. Since ) 4, dbg € I, we conclude

d#n
that z — nb,, € I.
Conversely, suppose the condition is satisfied. Let
(Cl +1,c0+4+1,c3 +I,...) € Pk(A/I)

We choose a1, a32,as,... € A inductively as follows: Let a; := ¢;. Since
cp—c1 € A, by our assumption we have an as € A with cg—c1—2a5 € I.
Thus, a3 +2a3+ I = ¢y + I. Suppose that for all m < n we have found
01,02,...,0, € A with dedad + I = ¢y, + I. By the assumption
there is an a, € A with (¢, — >_. d|n dag) — na, € I.

Thus, ¢, + 1 = Zdndad-}—l Thena—(al,ag,ag, .) € Np(A)
and ¢(a) = (01+I02+I03+I -0
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As a special case of the above, we have the results of Varadarajan
and Wehrhahn [9] and Parmenter and Spiegel [5] (who only considered
commutative rings with identity and k = w):

Corollary 4 ([9], [6]). Let A be an arbitrary ring and let k = w. The
homomorphism ¢, ¢ : N, (A) = P, (A) is:

1. injective if and only if (A,+) is torsion-free and

2. surjective if and only if (A,+) is divisible. O

If char A = p, p a prime, then

Dr(0) ={a € Nx(4)| an,=0 if(n,p)=1}=
= {(0,...0,ap,0,...,0,a2,0,...) | ajp € A}.

For k = p + 1, we then have Dg(0) N (0,0,...,0,A) = 0 and both the
ideals D (0) and (0,0,...,0, A) are non-zero. This means D(0) is not
an essential ideal of Ni(A). However, when k is infinite, then D,,(0) is
an essential ideal of N, (A) as we will show below. We use (0: A)4 to
denote the left annihilator of A, i.e. (0: A)a ={z € A|zA=0}.
Proposition 5. Let A be a ring with (0: A)4 = 0 and with char A =
=p, p aprime. Then Dy(0) is an essential ideal of N, (A).

Proof. Let I<N,,(A) with D,,(0)NI =0. Let a € I and z € A. Define
b€ D,(0) by |

b z ifn=p
" { 0 ifn#p.
Then ab = 0. Choose any m with (m,p) = 1 and let n := pm. Then
amT = Y f=n(l§)asbj = (ab)n = 0. Indeed, in the summation we
only have to look at those cases when j = p (for all other j we have
b; = 0). For such j, we need not consider the i's for which p/i since
for such values of i, (i,p)a; = pa; = 0. We thus assume (i,p) = 1.
But then pm = n = [i,p] = U% = ip, i.e. 1 = m. Thus a,z =
= D igl=n (b J)aibj = 0 for all z € A. Since (0°: A)4 = 0, we get
am = 0 for all m with (m,p) =1. Hence I C D,(0)NI=0.¢

We have seen in Prop. 3 that in general ¢ o : Ni(A) — Pi(4)
need not be surjective (i.e. @, (A) C Pr(A)). However, when k is
infinite and A has characteristic a prime, then ®,(A) is isomorphic to
P, (A). Parmenter and Spiegel have shown this for commutative rings
with identity ([5], Prop. 4.2), but the proof easily extends to the general
case which we record as:
Proposition 6. Let A be a ring with prime characteristic. Then ®,(A)
is isomorphic to P, (A). &
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Proposition 7. Let I <A and m > 1. Then (Dy(I))*™ C Ni(I™).
Proof. (by induction on m). Let m = 1 and choose a,b € Dy(I). Then
nay, nb, € I for all suitable n and

(ab)n = Y (i,0)aibj = Y (riji + sij5)ash; =

[7'1.7]=n [i)j]=n
= D (ris(ias)b; + sijas(jb;)) € 1
[iij]="‘

for some integers ;; and s;;. Thus (Dg(I))2 C Ny(I).

Suppose (D (I))?*™C Ng(I™) for m>1. Let a1, as, . . . 1 02(m+1) €
€ Di(I) with a; = (as1,042,043,...) for i = 1,2,...,2(m + 1). Then
nag, €I foralliand n.

