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Introduction

Let F be a family of real functions defined on a set X, —F =
={—f:f€F} and H=FN—F # 0. Denote by n(R) the family of
all non—empty subsets of R and by cc (R) the family of all convex and
compact members of n(R). Recall that a function h: X — R is said
to be a selection of a multifunction H : X —» n(Y) if h(z) € H(z) for
all z € X.

The aim of this paper is to characterize multifunctions H : X —
— cc (R) which have selections h; € F and hy € —F, in the case,
where F is the family of convex, midconvex, subadditive, sublinear,
quasiconvex and nondecreasing functions, respectively. We also con-
sider the following problem: suppose that a multifunction H has selec-
tions hy € F and hy € —F. Does there exist a selection of H belonging
to H? We give full answer to this problem for the classes F mentioned
above.

1. Multifunctions with convex and concave selec-
tions

We start with a theorem characterizing multifunctions having
a convex and a concave selection.

Theorem 1. Let D be a convez subset of a real vector space X. A mul-
tifunction H : D — cc (R) has a convez and a concave selection if and

only if

(1) H(ZT_L: ti.’E.,;) n itzﬂ(xz) #0

forallneN, zy,...,z, €D and ty,...,t, >0 witht;+---+t, = 1.
Proof. Put f(z) = me(:c) and g(z )—-supH( ) z € D. Then H(z)=

= [f(z),9(z)] and ZtH T;) = [Zt [ (=), thg(xz] Hence H

satisfies (1) iff f and g satlsfy the system of 1nequaht1es
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n n
2) f(z tiiﬂz‘) <) tig(w),
=1 =1
n n
(3) 9(>otiws) > 3 tif ().
=1 =1

By the sandwich theorem proved in [1] (cf. also [4]), f and g satisfy (2)
iff they can be separated by a convex function, i.e. iff H has a convex
selection. Similarly, f and g satisfy (3) iff H has a concave selection.
This finishes the proof. ¢

Remark 1. It follows from the theorem proved in [6] that a multifunc-
tion H : I — cc(R), where I C R is an interval, has a convex and
a concave selection iff it has an affine selection. From the same theorem
we get also that I : I — cc (R) has an affine selection iff

H(tzy + (1 —t)ze) N [tH (z1) + (1 - t)H (z2)] # 0
for all z1, 72 € I and ¢t € (0,1) (cf. [8]).
Analogous results are not true for multifunctions defined on arbi-
trary convex set D C X, where dim X > 1. As a counterexample we can
take the multifunction H(z) = [f(z), g(z)] described in [6, Remark 2],

which is defined on a square D C R?, has a convex and a concave
selection (and so it satisfies (1)), but it has no affine selection.

2. Multifunctions with midconvex and midconcave
selections

Let D be a convex subset of a real vector space. A function f:
: D — R is said to be midconvez (or Jensen conver) if

() f(w;ry) < f(w);rf(y)
[ is midconcave (Jensen concave) if —f is midconvex. If f satisfies (4)
with equality, it is called a Jensen function.
Theorem 2. A multifunction H : D — cc (R) has a midconver and
a midconcave selection if and only if

gn

(5) H(Zin Zmi) n%iﬂ(xi) #0

, T,y €D

z==]1

foralln € N and z1,...,z9» € D.
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Proof. Let H(z) = [f(z),9(z)], z € D. Then H satisfies (5) iff f and g
satisfy
2"

(g 3m) < 2oots)

and
1 an 1 am
il ) > .
g(2n ;JI,) Z on ;f(mz)

By the result on separation by midconvex functions (cf. [4, Cor. 5]), the
above inequalities mean that f and g can be separated by a midconvex
and a midconcave function, i.e. H has a midconvex and a midconcave
selection. ¢

Remark 2. Condition (5) does not imply that H has a Jensen selection
(even if D C R). The following example gives a multifunction H : R —
— cc (R) which has a midconvex and a midconcave selection, but it
has no Jensen selection.

