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Abstract: We consider an ordering with respect to open mappings on the
class of all dendrites and construct a chain of dendrites which does not: have

a lower bound answering negatively a question of its existence.

1. Preliminaries

All spaces considered in this paper are assumed to be metric.
A continuum means a nonempty compact connected space. A simple
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closed curve is any space which is homeomorphic to the unit circle.
A dendrite means a locally connected continuum containing no simple
closed curve.

A mapping means a continuous function. A surjective mapping
f:X =Y is said to be:

— open provided that for each « open subset U of X its image f()
is an open subset of Y

— monotone provided f~1(y) is connected for each y € Y

We shall use the notion of order of a point in the sense of Menger-
Urysohn (see e.g. [5, §51, I, p. 274], and we denote by ord (p, X) the
order of the continuum X at a point p € X or just ord (p) if there is
no risk of confusion. Points of order 1 in a continuum X are called end
points of X, points of order 2 are called ordinary points of X and points
of order at least 3 are called ramification points of X. Throughout the
paper, the symbol N stands for the set of all natural numbers, i.e. N =
={1,2,...,n}. ‘

In [3, p. 7] J. J. Charatonik, W. J. Charatonik and J. R. Prajs
introduced a quasiordering <o on the class of all dendrites. We recall
the definition. If X, Y are dendrites, then Y <o X if there is a surjective
open mapping f : X —+ Y. This quasiordering is not an ordering (i.e.
X <0Y & Y <oX does not imply X is homeomorphic to ¥). To
guarantee this they said that X and Y are Q-equivalent iff X <oV and
Y <oX and then considered the quotient of the class of all dendrites.
The quasiordering <o induces the ordering <g on the quotient.

J. J. Charatonik, W. J. Charatonik and J. R. Prajs posed a ques-
tion if every chain with respect to this ordering has a nondegenerate
lower bound (see [3, §7, Q4(a)0, p. 51]). In Th. 2.4 we give a negative
answer to this question.

In the sequel, the range space will be always consudered to be
nondegenerate. The following well known results will be used in further
arguments. .

Statement 1.1. The order of a point is never increased under an
0pEN Mapping.

See [7, Chapter 8, (7.31), p. 147].

Proposition 1.2. Let X be a dendrite and f : X - Y « surjective
open mapping. Then the order w of a point is preserved by an open
mapping. :

See [3, Prop. 6.5, p. 23]
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Let (S,T) be a connected space, and let p € S. If S\ {p} is not
connected, then p is called a cut point of S.

An arc is any space which is homeomorphic to [0;1]. We denote
by pq an arc with end points p and ¢. An arc pqg in a continuum X is
called a free arc if pg \ {p,q} is open in X. A free arc in a space X
containing an end point of X will be called an antenna in X.

We recall some more known facts about dendrites.

Proposition 1.3. Let X be a dendrite.

(1) Each point of X is either a cut point or an end point.

(2) For each point x € X we have ord (z) = c(z), where c(z) is the
number of components of X \ {z}. ‘

(3) For every subcontinuum Z C X every component of X \ Z is
open in X. ‘

(4) Let f : X — Y be a surjective open mapping. Then Y is a
dendrite.

(5) Let f: X — Y be a surjective open mapping. Then the image
of an antenna in X is an antenna in'Y. '

See [6, Chapter X, Th. 10.7, p. 168], [6, Chapter X, Th. 10.13, p.
170], [6, 5.22(a), p. 83], [6, Cor. 13.41, p. 297] and [3, Cor. 6.7, p.23].
We start with a simple lemma which will be used in the next
section.
Lemma 1.4. Let f be a surjective open mapping of a dendrite X onto
Y,z € X a cut point of X and let A be a component of X \ {z}. Then
there are exactly two possibilities:

(1) f(A) is a component of Y \ {f(z)} and f~1(f(z)) N A =9,

(2) f(A) =Y and there is a point £’ € A: f(z') = f(z).
Proof. We see that Y is a dendrite due to Prop. 1.3(4). If f=1(f(z)) N
N A = () then f(A) is contained in some component C of Y \ {f(z)},
since f(A) is a connected set. Since A is open in X, f(A) is open in
Y and so in C. Since AU {z} is compact, f(A) U {f(z)} is closed in
Y and so f(A) is closed in C and it follows that f(A) = C due to
connectedness. Hence (1) holds.