Now

(a1a2 e az(m+1))n = Z (Z,j) (a1a2 [P aZm)i(a2m+1a2m+2)j =
[i,5]=n

=| Y (i) (mas - aam)i | | Y (5,)(azmrr)s(a2mz)e
[i.5]=n [s,t]=j
By the induction assumption (aias...a2;,); € I™ and from the first
step, Z[s,t]:j(s,t)(a2m+1)s(a2m+2)t € I. Thus (alaz...az(m+1))n €
€ I™*! for all n; hence (Dy(I))2(m+1) C Dp(I™+1). ¢

For any I < A, we always have Ni(I) C Dy(I). Next we look at

the requirements for the equality.
Proposition 8. Let I<A. Then Dy(I) = Ni(I) if and only if for any
suitablen and x € A, ifnz € I thenxz € I.
Proof. Suppose Di(I) = Ni(I) and let x € A with nz € I. Let
z ifi=n .
aiz{ o Then a € Dy(I) = Ni(I), i.e. z € I.
0 ifi#n.

Conversely, suppose the condition holds. Let a € Dg(I). Then
nay € I for all suitable n and by the assumption a,, € I follows for all
such n. Thus a € Ni(I). ¢

We conclude this section with an auxiliary result. For u > 1, let
M, (A) denote the complete u X u matrix ring over A.
Proposition 9. For any ring A, v > 1 and k € N, the rings
M, (Ni(A)) and Ni(M,(A)) are isomorphic.
Proof. Define 9 : M, (N (A)) = Ni(M,(A)) as follows:

Let
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X1 X2 ... X

X21 X22 v ae X2u
X = [er]uxu = . :

X1 Xuo . X

where X,, € Ni(4), say X,s = (z7°,2%%,...,25°,...) for all r,s =
=1,2,3,...,u.
For each suitable n, let X, be the matrix

ot g2 ... glv
_ :c%l :z:fL2 - wi“
— TS —
X'n = [$n ]uxu = .
ul u2 uU
Ty, Ly Ly

Let ’(,b(X) = (71,72,—)—(—3, P ), i.e.

([ Xrs]) = ¥ ([(27°, 25°, 25°, ... )]) = ([«7°], [25°], [25°], - - ).

The injectivity, surjectivity and preservation of addition of v fol-
lows without any undue strain, apart from the cumbersome notation.

We only remark on the preservation of the multiplication.
Let X = [Xpsluxu, Y = [Yesluxu € My(Ng(A)). Then

XY = [(XY)rs]uxu - l:i XrtY;tsjl

Xu

u

- rt _rt _.rit ts _ts _1s

= E:(5”1717273’37---)(3/1’927?/37---)
t=1 uxXu

which yields the n-th component of the (r, s)-entry in the matrix XY
as

Uu

Z Z (i, )ziyse for all suitable n.

t=1 \[i,j]=n

Thus the (r,s)-entry of the matrix in the n-th component of
Y(XY) is given by :

) u
SN Ghd)attyl

t=1 [i,j]=n

On the other hand, the n-th component of ¥(X)¥(Y) is given by
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Z (Z,J)[SI) ]'u,x'u, yJ uxy = Z ('I, .7) Zm'l’t ts _
[7:1.7']:’". [’L,]].—-'n, \ L uxa
Z DGR L1427, I
[1.7 =n duxu

3. Radical theory: general results

We shall see in the sequel that there is no canonical way to de-
scribe the radical of the necklace ring in terms of the radical of the base
ring. This relationship not only depends on the type of radical (hyper-
nilpotent or hypoidempotent), but also on the type of ring as well as
the choice of k.

By radical we always mean a radical in the sense of Kurosh and
Amitsur, see for example Divinsky [2], Wiegandt [11] or Szész [8]. For a
radical a;, we use Sa to denote the corresponding semisimple class, i.e.
Sa = {A] «a(A) =0}. A radical « is called hypernilpotent (respt. hy-
poidempotent) if all the nilpotent rings are radical (respt. semisimple).
A hereditary hypernilpotent radical (respt. hypoidempotent radical)
is called supernilpotent (respt. subidempotent). Heredity of a radical o
means I <A € o implies I € a; or equivalently, a(I) = I N a(A) for all
I 14 A. The supernilpotent radicals include the prime, nil, Levitzky (=
locally nilpotent), Jacobson and Brown-McCay radicals. The von Neu-
mann regular radical and the Blair radical (= f-regular) are examples
of subidempotent radical classes.

We start with a general result which shows that for most of the
well-known radicals, it is sufficient to consider only rings with identity.
For aring A, let A* denote the Dorroh extension of A, i.e. the canonical
embedding of A into a ring A* with identity. We always have A < A*
and A*/A = 7Z where Z denotes the ring of integers. De la Rosa and
Heyman [1] have shown that a(A*) = a(A) for all rings A if and only
if the radical « satisfies @(Z) = 0.