Example 1. Let I' = {h1, ho, ho : ¢ € A} be a Hamel base of R over Q.

Forz € R, z =r1hy + rahg + Z Taha, (T1,72,Ta € Q), we put
acA
f@)=|ri—ra|, g(&)=2—|r1+7o
and

H(z) = [min{f(z), g(2)}, max{ (a), 9()} .

It is easy to check that f is midconvex and g is midconcave. Thus H
has a midconvex and a midconcave selection. Suppose that H admits
a Jensen selection h. It has to be of the form h = ¢+ a, where ¢ € R
and a is an additive function. Then

(6) min{f(x),g(z)} <
< c+ria(hy) +raa(ha) + Y raa(ha) < max{f(z), g(z)}.
a€A
In particular, taking =, = nhqa, n € N, we get
0<c+mnalhy) <2, neN,
which implies that a(hy) = 0 for every a € A. Thus (6) reduces to
(7)  min{f(z),9(x)} < ¢+ ria(hn) + roa(ha) < max{f(z), g(a)}.
Taking in (7) z1 = h1 + he and next z3 = —hy — hg, we get
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0<c+a(hi)+alhy) <0
and '

0 <c-a(hy)—a(hy) <0.
Hence ¢ = 0. On the other hand, taking in (7) 3 = h; — hy and next
T4 = —hy + ha, we get

2<c+a(hy) —alhy) <2
and

2<c—a(h1)+alhy) <2,
which implies that ¢ = 2. The obtained contradiction shows that there
is no Jensen selection of H.

3. Multifunctions with subadditive and superaddi-
tive selections

Let (S, +) be an abelian semigroup. A function f : S —s R is
called subadditive if
fle+y) < f@)+ ), zyes;
[ is superadditive if —f is subadditive.
Theorem 3. A multifunction H : S — cc(R) has a subadditive and
a superadditive selection if and only if

(8) H(Z :1:) Ny H(z;) # 0
i=1 i=1
forallne N and z1,...,2, € S.
Proof. If H(z) = [f(z), g(z)], z € S, then (8) is equivalent to

n n n n
F(Xw) <X g and o(3m) 23 fa).
i=1 i=1 i=1 i=1
These inequalities mean that f and g can be separated by a subadditive
and a superadditive function (cf. [5, Th. 1] or [4, Cor. 1]). This finishes

the proof. ¢

Remark 3. Condition (8) does not imply that H has an additive se-
lection. The example below (cf. [5, Ex. 2]) gives a multifunction H :
: [0,00) — cc (R) which has a subadditive and a superadditive selec-
tion but it has not any additive selection.

Example 2. Consider the functions f, g : [0,00) — R defined by
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w={" 771 = {0 2507

1, z=1" z, T>2
Put H(z) = [f(z),9(z)], € [0,00). It is easily seen that the functions
0, z€[0,1)
hi(z) =+ and ha(z)=< 1, z€][1,2)
T, T2>2

are, respectively, a subadditive and a superadditive selections of H.
Suppose that a : [0,00) — R is an additive selection of H. Since
H(1) = {1}, we have a(1) = 1 and, consequently, a(z) = = for all
r € QN [0,00). Hence a(z) > g(z) for z € (1,2) N Q. The obtained
contradiction shows that H has no additive selection.

4. Multifunctions with sublinear and superlinear
selections

Let X be a real vector space. Recall that a function f: X — R
is called sublinear if it is subadditive and f(tz) = tf(z) for all z € X
and t > 0; f is superlinear if —f is sublinear.
Theorem 4. A multifunction H : X —» cc(R) has a sublinear and
a superlinear selection if and only if

(9) H(Zj: t:c) N ij tiH () # 0

forallm €N, z1,...,2, € X and t1,...,t, 2 0.
Proof. Let H(z) = [f(z),9(z)], € X. Condition (9) means that

f(Xn: timi) < itig(mi) and g(zn:tifﬂi) > Xn:tif(xi)-
=1 i=1 i=1 i1

By the theorem on separation by sublinear functions (cf. [5, Th.] or
[4, Cor. 9]), these inequalities are equivalent to the fact that f and g
can be separated by a sublinear and a superlinear function. ¢
Remark 4. In the case where X = R or X = R? condition (9) is
equivalent to the fact that H has a linear selection (cf. Ths. 4a and 4b
below). However for X = R analogous result is not true.

