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Abstract: The aim of this note is to prove two common fixed point theorems
in complete metric spaces for a set of self—maps in connection to some fixed
point theorems due to J. Matkowski.

1. Introduction

In the paper [7], J. Matkowski (see also Meir-Keeler [9]) has given
the following generalization of Banach’s principle,
Theorem 1.1. Let T be a self-mapping of a complete metric space
(X,d) and let

(M;) d(Tz,Ty) < d(z,y) foral z,y€X,z+#y.
If for every € > 0 there exists a § > 0 such that
(Ms) €e<d(z,y) <e+d implies d(Tz,Ty)<e

then T' has a unique fized point; moreover its domain of attraction co-
incides with the whole of X .
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J. Matkowski has also generalized in the paper [7] a theorem due
to Boyd and Wong (see [1]) by the following,
Theorem 1.2. Let T be a self-mapping of a complete metrzc space

(X,d) such that d(Tz,Ty) < v(d(z,y)), z,y € X, for some increasing
function 7 : [0, +oo[— [0, +oco[ fulfilling the condition nli)IEOO y*(t) =0
for all t > 0. Then there ezists ezxactly one fized point of T and its
domain of attraction coincides with the whole of X ..

: The object of this note is to provide some common fixed point
theorems in connection to the Ths. 1.1, and 1.2. This paper is organized
as follows. First we establish Th. 2.1 which may be considered as a
generalization of Th. 1.1. We emphasize here that while condition (M)
forces the mapping T to be continuous on the metric space X, the
mappings involved in our result (Th. 2.1) need not to be continuous. So,
we observe that no continuity arguments are used, making a difference
between this theorem and Th. 1.1 of Matkowski. Secondly we provide
Th. 2.2 which generalizes to some extent Th. 1.2 of Matkowski.

2. Results

Theorem 2.1. Let S,T be two self-mappings of a complete metric
space (X,d) and let .
(A1) d(Sz,Ty) < d(z,y) forall z,y€X, z#y.
If for every € > 0 there exists a 0 > 0 such that
(Ag) e<d(z,y) <e+d6 implies d(Sz,Ty)<e
then S and T have a unique common fized point z € X. Moreover
Fix(S) = Fix(T) = {#}.
Proof. (i) We begin with the construction of a sequence of X. Let zo be
some point in X. We define
Top = Sﬂ?zn_l, n = 1, 2, Cee

ZTon+1 = T'Ton, n=0,1,2,...
We put t,, := d(Tn, Zn+1) for all integer n and we prove that ¢,, = 0 for
some integer ng. Therefore, we may assume that ¢, > 0 for all integer

n. By using property (A1), we see that for an each even integer n, we
have
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1 ln = d(S"En—l; T-T'n) < d($n_1, xn) =tp_1 = d(T$n-2, Szn—l) <
( ) < d($n~27wn—1) = tn_a.

The inequalities in (1) show that sequence (¢, ), is decreasing. Let ¢ be
the limit of this sequence and suppose that ¢ > 0. Then there exists an
even integer ng such that ¢ < t,, <t+ (). By the property (As), we
get d(Tzp,, Stpyy1) = tng+1 < t. This is a contradiction. Therefore
¢t = 0. We deduce that the sequence (t,),, converges to zero.

(ii) Now, we shall prove that {zn} is a Cauchy sequence. Without
loss of generality, we can suppose that 0 < § (€) <, for each € > 0 and
that neither the sequence {2, } nor the sequence {®2n+1} is stationary.
Let us fixe an € > 0, then we can find an integer kg > 1 such that 2r, <
< d(¢) for each integer n > 2kg, where Tn = ln_1 + tp + tny1. We
set By := {z € X : d(z,z2k,) < €+ 5(c)}. We shall prove that By is
invariant under S and T.

(a) First we prove that S(By) C By. So let z € B,.