Proposition 10. Let a be a radical for which o(Z) = 0. For any ring
Aandk €N,

a(Ng(A%)) = a(Ni(4)).
Proof. Since (Z,+) is torsion-free, Ni(Z) = @ (Z) (cf. Cor. 4).
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By Prop. 2 we have Ni(Z) € Sa. Since Ni(A) < Ni(A*), we have
a(Ni(A)) C a(Ng(A*)). But Ng(A*)/Ni(A) =2 Np(A/A*) 2 Ni(Z) €
€ So; hence a(Ng(4*)) C Ni(A). Thus a(Ng(A*)) C aNk(A)) and
the equality follows. ¢

A radical o has the matrix extension property if a(M,(A4)) =
= M, (a(A)) for all rings A and u > 1. The next result follows directly
from Prop. 9:
Proposition 11. Let a be a radical with the matriz extension prop-
erty. For any ring A, k € N, and u > 1, we have a(Ni(M,(A4))) =
> M, (a(Ng(A)). ¢

There are two natural ideals of Ni(A), namely Ni(a(A)) and
Dy (c(A)) which could serve as a link between the radical a(Ny(A)) of
Ni(A) and the radical a(A) of A. We next investigate the relationship
between these two ideals. We always have Ni(a(A)) C Dg(a(A)) and
the requirement for the converse follows from Prop. 8 which we record
in: :
Proposition 12. Let a be any radical class. Then the following are
equivalent:

1. Nk(a(A)) = Dk(a(A))

2. For any suitable n and z € A, if nz € a(A), then z € a(A).

3. (A/a(A),+) is torsion-free.

A last general result is:
Proposition 13. For any radical class o and k € N, a(Ni(A)) C
C Di(a(A)).
Proof. By Prop. 2, and since semisimple classes are subdirectly closed,
we have %)—) =~ @ (A/a(A)) €Sa. Hence a(Nk(A)) C Dg(a(A4)). O

4. Hypernilpotent radicals

We shall see below that for £k = w, the equality a(Nk(4)) =
= Dg(a(A)) does not hold in general; not even if the radical is su-
pernilpotent. An instance when it does is given by
Proposition 14. Let o be a hypernilpotent radical and suppose a(A)
is nilpotent. Then a(Nk(A)) = Di(a(A)) for any k € N,,.

Proof. Suppose (a(4))™ = 0. By Prop. 7 we have (Dg(a(A4)))*™ C
C Ni((a(A))™) = 0. Since a is hypernilpotent, Di(a(4)) C a(Nk(4)).
The equality then follows from Prop. 13. ¢
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We remark that the equality a(Ng(A)) = Dg(a(A)) implies
Ni(a(A)) € a(Ni(A)). In general this inclusion is sharp, even for su-
pernilpotent radicals: Let A = Z4 be the ring of integers mod4 and let
J denote the Jacobson radical. Since A is commutative with identity,
it follows from Parmenter and Spiegel [5] (or Prop. 14) that

J(Nw(Z4)) = Dy (T (Z4)) = D ({0,2}) = |
={a € Ny(Z4)| azn—1 € {0,2} for all n}.
Thus b=(0,1,0,1,0,1,0,1,...) € T (Nu(Z4)), but b ¢ N, (T (Zs)).

For any hypernilpotent radical o, we have Di(0) C a(Ni(A))
(using Prop. 7). The next result gives the requirements for the equal-
ity. At the outset, it is worthwhile to remember that A € Sa implies
@ (A) € Sa (Prop. 2). )

Proposition 15. Let a be a hypernilpotent radical. Then:
1. a(Ng(A)) = Dr(0) if and only if Bx(A) € Sa.
2. a(Ny(A)) =0 if and only if ®(A) € Sa and whenever nz = 0
for a suitable n and x € A, then z = 0.
3. a(Ny(A)) = 0 if and only if D, (A) € Sa and (A, +) is torsion-
free.
Proof. From Prop. 2 we know a(Ni(A4))/Dr(0) <1 Ni(A)/Dy(0) =
gI‘hus the equivalence in 1. follows. The last two statements, read
in conjunction with Prop. 3, are just special cases of 1. ¢

We should point out that the radical does its job fairly well: Let
o be a hypernilpotent radical with a(A) nilpotent. Then (Ny(A))/
/ a(Ngx(A)) = Ni(A)/Di(a(A)) = &,(A/a(A)) and the latter is a
subdirect sum of k copies of the semisimple ring A/a(A).
Proposition 16. Let « be a hypernilpotent radical. Then Ni(A) €
€ a if and only if ®(A) € a. In particular, if x(a(A)) € o, then
Ni(a(A)) C a(Ni(A)).