Example 3. Consider the functions f,g : R® — R defined by
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22—z, >0

N £ <0’ 9(z,y,2) =Vl +y? + 2

f(z,y,2) = {
and put H(w) = [min{f(w),g(’LU)},maX{f(W),g(W)}], w = (z,y,2) €
€ R3. It is easy to check that f is sublinear and g is superlinear. Of

course these functions are selections of H. Suppose now that H has
a linear selection h. It has to be of the form

h(z,y,2) = ax + by + cz
with some a,b,c € R. Since f(0,1,1) = ¢(0,1,1) = 2, f(-1,0,1) =
=g(-1,0,1) =2 and f(1,0,2) = g(1,0,2) = 3, we also have
h(0,1,1) =2, h(-1,0,1) =2 and h(1,0,2) = 3.
Hence b4+ c=2, —a + ¢ =2 and a + 2¢ = 3, which implies that

1
h(z,y,2) = g(—w +y + 52).

But this leads to a contradiction, because

F(=v2,v2,2) = g(—V2,v2,2) =4 and h(-v2,v2,2) £4.
Thus H has no linear selection.

Theorem 4a. Let H : R — cc(R). The following conditions are
equivalent:

(1) H(tiz1+taz2)N[t1H(z1) +t2H (o) # 0, 71,22 € R, ty,65 > 0;
(ii) H has a sublinear and a superlinear selection;
(i) H has a linear selection.

Proof. (i) = (ii) Let H(z) = [f(z),9(z)], € R. By (i) we have
f(t1zy + taxma) < tig(z1) + tag(za),
g(t1zy1 +taxa) > t1f (1) + ta f (za).

These inequalities imply that f and g can be separated by a sublinear
and a superlinear function (cf. [5, Th. 3]). Thus H has a sublinear and
a superlinear selection.

(ii) = (iii). (For other proof see [5, Cor. 1].) Let hy be a sublinear
and hy — a superlinear selection of H. Consider the multifunction Hy :
: R — cc (R) defined by

(10) Hy(z) = [min{hl(x), ha(z) }, max{h1(z), hy (:c)}] :
It is clear that Hy(z) C H(z), z € R, Hp(0) = {0} and (by Th. 4)
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(11) Hy (2": tia?i) N itiﬂo(ﬂii) #0

forallneN, zy,...,z, € Rand t;,...,t, > 0.

We will show that Hy has a linear selection. Since the space of
all linear functions ! : R — R is one-dimensional, it is enough to
show that for every two points z1,z2 € R there exists a linear function
[: R — R such that
(12) l(iL‘z) € Ho(mi), 1=1,2
(cf. [2, Cor. 3]). Let us fix z1,22 € R. If £; = 0 or z2 = 0, then the
existence of a linear function satisfying (12) is clear. If z;,z5 > 0 or
T1, Ty < 0, then x5 = sz; with some s > 0. By (11) we have

‘ Ho(.’L‘z) N SH()(l'l) 3& (D,

that is there exist y; € Ho(z1) and yo € Hy(zz) with yo = sy1. Define
[ : R — R to be linear and such that I(z;) = y1. Then [(z2) =
= sl(z1) = sy1 = yo, l.e. | satisfies (12). If z; <0 < 3 or 2 < 0 < 71,
then 0 = sz + (1 — s)zy with some s € (0,1). By (11)

Hy(0) N [sHo(z1) + (1 — s)Ho(z2)] # 0.
Since Hy(0) = {0}, we have 0 = sy; + (1 — $)y2 with some y1 € Ho(z1)
and y2 € Ho(zz). Define [ : R — R to be affine and such that I(z;) =
=1;, 1 =1,2. Then I(0) = sl(z1) + (1 — 8)l(z2) = sy1 + (1 — 5)y2 = 0,
which means that [ is linear.

