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Abstract: In this paper we give some characterizations for the uniform clo-
sure of a sub-lattice W of bounded real-valued continuous functions over a
completely regular non-compact space X. Thus, we extend to C* (X) some
known results for the compact case, like the Bonsall’s approximation theorem
for lattices or the Csdszar-Czipszer theorem for affine-lattices. In particular,
we complete the study about the uniform closure of a lattice done in [6] by
Garrido-Montalvo.

1. Introduction

Let K be a compact Haudorff space and let W C C(K). It is
well known that when W is a sublattice or a subalgebra of C(K) the
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Kakutani-Stone theorem and the Weierstrass-Stone theorem character-
ize the uniform closure of W. Both theorems have many generalizations
and extensions (see Choquet and Deny [4], Csdszar [5], Prolla [10], [11],
... ). It could be said that how points are separated by the functions
in W originates of the different theorems. On the other hand, although
the same arguments are not sufficient for the general case, there are
some versions of these theorems for the noncompact case. Thus, He-
witt [7] in 1947 gave a uniform density theorem for algebras containing
all the real constant functions of C*(X) (the set of all bounded and
real-valued continuous functions over X). In the proof he considered
separation of zero-sets in place of separation of points. Similar results
have been obtained by Mrowka [9], Brosowsky and Deutsch [3], Blasco
and Molté [1], Garrido and Montalvo [6].

In this paper, we present some new characterizations of the uni-
form closure of certain subfamilies W C C*(X) when X is a non-
compact space. Here, we suppose either W or its uniform closure cl(W)
is a lattice of C*(X) and we obtain different conditions according to
cl(W) is a lattice, a lattice containing the constant functions or an affine
lattice. Thus, we complete the results obtained in [6] for lattices.

2. Preliminaries

Let X be a completely regular Hausdorff space. As usual, X
denotes the Stone-Cech compactification of X and C*(X) the family
of all real-valued bounded continuous functions defined on X endowed
with the uniform norm. Recall that SX is the only (up to homeomor-
phisms) Hausdorff compactification of X such that each f € C*(X)
admits a (unique) extension f# € C*(8X). Thus, if W C C*(X) and
W8 = {ff : f € W}, then W and WP have similar algebraic prop-
erties. Moreover, clg»(gx) w8 = (clgx(x) W)P, where cly (A) denotes
the closure of a set A C Y with respect to the topology of Y. If there
no confusion is possible, we will omit the underlying space, that is
cl(4) := cly (4).

For f € C*(X), the Lebesgue sets of f are defined by

Lo(f) ={z e X: f(z) <a}, L%f):={ze€X:f(z)>a}, (a €R).

Next, we list the separation properties which will be used. For a
set W ¢ C*(X) and a function f: X — R, we say that
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1. W S;-separates the Lebesgue sets of f if for a,b € R, a < b,
there exists g € W such that 0 < g < 1, g(Lo(f)) = {0} and
g(L¥(f)) = {1},

2. W S-separates the Lebesgue sets of f if for each a,b € R, a <
< b, and § > 0, there exists g € W such that, 0 < g < 1,
9(La(f)) C [0,4] and g(L*(f)) C [1 - 4,1].

3. W separates the Lebesgue sets of f if for each a,b € R, a < b,
there exists g € W such that clg(g(La(f))) Nelr(g(LE(f))) = 0.

3. Main results

In the following we suppose either W or, more generally, cI(W) is
a lattice (i.e., if g, h € cI1W, then gV h = sup(g, k) and g A h = inf(g, h)
are in cl(W)).

We shall obtain the first result by applying to W# a known theo-
rem of the compact case, the Bonsall theorem. Let us recall:

Theorem 3.1 [2, Bonsall]l. Let X be a Hausdorff compact space, W C
C C*(X) a lattice and f € C*(X) a fized function. Then f € cl(W)
if and only if, for each 1,29 € X and e > 0, there exists g € W such
that

f(z1) <glz)+e, flza) > g(za) —e.
Theorem 3.2. Let X be a completely reqular Hausdorff space, W a

non-empty subset of C*(X) such that cl(W) is a lattice and f € C*(X)
a fized function. The following assertions are equivalent:

(i) fec(W).
(ii) For each pair of real numbers a,b and every € > 0, there exists
g € W such that

Lo(f) € Late(9),  L°(f) € L*=%(g).

Proof. Assertions (ii) follow easily from (i). To see that (ii) implies (i),
fix p,g € BX, e > 0 and let 0 < § < £/2. Then, by hypothesis, there
exists g € W such that

F@)<fFPp)+8 = g(z) < fPp) + 25,
f@)>fP@)-6 = glz)>fP(g) — 26
from which it follows that
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pe{yepX:fPy) < fP(p) + 6} Cclpx{z € X: f(z) < fP(p) + 6} C
C clpx{z € X:g(z) < f°(p) + 26},

and then, ¢#(p) < fP(p) + 26 < fP(p) +e. Analogously, we obtain
that ¢8(q) > fP(q) — € and, therefore, the Bonsall theorem gives f# €
€ cl(Wh). O

Remark 3.3. (1) We will show in Cor. 3.4 that if we include the hy-
pothesis “cl(W) contains the constant functions” in Th. 3.2, then we
can assume that a < b in the condition (ii). But, in general, that is not
true. For example, let W be the lattice of all functions g € C[0, 1] such
that g(z) = mz, for some m € R, and let f € C[0,1] be defined by

f(@) {2:{: si z<1/2
z) =
I si z>1/2
Since W is uniformly closed, f ¢ cl(W). But, for each pair a,b € R,
a < b, there exists a function g € W such that

Lo(f) € Lalg), L°(f) C L%(g).