Proof. Since Dy (0) € o, the equivalence follows from the isomorphism
Ig’; ((‘g)) = @1 (A) and, on the one hand, the homomorphic closure of o
and on the other hand, the extension closure of a. ¢

Let us remark that if £ is infinite and char A = p, p a prime, then
N, (A) € o if and only if P,(A) € o for any hypernilpotent radical o
(cf. Prop. 6). In addition, for such radicals o and any field F', we have
N, (F) € o if and only if P,(F) € o. Indeed, if char F is a prime,
it follows from the proceeding remark. If char F' is 0, then (F,+) is
divisible and by Cor. 4 we have &, (F) = P, (F).




280 S. Veldsman

Proposition 17. Let a be a hypernilpotent radical. Then the following
are equivalent:

1. a(N(A4)) = Dx(a(4)).

2. (Dr(a(A)))™ C a(Ni(A)) for some m > 1.

3. Ni(a(4)) C a(Nk(4)).
If, in addition, o is also hereditary (i.e. o is supernilpotent), then we
may add the following to the list of equivalences:

4. Ni(a(4)) € a.

5. @ (oz(A)) € a.
Proof. 1. = 3.: Nx(a(4)) C Di(a(4)) = a(Ni(4)).

3. = 2.0 (Di(a(4)))? € Ni(a(4)) € a(Nk(4)) (cf. Prop. 7).

2. = 1.: Suppose (Dg(a(A)))™ C a(Ng(A4)) for some m > 1.
Then %ﬁ%g—g is a nilpotent ideal of g\’;(&)) € Sa. Thus Di(a(A4)) =
= a(Ng(4)).

4. => 3.: This implication holds in general and, if o is hereditary,
the converse implication is clear.

The last equivalence follows from Prop. 16. ¢

Worthwhile noting is that if o is supernilpotent and A is a ring
with char A prime or if A is a field, then a(N,(4)) = Du(a(4)) if and
only if N,(a(A)) € a if and only if P,(A4) € o. But, at least for the
well-known supernilpotent radicals c, we have a(F) = 0 for any field
F. Hence, a(N, (F)) = D,(0) as we have seen in Prop. 15.
Corollary 18. Let o be a hypernilpotent radical. Then the following
are equivalent:

1. a(Ng(A)) = Di(a(A)) for all rings A.

2. A € a implies Ni(A) € a.

3. A€ a implies Px(A) € 0.0

When £ is finite, things are much simpler:
Proposition 19. Let o be a supernilpotent radical and suppose k is
finite. Then a(Nk(A)) = Di(a(A)) for all rings A. In particular,
Ni(A) € a if and only A € a.
Proof. Let A € a. By a result of Heinicke [3] it is known that any
hereditary radical is closed under finite subdirect sums. Hence ®5(A) €
€ o (cf Prop. 2) and the result follows Cor. 18. ¢

Next we will determine the Jacobson radical of Ni(A). For the
special case when A is commutative with identity, Parmenter and Spie-
gel [5] have shown that J(N.(A4)) = D,(J(4)). We will extend this
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result to arbitrary rings and any k € N,,. For & finite, we may use Prop.
19 above; so suppose k is infinite. In this case, the required result will
follow from a more general procedure.

Suppose that for all rings A there is a function f4 : AXx A — A
which satisfies:

(1) fa(a,0) =a for alla € A and
(2) If ¥ : A— B is a surjective homomorphism, then 4 (fa(a, b)) =
=fe(¢(a), (b)) for all a,b € A.

An element a € A is called an f-element of A if thereisa b € A
such that f4(a,b) = 0. The ring A is called an f-ringif a is an f-element
of A for all @ € A.