If f71(f(z)) N A # 0 then there is a point ' € A such that
f(z") = f(z) and the image of a neighborhood U of z’ intersects any
component of Y'\ { f(z)}. By the same argument as above, f(A) is both
open and closed in Y = {f(z)}UJ{C; C is a component of Y\{f(z)}},
so f(A) =Y. Hence (2) holds. ¢
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2. Construction of a chain {D,}%,

Let a class S of spaces be given. A member U of § is said to
be universal for S if every member of & can be embedded in U, i.e.,
- if for every X € S there exists a homeomorphism h : X — h(X) C
C U. Accordingly, a dendrite is said to be universal if it contains a
homeomorphic image of any dendrite.

For each m € {3,4,...,w} we denote by D,, the standard uni-
versal dendrite of order m which is characterized by the following two
conditions: ~

(1) each ramification point of D,, is of order m;
(2) for each arc A contained in D,, the set of all ramification points
of D,, which belong to A is a dense subset of A.

See [2, Section 2], [1, p. 168], [4, Th. 6.2, p. 229] and [6, 10.37, p.
181-185]. |

In particular, D, is called the standard universal dendrite or
Wazewski universal dendrite. This means that any dendrite is con-
tained in the Wazewski dendrite D,. So any particular dendrite can
be described as a result of ’cutting out’ some parts of the Wazewski
dendrite D,,. Another procedure is described in [6, 10.37, p. 181-185]
using the locally connected fan, the inverse limit and monotone bonding
maps. _

Now we describe dendrites A,, which will play an important role in
the following construction. Fix n € N. We choose in D,, some maximal
arc ab and select on this arc n distinct ordinary points ci,cs,..., ¢,
and at each point c; we attach an arc I; so that I; N D,, = {c;}, for
j€{1,...,n}. We will denote by .4,, the obtained space

Apn =D, UL UL U...UI,.

These arcs I, I3, ..., I, are antennas in A, and the corresponding at-
taching points ¢y, ¢o, ..., ¢, will be called basic. Any end point z of
A, such that there is a maximal arc zy meeting U?‘zl I; exactly at
basic points will be called a convenient attaching point of A,,. Now we
show that the dendrites A,, are unique. Note that the following proof
shows that the convenient attaching points cannot be topologically dis-
tinguished.

Lemma 2.1. Let X be a dendrite satisfying the following three condi-
tions.

(1) There are exactly n distinct ramification points ci,ca, ..., Cp in
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X of order 3, they are contained in some mazimal arc ab, and
the other ramification points of X are of order w.
(2) For each k = 1,2,...,n the point cx is an end point of an
antenna I, of X and I Nab = {ct}.
(3) For each arc J contained in X which is disjoint from the an-
tennas I, ..., I, the set of all ramification points of X which
belong to J is a dense subset of J.
Then X is homeomorphic to A,. ,
Proof. Denote two spaces satisfying conditions (1) — (3) by X and
X , the corresponding points ¢y, ¢y, ..., ¢, and C1, Co, . . ., &, Tespectively
and let ab (respectively ab) be a maximal arc containing them. It is
easy to construct a homeomorphism g : ab — ab satisfying
(1) g9(a) =4, g(b) = b,
(2) g¢(z) is a ramification point of X <= z is a ramification pomt
of X,
(3) (cj) = ¢; holds for j € {1,2,...,n}.

Now we extend this homeomorphlsm on the Whole of X in an ob-
vious way. Each component of X \ ab will be homeomorphically mapped
onto the corresponding (in the sense of the attaching point) component
of X \&5. This is possible, since if we cut off all n antennas, the resulting
space will be D,. So any component of X \ ab is topologically either
D,, without an end point or an antenna without an end point. We will
use such homeomorphisms that can be continuously extended to the
attaching points. Moreover, we select the corresponding components in
such a way that each component of X \ ab has exactly one component
of X \ ab which is mapped onto it.

The continuity of the constructed bijection h at points of X \ ab
is clear since each such point is contained in some component of X \ ab
(which is open in X due to Prop. 1.3(3)) and h restricted to this com-
ponent is a homeomorphism. Let U be an e-neighborhood of ab. Only
finitely many components of X \ @b are not contained in U (because
these components are open due to Prop. 1.3(3), mutually disjoint and
together with U cover a compact X ). This observation implies the con-
tinuity of h at points of ab. So h is continuous, and since it is a bijection
on a compact space, also A~ is continuous.