(2) There exist some cases (see Th. 3.5) in which we can remove € from
condition (ii) in Th. 3.2. But, in general, that is not possible, even with
W being a linear lattice. For example, let W be the family of all real
continuous functions g defined on [0, 1] such that there exist m € R and
d € (0,1/4] satisfying

glz)y=mz if ze€ [%—6,%+5] Ull-4,1],

and consider the function »
2 if £ €[0,1/2]
flx):=1< 4z —-1 ifze[1/2,3/4]
2 if z € [3/4,1].
As can easily be verified, W is a linear lattice and f € cl(W). Also,
since
Ll(f) = [0’ 1/2] Lz(f) = [3/4’ 1]7
if g € W is such that L1(f) C Li(g), then g(z) < 2 in a neighborhood
of 1. Hence, L2(f) ¢ L%(g).
Corollary 3.4. Let W C C*(X) be such that cl(W) is a lattice con-

taining the constant functions. Then, for a function f € C*(X), the
following assertions are equivalent:
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(i) f e cd(W).
(ii) For each a < b and e > 0 there exists g € W such that
Lo(f) C Late(9), LP(f) € L*%(g).
(iii) [6, Garrido and Montalvo] For each a < b and & > 0 there ezists
g € W such that forz € X
z € La(f) = l9(z) —al <e, zeL’(f) = |g(z) - b| <e.
Proof. From Th. 3.2 it follows that (i) implies (ii). Also, it was showed
in [6, Th. 7] that (i) and (iii) are equivalent. Thus, it suffices to prove
that (ii) implies (iii). Let a,b (a < b) be real numbers and 0 < ¢ < b—a.
Choose g1 € W such that La(f) C Laye/2(91) and LP(f) € LP=¢/2(gy).
Notice that the function (aV g1) A b € cl(W) satisfies
z € Lo(f) = [(aV g1(z)) Ab—a] < g/2
| z € LPf) = |(aV gi(z)) Ab—b] <e/2. |
Next, take g € W such that, for each z € X, |(aVg1(z))Ab—g(z)| < £/2.
Then we have

z € Lo(f) = lg(z) —al<e, z€L’f)=lg(z)-bl<e. O

The following theorem is a consequence of the above result and
Th. 8 of [6].

Theorem 3.5. Let W C C*(X) be such that cl(W) is a lattice which
contains all functions of the form ag+c, g € W, a,c € R (an affine
lattice). Then the following assertions are equivalent.

(i) fec(W).
(i) For each a < b and e > 0, there exists g € W such that

Lo(f) C Late(g), L°(f) € L*~%(g).
(iii) For each a < b, there exists g € W such that

La(f) C La(g), L°(f) € L%(g).
(iv) For each a < b and e > 0, there exists g € W such that
9(z) —al <e ifzeLdf), lg(z)-bl<e ifzeL’f).

(v) W S-separates the Lebesgue sets of f.
(vi) For each a < b, there erists g € W such that

sup{g(z):z € Lo(f)} < inf{g(z): x € LO(f)}.
(vii) W separates the Lebesgue sets of f.
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Proof. From Cor. 3.4 and Th. 8 of [6] applied to cl(W) it is easy to
obtain that all the conditions but (iii) are equivalent. We must note
that, since cI(W) is an affine lattice, W S-separates the Lebesgue sets
of f if and only if cl(W) S'-separates the Lebesgue sets of f.

Thus to finish, we shall prove that (vi) < (iii). It is clear that
(iii) implies (vi). For the converse, let a < b, € > 0 and choose g € W
such that

a = sup{g(z): z € Lo(f)} < inf{g(z):z € L°(f)} = B,

and let ¢ € C*(R) be the straight line such that (o) = a — € and
©(B) = b+e. The map pog € cl (W) satisfies (pog)(z) < pa) =a—
—¢,if z € Lo(f). In the same way, (pog)(z) > b+e, if z € L°(f). Now,
choose h € W such that |pog—h| < e. Then Lo(f) C Lo(h), LP(f) C
C LP(h). ¢ '

References

[1] BLASCO, J. L., MOLTO, A.: On the uniform closure of a linear space of
bounded real-valued functions, Ann. Mat. Pure Appl. (iv) 134 (1983), 233—
239.

[2] BONSALL, F. F.: Semi-algebras of continuous functions, Proc. London Math.
Soc. (iii) 10 (1960), 122-140.

[3] BROSOWSKI, B., DEUTSCH, F.: An elementary proof of the Stone-Weier-
strass theorem, Proc. Amer. Math. Soc. 81 (1981), 89-92.

[4] CHOQUET, G., DENY, J.: Ensembles semi-réticulés et ensembles réticulés
de fonctions continues, J. Math. Pures Appl. 36 (1957), 179-189.

[5] CSASZAR, A.: On approximation theorems for uniform spaces, Acta Math.
Acad. Sci. Hungar. 22 (1971), 177-186.

[6] GARRIDO, M. I. and MONTALVO, F.: On some generalizations of the Kaku-
tani-Stone and Stone-Weierstrass theorems, Acta Math. Hung. 62/3-4 (1993),
199-208.

[7] HEWITT, E.: Certain generalizations of the Weierstrass approximation theo-
rem, Duke Math. 14 (1947), 419-427.

[8] KAKUTANI, S.: Concrete representation of abstract (M)-spaces, Annals of
Math. 42 (1941), 994-111.

[9] MROWKA, S.: On some approximation theorems, Nieuw Archieef voor Wis-
kunde XVTI (1968), 94-111.

[10] PROLLA, J. B.: On the Weierstrass-Stone theorem, J. Approz. Theory 78
(1994), 299-313.

[11] PROLLA, J. B.: Weierstrass-Stone, the Theorem, Verlag Peter Lang, Frank-
furt am Main, 1993.