Let A be an fring. We want to know when ®(A) is an fring.
Let a = (a1,a1 + 2a.,... ?de dag,...) € ®x(A). We need to find
ab = (bl,bl + 2bs,b1 + 3bs,... 7Zd|n dbg, .. ) € @k(A) such that
fo,(a)(a,b) = 0. We will construct the components by, by + 2by, by +
+ 3bs, ... of b inductively. For a € A, since A is an f-ring, there is a
b1 € A such that fa(a1,b1) = 0. Suppose we have found by, bo,...b, €
€ A for a suitable n with n > 1, such that

fa (Zdad, Zdbd> =0forallm=1,2,...,n.

dlm dlm

We need to find b,41 € A such that

fa| Y dag, D dba] =0.

din+1 d|n+1

If such a b,41 can be found, we may conclude by induction that there
is a b € ®;(A) such that

fa|D daa, D dbg| =0

din din

for all suitable n.

Then b = (b1, b1 + 2b3,...3 4, dba, .. .) € Px(A) and for all suit-
able n and if 7, : ®,(A) — A denotes the n-th projection, we have
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Tn(Fo,(4)(@: D)) = fr. (@4(4))(Tn(a), 7 (b)) =

= fa (Z dag, Zdbd) =0.

din d|n

Hence, fs,(4)(a,b) = 0.

In order to find the above mentioned b,4+1 € A, we need to con-
sider two conditions that the property f may satisfy:

(F1) Let Rbe aring, z € Rand n > 1. If fr(nz,y) = 0 for some
y € R, then there is a z € R such that fr(nz,nz) =0.

(F2) Let R be aring, I < R and z,y € R such that fr(z,y) is an
f-element of I. Then there is a z € R with y — 2z € I and fgr(z,2) = 0.
Proposition 20. Suppose the property f satisfies conditions (F1) and
(F2). If A is an f-ring, then ®x(A) is an f-ring.

Proof. In view of the proceeding discussion, suppose we have found
bl, bz, by € A such that

fa (Zdad, Zdbd> =0forallm=1,2,...,n.

dim dlm
We complete the proof by showing how to choose by,1.
Now both @ := (a1,a1 + 282, ... , 2 gy daq) and b’ := (b1, by +

+ 2bg,... ,Zdln dbg, Y gjn+1 dbg) are elements of ®,41(A). Let v :
d#n+1
: §pi1(A) — ®,(A) be the function that “forgets” the (n + 1)-th

component. Clearly v is a surjective ring homomorphism. For each
m=1,2,...,nlet 7y : &,(A) = A be the m-th projection.
Then for each m,

Tm(fe,4)(7(@), 7)) = fa (Zdad, Zdbd> =0,

d|m djm
hence
Y(f@nr1(4)(@ D) = fa,a)(v(@),7()) =0.
Thus
e:= fs,,,(@b) €kery=(0,0,...,0,(n+1)A),

say e = (0,0,...,0,(n+ 1)z) for some z € A. Since A is an f-ring,
there is a y € A such that fa4((n+1)z,y) = 0. By condition (F1) there
is an s € A with
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fa((n+1)z, (n +1)s) = 0.
Then ¢ := (0,0,...,0,(n+1)s) € kery and fon10a)(e, c¢) = 0. Indeed,
forallm =1,2,...,n,n+1 if we also use m,, to denote the m-projection
Tm : Pny1(A) — A, we have
T (fenr1(4)(€:€) = fa(mm(e), Tm(c))
f4(0,0) ifme{l,2,...,n}

B { fa((n+ 1Dz, (n+1)s) ifm=n+1

=0.
Thus e = f3,,,(4)(@,0") is an f-element of kery. By (F2) there is a

b € ®,.1(A) such that ' —b € ker and fo,.1(4)(@,0) = 0. Thus v(b) =
=y(b") = (b1, b1 + 20s,... » 2 djn @ba) which means that the (n + 1)-th

component of b is of the form 3" gini1 dbg + (n + 1)t for some ¢ € A.
d#n+1
Let by41 :=t. Then

fa ( Z dag, Z dbd) = f“n+1(<pn+1(A))(7r"+1(a)’7rn+1(5))

din+1 d|n+1
= 7rn+1(fq>n+1(,4) (a, B)) =0.0

Example 21. For any ring A, let f4(a,b) := a+b—ab. Then f(a,0) = a
and if 4 is a homomorphism of A, then ¥(f4(a, b)) = foay((a), ¥ (b)).
Moreover, (F1) and (F2) are also satisfied:

(F1) Suppose 0 = fa(ka,b) = ka+b— kab. Let ¢ := ab—a. Then
b= kab— ka = kc and f4(ka,kc) = 0.

(F2) Let I < A with z,y € A such that f4(z,y) is an f-element
of I. Then there is an t € I with f4(fa(z,y),t) = 0. Let 2z := fa(y,1).
Then fa(z,2) = fa(fa(z,y),t) =0andy—z=y— (y+t—yt) = yt —
—tel.