Since the number of antennas contained in a given dendrite is
preserved by a homeomorphism we conclude that A, and A,, are not
homeomorphic if m # n. ¢
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Now we construct the dendrites D,, contained in our chain. Fix
n € N. We choose in D, some maximal arc J connecting two end
points a, b of D,, and denote by f : J — [0;1] a homeomorphism from
J onto the unit segment satisfying f(a) = 0, f(b) = 1. We construct
two sequences of points contained in J, {ax}32,, {bx}$2,,, such that
the following conditions holds:
(1) flak+1) < fbk) < flax), for k€ {n,n+1,...},
( ) (ak+1) < f(ak) for k € N,
(3) ay is an ordinary point of D, for k € N,
(4) by is an ordinary point of D, for k € {n,n+1,...},
(6) limgyo0 f(ak) = limg 00 f(bk) = 0.
The existence of such sequences is clear since ordinary points of
D, are dense in J. At each a; (for k¥ € N) we attach to D, an antenna
Iy, satisfying D, N Iy = {ax} and diam (Iy) < 4. At each by (for &k €
€ {n,n+1,...}) we attach a homeomorphic copy Ay of the dendrite
Ay such that diam (A;) < £ and {bg} = Ax N (D, U Use, Iz) is a
convenient attaching point of Ay. In this way we obtain the space D,

D,=D, U UIk U UAk
k=n
See Fig. 1 for D;.

Na: t | “

Fig. 1: the dendrite D;
Thick segments have densely points of order w, thin segments are antennas.

It is not difficult to see that D,, is a dendrite. We will denote by B7
the component of D, \ {bx} that contains b. Using Lemma 2.1 one can
easily see that B}, is homeomorphic to A, \ {e}, where e is a convenient
attaching point. Now we establish a lemma on a characterization of D,,.
Lemma 2.2. Let X be a dendrite satisfying the following conditions.

(1) There isn € N and a ramification point b, € X of order 3.
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(2) Two of the components of X \ {b,} are homeomorphic (one to
another and) to A, \ {e}, where e is a convenient attaching
point of A,.

(3) Denote by D the closure of the third component of X \ {b,}.
Then D contains a maximal arc ab, with the following proper-
ties:

For some homeomorphism g : ab, —[0; 1] satisfying g(a)=
=0 and g(b,) = 1 there are sequences of points {ax}5,, | and
{bk}32.,, such that:

(1) g(ak+1) < g(be) < glag), forke {n+1,n+2,...}.

(ii) For each k > n the point ay is a ramification point
of X of order 3, and it is an end point of exactly one
antenna I meeting ab, only at ay.

(iii) For each k > n the point by is a ramification point

of order 3, ezactly one component Cy of X \ {bx}
is disjoint from ab, and homeomorphic to Ay \ {e},
where e is a convenient attaching point of Ay.

‘(iv) limyg 00 g{ag) = limg— 00 g(bg) = 0.

(v) The set

D\ U ((Ze \ {ax}) U Cr)

k=n+1
is homeomorphic to the Wazewski universal dendrite.

Then X is homeomorphic to D,.

Proof. There are the sequences {ax}32 1, {bx}2, in D, satisfying
similar conditions with the mapping f instead of g. The construction
of our homeomorphism will start again on the arc ab, which will be
mapped onto @b, in such a way that the following holds:

(1) h(a) = @, h(by) = by, h(ax) = @x, h(bx) = by, for k € {n +

+1,n+2,...},
(2) zisa ramlﬁcatlon point of X <= h(z)isa ramification point
of D,.

Now we can extend the mapping onto the whole of X in a similar
way as in the proof of Lemma 2.1 and we finish the proof as previ-
ously. ¢ : :

By uniqueness of D,, (see Lemma 2.2) the points by (for k& > n) are
the only ones in D,, that satisfy the two following conditions: (i) they
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are of order 3 in Dy, and (ii) two of the three components of D, \ {bx}
are not antennas and contain a positive finite number of antennas.
The numbers of antennas in these two components are distinct,
except for the point b,. Since the number of antennas clearly cannot
be changed by a homeomorphism, we see that D, and D,, are not:
homeomorphic for n # m.
Let a mapping g, : D, — Dy41 be defined by the conditions:
(1) gn | (Dn\ Ar) is the identity;
(2) gn | Apn: An — BPU{b,} is a homeomorphism with g,(b,) =
= by,.
Then g, is clearly open and surjective. See Fig. 2.