Since the implication (iil) = (i) is obvious, the proof is finished. ¢
Theorem 4b. Let H : R2 — cc(R). The following conditions are
equivalent:

(1) H(t1x1 + toxo + t3.’1)3) N [tl.H(IEl) + tzH(:Ez) + t3H(.’E3)] #* @,
T1,T2,%3 € R: tlatZatB > O;
(ii) H has a sublinear and a superlinear selection;
(iii) H has a linear selection.
Proof. The implication (i) = (ii) follows from the theorem on separa-
tion by sublinear functions (cf. [5, Th. 3]).

(if) = (iii) Let hy be a sublinear and hs be a superlinear selection
of H. We will show that the multifunction Hp : R? — cc (R) defined
by (11) has a linear selection. Since the space of all linear functions
[ : R2 — R is two—dimensional, it is enough to show that for every
three points z1,Z2,z3 € R? there exists a linear function [ : R2 —
—+ R such that I(z;) € Ho(z;), i = 1,2,3 (cf. [2, Cor. 3]). Let us
fix z1,z2, 23 € R%. Since the restriction of Hy to every straight line
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passing through 0 has, in view of Th. 4a, a linear selection, we may
assume that these points do not lie on any such straight line. Then
two of them are linearly independent and the third one is their linear
combination. Assume that z3 = sz; + tzs with some s,t € R. The
following three cases are possible:

I. 5,£ > 0. Then in view of Th. 4 we have

Ho(.’L'3) n [SH()(iEl) + t.Ho(iEz)] 7é (D,

i.e. there exist y; € Ho(z;), ¢ = 1,2,3 with y3 = sy; + tys. Define
! : R — R to be linear and such that I(z;) = y;, i = 1,2. Then
also I(z3) = sl(z1) + tl(z2) = sy1 + tys = y3. Thus I(z;) € Hy(z;),
i=1,2,3.

II. 5,4 < 0. Then 0 = z3 — sz1 — tzy and by Th. 4

Ho(0) N [Ho(x3) — sHo(z1) — tHo(z2)] # 0.
Since Hy(0) = {0}, we have 0 = y3 — sy; — ty, with some y; € Hy(z;),
i=1,2,3. Define I : R* — R to be affine and such that I(z;) = y;, i =
= 1,2, 3 (note that the points 1, zq, z3 are affinely independent because
T1,Z2 are linearly independent and 0 € conv{zi, z9,z3}). Then
1 ] t
Z(O)_l(l—s——tx3~ 1—s—¢t 7~ 1—3—tz2> o
1
= ——(y3 — —tys) = 0.
T = W — sy — tya)

Thus [ is linear and I(z;) € Hy(z;), i =1,2,3.

III. s-t < 0. Assume, for instance, that s > 0 and ¢ < 0. Then
T, = %113 — %xg. Since the vectors za, z3 are also linearly independent
and the coefficients % and ——% are positive, this case reduces to the first
one.

This finishes the proof because the implication (iii) = (ii) is ob-
vious. ¢

5. Multifunctions with quasiconvex and quasicon-
cave selections

Let D be a convex subset of a real vector space X. Recall that
a function f : D — R is called quasiconvez if

(13)  f(tz+ (1 -t)y) <max{f(z),f(v)}, =zyeD,tel01];
f is quasiconcave if
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(14)  f(tz+ (1 —t)y) 2 min{f(2),f(W)}, =zyeD,te0,1];

If f satisfies both conditions (13) and (14), it is called quasimonotonic
(or quasiaffine). Obviously, if X = R, then the quasimonotonicity
coincides with the usual monotonicity.