It is clear that A is an f-ring if and only if A is Jacobson radical.
From Props. 19 and 20 we then have
Proposition 22. For any ring A and k € N,,,

J(Nk(A)) = De(T(4))
where J denotes the Jacobson radical.{)
Proposition 23. Let o be any radical with J C o and let A be a ring
with J(A) = a(A). Then a(Ng(A)) = J(Nk(A)) = Di(a(A)).
Proof. From Prop. 13 and the assumptions, we have a(Ng(4)) C
C Di(0(A)) = D(J(4)) = T(Nu(A)) C a(Ne(A)). 0
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For example, if G denotes the Brown-McCoy radical and A is a
commutative ring or A has the dcc on left ideals, then G(A) = J(A).
Then Prop. 23 is applicable which yields G(Ni(A)) = J(Ni(A)). How-
ever, one should not be tempted to think that J(A4) = a(A) will always
imply J (Ng(A)) = a(Ng(A)) for a radical o as the next example shows.
Example 24. Let o be the nil radical. We know « is supernilpotent
and o C J. Let B be the Zassenhaus ring given in Ex. 3 of Divinsky
[2] which we reconstruct here for completeness: For each real number 7
with 0 < 7 < 1, consider the set of all symbols z,. Let F' be a field with
char F = 0. Then B is the commutative algebra over F' with {z,| 0<
< 7 < 1} as basis. This means the elements of B are finite sums of the
form Y _b,z.(b; € F) with formal addition and multiplication - the
latter determined by the following products of the base elements:

Trgy HTH+v<1
TrTy = .
0 otherwise.

Then it is known that B is nil (i.e. B € ), but B is not nilpotent.
Let b = (by,b2,b3,...) be the element of N, (B) with b, = z,
where 7, = 5agy for alln =1,2,3,.... Then b™ # 0 for all m > 1. In-
deed, it is easy to see that the m-th component of ™ contains the term
M1 by )™ = mm—lglcznv:z+1 # 0. Thus a(N,(B)) # N,(B). Since a C
C J, we have B = a(B) = J(B), but a(N,(B)) C N,(B) = Dy (B) =
= D,(J(B)) = J(N,(B)). One may also verify that a(N,(B)) # 0.
This example also shows that in general a(N,,(A)) need not coin-
cide with N,,(a(A)) nor with D, (a(A)) , even though a(A) = A and
o is a supernilpotent radical. ¢
In addition to Prop. 23, there are more cases when a(A) = J(A)
does imply a(Ng(A)) = J(Nk(4)) :
Proposition 25. Let a be a hypernilpotent radical and let A be a ring
with a(A) = J(A) nilpotent. Then a(Ni(A)) = T (Ne(A)).
Proof. From Props. 14 and 22 we get a(Ngx(A4)) = Di(a(4)) =
= D(J(A)) = T (Ni(4))- 0

5. Hypoidempotent radicals

Lastly we will investigate the hypoidempotent radicals of Nj(A).
Here we shall see that the description of the radical is even less orderly
than for the hypernilpotent radicals (depending very much on k and the



Necklace rings and their radicals 285

. . . . . Dy (a(A))
characteristic of A). If « is a hypoidempotent radical, then F,’:Ia_(Z)_) €

€ Sa (by Prop. 7). Since Sa is closed under extensions, we conclude
from Prop. 2 and

Di(a(4)) = Ni(4) _, _Ni(4)
Ni(a(4))  Ni(a(4)) * Di(a(4))

that Niv(koféz)) € Sa. Thus we have

Proposition 26. Let o be a hypoidempotent radical. For any ring A
and k € N,,, we have a(Ny(A4)) C Ni(a(A)). The equality holds if and
only if Ni(a(A)) € a. :
Corollary 27. Let o be a hypoidempotent radical. Then the following
are equivalent:

1. a(Ng(A)) = Ni(a(4)) for all rings A.

2. A € o implies Ni,(A) € a.

However, we shall see below that Ni(A) € « is not very likely for
arbitrary rings, even if 4 € a.
Proposition 28. Let « be a subidempotent radical.

1. For finite k,Ny(A) € « if and only if A € o and whenever
nt =0 forr e Aandn € {1,2,3,... ,k}, thenz = 0. In
particular, Ni(a(A)) € o if and only if whenever nz = 0 for
T € a(A) andn € {1,2,3,...,k} then z = 0.