If £ = x93, then (since Tok, 7 T2ko+2) We have the following
inequalities,

d(STakys Taky) < A(STokg, TTopy42) + A(TTorg+2, Toky) <
(2) < d(T2ko, Tako+2) + d(Take+3, Tan,) <
< 27'2k0+1 < 5(6)
If  # 2y, then there are two cases:
If 0 < d(z, zax,) < €, then
d(SlJ, -'L'Zko) S d(Sx, TCEQkO) -+ d(TiEzko,.’Ezko) S
< d(%, Taky) + d(Zokg+1, Tak,) <
< €+ rop, < €+ 0(e).
If € < d(z,72k,) < € + 6(€) then, by property (As), we have
d(S%, Toky+1) <e. We deduce then that
d(Sz, Tor,) < d(SzT, Tog, 1) + d(Take+1, Taky) < €+ 0(e).
(b) Secondly we prove that T(By) C By. Take z in By. If z = T2k
then we have Tz = Zake+1 € Bo. If x = xqy, 1 then since the sequence
(T2n+1)n Is not stationary, we can write

d(TToky—1, T2ke) < A(TTokg—1, STargt1) + d(STary 41, ok, ) <
< d(@2ko~1, Takg+1) + A(Tokg+2, Tag,) <
< 2rap, < B(e). |
It remains to handle two cases.
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If 0 < d(z, Tog,) < € and T # Tag,—1, then we have
d(Tz, Tok,) = d(T'T, STak,—1) < A(%, Tane—1) <
< d(z, Tar,) + d(Takg» T2ko—1) < €+ 0(€).
If ¢ < d(z,Tar,) < €+ 0(€) then according to property (Ag), we
have d(T'z, STar,) < €, and by using inequalities (2), we get
d(Tx, Tan,) < A(TT, STary) + d(STaky, T2k,) < €+ 0(€):

As a consequence, we deduce that z,, € By, for all integer n > 2ko.

Thus for all p,q > 2kg, we obtain

d(zp, T4) < d(Tp, Tano) + AT 2ky, Tq) < 2[e+0(€)] < 4e.
Hence {z,} is a Cauchy sequence in the complete metric space (X,d),
thus one may find a point z = 2(S,T) € X such that £, — 2 as
n — +00. '

(iii) We shall prove that z is a common fixed point for S and T.
Since the sequence (Tan)n is not stationary, it must contain a subse-
quence (Tan(k))k Such that Zon (k) #+ z for every integer k. Therefore for
each integer k, we may write

d(z,82) < d(z, Tonky+1) + AT +1,52) <
(3) < d(2, Tanm)+1) + AT Tan k), S2) <
< d(z, 332n(k)+1) + d(-’ﬂzn(k), Z)‘-

We let k — +oo in (3) to get Sz = z. In a similar manner, we obtain

CTz=z.

(iv) Uniqueness of z. Suppose that there exists another point £ #
+ z fixed, for instance, by S. We use property (Ap) with € == d(¢, 2),
and get

d(€,2) = d(S¢,Tz) < d(§, 2),
a contradiction.

It is proved that there exists a unique point z € X such that
Fix(S) = {2z} = Fix(T) = Fix({S, T}). This completes the proof of our
theorem. ¢ :

Now, we establish a common fixed point theorem connected to
Th. 1.2 of Matkowski. We point out that our result belongs to the
class of common fixed point theorems obtained by altering the distances
between the points with the use of some suitable functions. Many works
(see the references) were devoted to this field of investigations in the
fixed point theory. Here we want to contribute by the following
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Theorem 2.2. Let S,T be two self-mappings of a complete metric
space (X, d) such that

(B)  ¢(d(Sz,Ty)) < v(4(d(z,y))) Voz,ye X with z#y,

where v, ¢ : [0, +00[— [0, +oo[ are two continuous functions fulfilling

the following conditions:

(W1) ¥(t) <t for all t > 0. .

(W3) ¢ 1is increasing on [0, 4+oco[ and ¢(t) =0 < ¢ = 0.

Then S and T have a unique common fized point z € X. Moreover

Fix(S) = Fix(T) = {z}.