Theorem 5. A multifunction H : D — cc(R) has a quasiconver and
a quasiconcave selection iff

(15) H(Z t,-:z:i) Nconv[H(z1)U...UH(z,)] # 0

foralln €N, z1,...,2, €D and ty,...,tn 2 0 witht; +---+1, = 1.
Proof. Let H(z) = [f(z),9(z)], € D. Then

conv[H(z1)U...UH(z,)] =
= [min{f(xl), ) ..,f(mn)},max{g(xl),...,g(:vn)}]

and a condition (15) is equivalent to the system of inequalities

f(}i: timi) < max{g(z1),...,9(xn)},

g(zi:t,:cz) > min{ f(z1), ..., f(zn)}-

The first of them means that f and g can be separated by a quasiconvex
function (cf. [7, Th. 2]), i.e. H has a quasiconvex selection. Similarly,
the second one means that H has a quasiconcave selection. ¢
Remark 5. It is proved in [3] that a multifunction H : I — cc(R),
where I C R is an interval, has a quasiconvex and a quasiconcave
selection iff it has a monotonic selection. Moreover, H : I — cc (R)
has a monotonic selection iff

H(tz1 + (1 — t)z2) Nconv (H (z1) U H(zz)) # 0
for all z1,z2 € I, t € [0,1]. Analogous results are not true for multi-
functions defined on D C X with dim X > 1.
Example 4. Let

Ar={(z,y) x>0,y >0}, Az={(z,9):2<0,y>0},
Agz{(m,y):x<0,y<0}, A4={(z,y):x20,y<0}.
Consider the functions f, g : R? — R defined by
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0, (.’E, y) € A1 U Az 0, (III, y) € Az
f(m’y) = 17 (zay) € A3 ’ g(m,y) - 17 (xay) € A3
2, (z,y)€ Ay 2, (z,y) € A1 U A,

and put

H(z,y) = [f(z,9),9(z,v)], (z,v) € R
It is easily seen that f is quasiconvex and g is quasiconcave. Of course,

these functions are selections of H, and hence condition (15) is fulfilled.
Suppose that A is a quasimonotonic selection of H. Then

0) (mvy) € A2
h’(x,y) = 1, (:E,y) € A3
2, (m,y) € Ay

Consider the sets

B={(z,y) €R’:h(z,y) <1} and C= {(z,y) € R?* : h(z,y) > 1}.
By the quasimonotonicity of h these sets are convex. Since A;UA; C B
and A4, N B = (0, we have A; N B = (. Similarly, since A3U A, C C
and Ay N C = (), we have A; N C = (). But this is impossible, because
BUC =R?. Thus H has no quasimonotonic selection.

6. Multifunctions with nondecreasing and nonin-
creasing selections

Finally we present a simple result connected with nondecreasing
and nonincreasing selections.
Theorem 6. Let I C R be an interval and H : I — cc(R). The
following conditions are equivalent:

(i) H has a nonincreasing and a nondecreasing selection;
(i) H(z)NH(y) #0 for all z,y € I;
(i) H has a constant selection.
Proof. Let H(z) = [f(:z:),g(a:)], z,y € 1.

(i) = (ii) Suppose, contrary to our claim, that [f(:c),g(x)] N
N[f(),9(y)] = 0 for some z,y € I. Then f(z) > g(y) or f(y) >
> g(z) and H would not have either nondecreasing or nonincreasing
selection, which contradicts the assumption.

(ii) = (iii) Condition (ii) implies that f(z) < g(y) for all z,y € I.
Hence
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c:=sup{f(z):z € I} < inf{g(y) (Y € I}
and the function h = c is a constant selection of H.
The implication (i) => (ii) is obvious. ¢
Remark 6. Let us note that conditions (i) and (ii) are equivalent for
arbitrary multifunction H : A — cc (R) defined on a non-empty set A.
More general, it follows from the classical Helly’s theorem, that a mul-
tifunction H : A — cc(R™) has a constant selection iff

H(zl)ﬂ...ﬂH(mn_H) 750
for all £1,...,Znt1 € A (cf. also [2, Cor. 1]).
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