2. Suppose k = w and o satisfies: B € a implies ®x(B) € a.
Then N,(A) € o if and only if A € o and (A,+) is torsion-
free.  In particular, Ng(a(A)) € a if and only if (a(A),+) is
torsion-free.

Proof. 1. Suppose Nx(A4) € a. Since « is hereditary, Dy(0) € San
Na =0 (cf. Prop. 7). Hence Ny(A) 2 ®;(A) (cf. Prop. 2). Since A is
a homomorphic image of ®;(A), we have A € a. Conversely, suppose
A€ oand nr =0 impliesz =0,z € Aand 1 <n < k. Then Ni(A4) =
& ®4(A) € a since D(0) = 0 and « is closed under finite subdirect
sums.

2. Similar to (1) above. ¢

Example 29. Let v denote the von Neumann regular radical. If A4 €
€ v, then ®,(A) € v for all kK € N,. Indeed, for finite k it follows
since v is hereditary (and thus closed under finite subdirect sums). For
k = w, we will use Prop. 20. For a ring A, let fa(a,b) = a — aba.
Then fa(a,0) = a and for any homomorphism ¢ of A,%(f4(a, b)) =
= fy(ay(¥(a),¥(b)). Moreover, the conditions (F1) and (F2) are also

&= @k(A/OZ(A)) € 80!7,
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satisfied:
(F1) Suppose fa(na,b) = 0. Then na = nabna and for ¢ :=
:= nbabab,
fa(na,nc) = na — nancna = na — nannbababna =
= na — (nabna)b(nabna) = na — nabna = 0.

(F2) Let I<A, a,b € Asuch that fa(a,b) € I and fA(fA(a b),1) =
= 0 for some ¢ € I. Then
a = aba + aia — aiaba — abaia + abaiaba =
= a(b+ i — iab — bai + baiab)a = aca
where
¢ = b+ 1 — iab — bai + baiab.
Thus
fala,c)=0andb—cel.
It is clear that A € v if and only if A is an f-ring; hence ®,(A4) € v if
A € v follows from Prop. 20. ¢
Proposition 30. Let o be a subidempotent radical. Then a(N,(A)) =
= 0 for any ring A with char A prime and (0: A)a =
Proof. By Prop. 5 we know D,,(0) is an essential ideal of A. Since «
is subidempotent,
D,,(0) N (N (4)) = a(Dw(0)) = 0;
hence a(N,(A4)) =0. O
For finite k, the following is often a useful tool when calculating
the radical of Ng(A) :
Lemma 31. Let o be a hereditary radical with k finite. If A € o and
I < Ny, (A) with D(0)NI =0, then I C a(Ng(A)).
Proof.

I o I+Dy(0) Ni(4)
IND(0) —  Dx(0) Di(0)
hence I C a(Ng(A4)). ¢
Corollary 32. Suppose a is a subidempotent radical, k is finite and
A € a. Then a(Ng(A)) is the (unique) mazimal element of the set
{I < Nk(A)|Dk(0) NnI= 0}.

Proof. Since « is subidempotent, a(Ny(A)) N D (0) = 0. Suppose I <
< Ni(A) with Dg(0) NI = 0 and a(Ngx(A)) € I. By the above lemma
we have a(Ng(4)) =1. 0

I=

& Cbk(A) € qa;
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Proposition 33. Let a be a subidempotent radical and let k be finite.
Let A be a ring with char A = p, p prime, and A € . Then a(Ni(A)) =

0 if < kor if
= (Vi,Va,..., Vi) where V,, = { itpn < kor if pin

=1,2,3,... k.
Proof. Note firstly that A € o implies (0 : A)4 = 0 (because « is
hereditary and hypoidempotent).

Let I := (V1,V3,Vs,..., Vi) where the V,’s are defined as above.
We show I < Ni(A). That I is a subgroup of Ni(A) is clear. Let
a € I and b € Ni(A). We show ab € I, the other case ba € I follows
similarly. If pn < k, then (ab), = Z[i,ﬂ:n(z’, j)aib; = 0 since for
each ¢ with [1, 5] = n, we have ip < np < k. From the definition of
I=(V1,V2,Vs,..., V) we have a; = 0.

If n = pu for some u > 1, choose any i with [i,7] = n = pu. Then
i|pu implies ¢ = pd or i = d for some d with dlu. If i = pd, then a; = 0
and if ¢ = d, then pi = pd < pu = n < k also giving a; = 0. Hence
ab € I. Note that Dy(0) NI = 0; thus Prop. 31 yields I C a(Ny(A)).