Proof. (i) We consider the same sequence as in Proof of Th. 2.1 (a):

To € X Ton = Ston_1, (n=1,2,...); Tony1 = TTop, (n=0,1,2,...).
We put t,, := d(zp, Zp1) for all integer 1 and we prove that ¢,, =

= 0 for some integer ng. Therefore, we may assume that ¢, > 0 for

all integer n. In this case, by property (W), we get é(tn) > 0 for all

integer n. By using the assumptions (B) and (W1) we obtain, for every

even integer n > 2, the following inequalities

b(tn) = ¢(d(Szn_1, Tz,)) < V(P(tn-1)) <
(4) < Pltn-1) = ¢(d(S$n—1aT$n—2)) <
< Y(ltn-2)) < Bltn_).

Since ¢ is increasing, the inequalities in (4) show that the sequence
(tn)n is decreasing. Let ¢ be the limit of (,)n, and let us suppose that
¢t > 0. By the continuity of ¢ and <y, we obtain from the first inequality
in (4), and property (Wy) that 0 < ¢(t) < ¥(¢(t)) < ¢(t), which is a
contradiction. Thus we must have ¢ = 0.

(ii) Now, we shall prove that {z,} is a Cauchy sequence. Since
t = 0 one needs only to see that {zs,} is a Cauchy sequence. To
get a contradiction, let us suppose that there is a number ¢ > 0 and
two sequences {2n(k)}, {2m(k)} with 2k < 2m(k) < 2n(k), (k € N)
verifying
(5) d($2n(k)) :EZm(Ic)) > €.
For each integer %, we shall denote 2n (k) the least even integer exceed-
ing 2m(k) for which (5) holds. Then

d(Tom(k), T2nk)—2) S € and  d(Tam(ry, Tangr)) > €. .

For each integer k, we shall put p;, := d(To2m(k), Ton(k))s Sk = d(T2m(x),
m2n(k)+1)a qrx ‘= d($2m(k)+11m2n(k)+1)7 and 7y 1= d($2m(k)+17$2n(k)+2)7
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then by using triangular inequalities, we obtain.

(6) € < pr L €+ tank)—2 + tan(k)—1
| 51— Dr |< toney | @ — Sk |< tam@)s | ™6 — Sk |< tane)+1-

Since the sequence {t,} converges to 0, we deduce from (6) that the
sequences {px}, {sx},{qr} and {ry} are converging to e. From (5) and
these facts, one can deduce that there exists an integer ko such that
d(Ton(k)+1, Tam(k)) > 0, and § < pp —tap < d(T2n(k)+1s Tam(k)), for
each integer k > ko. Therefore, (for all k& > ko) we have ~

d(ri) = $(d(Tan(h)+2> Tam)+1)) = D(A(ST2nk)+1, TT2m(x))) <
< v(p(sk))-

We let k — oo, in (7) and use the properties (W) and (W3), together
with the continuity of the functions ¢ and 7y to get

(8) 0 < ¢(e) < v(d(e) < b(e)-

In (8) we have a contradiction. Hence {z,} is the Cauchy sequence
in a complete metric space (X,d), thus it converges to a unique point
z=2(8,T) e X.

(iii) We shall prove that z is a common fixed point for S and T.
Since t, > 0 for all integer n, we see that both subsequences (Zon)n
and (z2n+1)r are not stationary. Therefore, we may find a subsequence
(Zn(k))k such that zon k)41 7 2 for every integer k. Let us suppose that
Tz = z. In this case we can apply the inequality (B) and obtain for all
keN,

(9) ¢(d(zonmy+2, T2)) = ¢(A(STan(k)+1,T2)) < Y((d(@an(ey1152))):
After letting k — o0, (9) gives
(10) 0 < ¢(d(z,T2)) < v(6(d(2,T2))) < ¢(d(z,T2)),

which is a contradiction. Hence z = T'z, and in a similar way, it can be
shown that z = Sz.

(iv) Uniqueness of z. Suppose that there exists another point y # z
fixed, for instance, by S. Then by the property (B), we have

0 < ¢(d(y, 2)) = $(d(Sy, T'2)) < v($(d(y, 2))) < $(d(y, 2)),
a contradiction. Therefore, we deduce that there exists a unique point
z € X such that Fix(S) = {z} = Fix(T) = Fix({S,T}). This completes
the proof of our theorem. ¢ '

(7)
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Remark 2.3. We emphasize that the function ¢ used in Th. 2.3 need
not to be strictly increasing.
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