Fig. 2: mapping D3 onto D4 sending Az to B U {b3}

Our result will easily follow from the following theorem which
characterizes all open images of the dendrite D,,.
Theorem 2.3. Letn € N be fized and let f : D, = X = f(D,) be an
open mapping. Then there exists m > n such that X is homeomorphic
to Dy,
Proof. We will proceed in the following steps:

() For each k € N there are exactly two possibilities:
() 7(Ar) = F(BP) U {£ (b))},
(i) £(A0) N F(BR) = 0.
Moreover, the first one holds only for finitely many k£ € N.
(6) f(Ag) is homeomorphic to Ay, for all k € N
(7) There is a natural number m > n such that f(D,) is homeo-
morphic to Dy,. ,
Proof of (a) Since D,, contains an antenna by its definition, f(D,)
does, according to Prop. 1.3 (5). We will show that f(D,,) contains
infinitely many antennas. Indeed, if not, then there exists an antenna
I in f(D,,) such that for infinitely many k the antenna Ij attached to
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D, at ay satisfies f(I;) C I. If f(I) is a proper subset of I, then
f(ax) is an interior point of I, and therefore points of order w which
are arbitrarily close to aj also are interior points of I, contrary to Prop.
1.2. Thus f(Ix) = I. However, diameters of I; converge to zero which
contradicts the uniform continuity of f. Moreover, there are infinitely
many antennas in the image of that component of D, \ {bx} which
contains bk, since the rest of D,, contains only finitely many antennas
and so its image. ‘

Now if f(Ax) = f(BR) U {f(bx)} for mﬁmtely many k € N then
for these k there exists =z € Ay such that f(zx) = f(b). Since the
distances between zx and a converges to zero we get by the continuity
of f that f(a) = f(b). This implies by openness and continuity that
the image of a small neighborhood U of b contains the image of some
neighborhood V of a. But V contains all but finitely many Ag, so f(V)
contains infinitely many antennas which is the desired contradiction.

We see that f(Agx) # f(Dn) since the first space contains only
finitely many antennas while the second one contains infinitely many of
them. So due to Lemma 1.4 the set f(Ag) \ {f(bk)} is a component of
f(Du)\ {f(bx)}. The same argument holds for f(Bp). Now it is clear
that if f(Ag) # F(BE) U {f(bk)} then f(Ax) and f(Bj) are disjoint.
This completes the proof of (a).

Proof of (3) We first show that there are exactly k points of order 3 in
f(Ag). Denote by z some point of order 3 in Ag. If ord f(z) = 2, then
the images of an antenna and the component of Ag\ {z} which does not
contain bz cover both components of f(D,) \ {f(z)} since they cannot
be the same component. This is a contradiction because some of the
mentioned images have to contain infinitely many antennas. Similarly
for ord f(z) < 2. We conclude that ord f(z) = 3 due to Statement 1.1.

Let bie be a maximal arc in Ay containing all ramification points
of order 3 in A (i.e. the point e is a convenient attaching point of
Ay, different from bg). We show that f|bge is injective. If not, there
are points z and z’ in bge such that f(z) = f(z’). Suppose that
is contained in the arc bgyz’. But now we see that the component of
D, \ {z} containing =’ will be mapped onto f(Dy) due to Lemma 1.4
and we obtain a contradiction. This shows that condition (1) of Lemma
2.1 is satisfied for f(Ag).

Statement 1.1 and Prop. 1.2 imply that the other conditions of
Lemma 2.1 are satisfied, too. Thus condition (f) follows from Lemma
2.1.
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Proof of (v) Denote by m the maximal k € N such that f(Az_;) =
= f(Bp_;) U{f(bg—1)} or put m =1 if it does not hold for any & € N.
We notice that open image of D, is homeomorphlc to D, (see [3, Prop.
6.7, p. 23]).

(i) Similarly to the proof of (3) we prove that f is injective on ab.

(ii) Similarly we can also show that f(Ax) meets f(ab) only at
f(bg) for k > m and that f(Ix) N f(ab) = {f(ax)}, for & > m.

Finally due to (a)-(8) we conclude that all conditions of Lemma
2.2 are satisfied with n = m and X = f(D,,). Hence f(D,) is homeo-
morphic to D,,. ¢

Now it follows that {Dn} 2.1 is a chain with respect to <g, i.e.
Dy 11 <0Dy, for all natural numbers n and D,,, D,,, are not Q-equivalent
for n #£ m.

If the chain {D,}32; had a lower bound L, then L would be
an open image of every D,, so by Th. 2.3 the continuum L would
be homeomorphic to D,, for m € N with m > n for each n € N, a
contradiction. This is stated in the theorem below.

Theorem 2.4. The sequence {D,}22 ; is an infinite chain with respect
to <g which has no lower bound.
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