Since « is subidempotent, we have Dy (0) N a(Ng(A)) = 0. This
means a(Ng(A)) CW = (W1, W,,...,Ws) where

0 ifpn <kand
Wn:{ ifpn <kandptn

ln =
A otherwise for all n

A otherwise.
Indeed, let a € a(Ny(A)) and choose = € A arbitrary. Let
b=(0,0,...,0,z,0,...,0)
where b, = z. Then b € Dy (0) and so ab = 0.

Let n € {1,2,...,k} with pn < k and p { n. We determine the
pn-th component of ab. For this we only have to look at the terms of
Z[i, j]=n(z', J)asb; for which j = p. For these we consider two cases. If
(4,p) = 1, then pn = [i,p] = ip, i.e. i =n. If (¢,p) # 1, then (i,p) =
= p and thus ¢ = pu for some u > 1. Then pn = [i,p] = i = on,
le. n=wand 0 =37, (i,7)ab; = > i pl=pn (D) Aiby = anz +
+ PapnT = anz for all z € A. Thus a, = 0 and so a(Ny(4)) C W.
Since o is hypoidempotent, we have a(Ny(4)) = (a(Nx(A)))? C W?
and to complete the proof we show W2 C I. Let a,b € W. We show
(ab)n = 0 whenever n € {1,2,3,...,k} with pn < k or p|n.

Suppose firstly pn < k. Then (ab), = Z[z.’j]zn(i,j)a,-bj and for
any i,j with [i,j] = n, we have pi < pn < k and pj < pn < k. If any
one of 4 or j is not a multiple of p, then a;b; = 0.
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Suppose that both i and j are multiples of p. Then p|(i, j) and so
(i,j)aibj =0.

Suppose p|n, say n = pu for some u > 1. Consider any 1 and j
with [4,7] = n = pu. If both i and j are multiples of p, then pl|(i,7)and
(i, 5)a;b; = 0. Suppose thus one of them, say j, is not a multiple of p.
Then (p,j) = 1.

Since j|pn and (j,p) = 1, we have j|lu. Thus jp <up=mn <k and
ptj which makes b; and also (i, j)asb; zero. We conclude that also for
this case (ab), = 0. Thus W2 C I as claimed. ¢
Corollary 34. Let a be a subidempotent radical and let k be finite. If
A is a ring with prime characteristic p, then

a(Ng(A)) = (V1, V2, Va, ..., Vi) where

V—{O if pn < k or p|n
" a(A) otherwise.

Proof. If a(A) = 0, the result follows from Prop. 26. Suppose thus
a(A) # 0. Then, again from Prop. 26, we know a(Ni(4)) C Ni(a(4)).
Thus a(Ng(A)) € a(Nk(a(A))). On the other hand, since Nx(a(A4)) <
4 Ni(4), we have a(Nx(a(4))) C a(Nk(A)). Thus a(Ng(4)) =
= a(Ng(a(A))) and the result follows from the previous proposition
since the characteristic of A is prime. ¢

Example 35. Let o be a subidempotent radical for which Z, € « for
all primes p (Z, is the ring of integers mod p). From Props. 30 and 33
we have, for example:

a(Ny(Zp)) =0 for all p
Ni(Z ifk<p
avza) = { ) o
(0,Zp, L, . .. ,Zp,0) if k=p,
O{(N4(Z2)) = (07 0, Z27 O)’
O!(N7(Z2)) = (0, 0, 0, O, Zz, 0, Zz) and
O!(N7(Z5)) = (07 ZS, ZS) Z57 07 Z5a Z5)
Using the fact that the necklace ring construction is well-behaved with
respect to the formation of direct sums (cf. the beginning of Section 2),
as is the radical of finite direct sums, we may exploit the above result

further. For example, if A = Zg = Zo®Z3, then 2A = Z3 and 3A = Z,.
Thus



Necklace rings and their radicals 289

a(Ng(A)) = a(Ns(Zs)) ® a(Ng(Z3))
= (0,0,0,0, Z,, 0,Z2,0) & (0,0,0,Z3, 73,0,Z3,7Z3)
=(0,0,0,Z3,Zy & Z3,0,Z9 @ Zs, Z3)
= (0,0,0,24, 4,0, 4,24)

and likewise

a(Ns(A)) = (0,24,34). ¢
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